教育巴巴 > 学习积累 > 知识点 >

六年级下册数学知识点梳理

时间: 泽慧 知识点

小学的数学知识其实也不是很简单的哦,因为小学是学习数学最基础的知识,学习一定要打好基础哦!以下是小编为大家整理的关于六年级下册数学知识点梳理,希望对大家有所帮助哦!

六年级下册数学知识点梳理

六年级下册数学知识点梳理篇1

一、圆柱

1、圆柱的形成:圆柱是以长方形的一边为轴旋转而得的。

圆柱也可以由长方形卷曲而得到。

两种方式:

1、以长方形的长为底面周长,宽为高;

2、以长方形的宽为底面周长,长为高。

其中,第一种方式得到的圆柱体体积较大。

2、圆柱的高是两个底面之间的距离,一个圆柱有无数条高,他们的数值是相等的

3、圆柱的特征:

(1)底面的特征:圆柱的底面是完全相等的两个圆。

(2)侧面的特征:圆柱的侧面是一个曲面。

(3)高的特征:圆柱有无数条高

4、圆柱的切割:

①横切:切面是圆,表面积增加2倍底面积,即S增=2πr?0?5

②竖切(过直径):切面是长方形(如果h=2R,切面为正方形),该长方形的长是圆柱的高,宽是圆柱的底面直径,表面积增加两个长方形的面积,即S增=4rh

5、圆柱的侧面展开图:

①沿着高展开,展开图形是长方形,如果h=2πr,则展开图形为正方形

②不沿着高展开,展开图形是平行四边形或不规则图形

③无论怎么展开都得不到梯形

圆柱变形记,圆柱怎么变形成长方体?与长方体又有什么联系?怎么借助长方体的体积计算圆柱的体积?

6、圆柱的相关计算公式:

底面积:S底=πr?0?5

底面周长:C底=πd=2πr

侧面积:S侧=2πrh

表面积:S表=2S底+S侧=2πr?0?5+2πrh

体积:V柱=πr?0?5h

考试常见题型:

①已知圆柱的底面积和高,求圆柱的侧面积,表面积,体积,底面周长

②已知圆柱的底面周长和高,求圆柱的侧面积,表面积,体积,底面积

③已知圆柱的底面周长和体积,求圆柱的侧面积,表面积,高,底面积

④已知圆柱的底面面积和高,求圆柱的侧面积,表面积,体积

⑤已知圆柱的侧面积和高,求圆柱的底面半径,表面积,体积,底面积

以上几种常见题型的解题方法,通常是求出圆柱的底面半径和高,再根据圆柱的相关计算公式进行计算

无盖水桶的表面积=侧面积+一个底面积油桶的表面积=侧面积+两个底面积

烟囱通风管的表面积=侧面积

只求侧面积:灯罩、排水管、漆柱、通风管、压路机、卫生纸中轴、薯片盒包装

侧面积+一个底面积:玻璃杯、水桶、笔筒、帽子、游泳池

侧面积+两个底面积:油桶、米桶、罐桶类

二、圆锥

1、圆锥的形成:圆锥是以直角三角形的一直角边为轴旋转而得到的。圆锥也可以由扇形卷曲而得到。

2、圆锥的高是两个顶点与底面之间的距离,与圆柱不同,圆锥只有一条高

3、圆锥的特征:

(1)底面的特征:圆锥的底面一个圆。

(2)侧面的特征:圆锥的侧面是一个曲面。

(3)高的特征:圆锥有一条高。

4、圆锥的切割:

①横切:切面是圆

②竖切(过顶点和直径直径):切面是等腰三角形,该等腰三角形的高是圆锥的高,底是圆锥的底面直径,面积增加两个等腰三角形的面积,即S增=2rh

5、圆锥的相关计算公式:

底面积:S底=πr?0?5

底面周长:C底=πd=2πr

体积:V锥=1/3πr?0?5h

考试常见题型:

①已知圆锥的底面积和高,求体积,底面周长

②已知圆锥的底面周长和高,求圆锥的体积,底面积

③已知圆锥的底面周长和体积,求圆锥的高,底面积

以上几种常见题型的解题方法,通常是求出圆锥的底面半径和高,再根据圆柱的相关计算公式进行计算

圆柱和圆锥的关系

1、圆柱与圆锥等底等高,圆柱的体积是圆锥的3倍。

2、圆柱与圆锥等底等体积,圆锥的高是圆柱的3倍。

3、圆柱与圆锥等高等体积,圆锥的底面积(注意:是底面积而不是底面半径)是圆柱的3倍。

4、圆柱与圆锥等底等高,体积相差2/3Sh

小学数学单位换算公式大全

长度单位换算:

1千米=1000米。

1米=10分米。

1分米=10厘米。

1米=100厘米。

1厘米=10毫米。

面积单位换算:

1平方千米=100公顷。

1公顷=10000平方米。

1平方米=100平方分米。

1平方分米=100平方厘米。

1平方厘米=100平方毫米。

体(容)积单位换算:

1立方米=1000立方分米。

1立方分米=1000立方厘米。

1立方分米=1升。

1立方厘米=1毫升。

1立方米=1000升。

重量单位换算:

1吨=1000千克。

1千克=1000克。

1千克=1公斤。

人民币单位换算:

1元=10角。

1角=10分。

1元=100分。

时间单位换算:

1世纪=100年。

1年=12月。

大月(31天)有:135781012月。

小月(30天)的有:46911月。

平年2月28天,闰年2月29天。

平年全年365天,闰年全年366天。

1日=24小时1时=60分。

1分=60秒1时=3600秒。

六年级下册数学知识点梳理篇2

一、负数

1、在熟悉的生活情境中初步认识负数,能正确的读、写正数和负数,知道0既不是正数也不是负数。

2、初步学会用负数表示一些日常生活中的实际问题,体验数学与生活的密切联系。

3、能借助数轴初步学会比较正数、0和负数之间的大小。

4、像-16、-500、-3/8、-0.4这样的数叫做负数。-3/8读作负八分之三。16,200,3/8,6.3这样的数叫做正数。正数前面可以

加+号,也可以省去+号。+6.3读作正六点三。0既不是正数,也不是负数。

5、16℃读作十六摄氏度,表示零上16℃;-16℃读作负十六摄氏度,表示零下16℃

6、如果2000表示存入2000元,那么-500表示支出了500元。向东走3m记作+3,向西4m记作-4。

7、在数轴上,从左到右的顺序就是数从小到大的顺序。0是正数和负数的分界点,所有的负数都在0的左边,也就是负数都比0小,而正数都比0大,负数都比正数小。负号后面的数越大,这个数就越小。如:-8-6。

二、圆柱和圆锥

1、认识圆柱和圆锥,掌握它们的基本特征。认识圆柱的底面、侧面和高。认识圆锥的底面和高。

2、探索并掌握圆柱的侧面积、表面积的计算方法,以及圆柱、圆锥体积的计算公式,会运用公式计算体积,解决有关的简单实际问题。

3、通过观察、设计和制作圆柱、圆锥模型等活动,了解平面图形与立体图形之间的联系,发展学生的空间观念。

4、圆柱的两个圆面叫做底面,周围的面叫做侧面,底面是平面,侧面是曲面。

5、圆柱的侧面沿高展开后是长方形,长方形的长等于圆柱底面的周长,长方形的宽等于圆柱的高,当底面周长和高相等时,侧面沿高展开后是一个正方形。

6、圆柱的表面积=圆柱的侧面积+底面积2即s表=s侧+s底2或2h+2。

7、圆柱的侧面积=底面周长高即s侧=ch或2。

8、圆柱的体积=圆柱的底面积高,即v=sh或r2。

进一法:实际中,使用的材料都要比计算的结果多一些,因此,要保留数的时候,省略的位上的是4或者比4小,都要向前一位进1。这种取近似值的方法叫做进一法。

9、圆锥只有一个底面,底面是个圆。圆锥的侧面是个曲面。

10、从圆锥的顶点到底面圆心的距离是圆锥的高。圆锥只有一条高。(测量圆锥的高:先把圆锥的底面放平,用一块平板水平地放在圆锥的顶点上面,竖直地量出平板和底面之间的距离)

11、把圆锥的侧面展开得到一个扇形。

12、圆锥的体积等于与它等底等高的圆柱体积的三分之一,即v锥=1/3sh或r2h。

13、常见的圆柱圆锥解决问题:①、压路机压过路面面积(求侧面积);②、压路机压过路面长度(求底面周长);③、水桶铁皮(求侧面积和一个底面积);④、厨师帽(求侧面积和一个底面积);通风管(求侧面积)。

三、比例

1、理解比例的意义和基本__质,会解比例。

2、理解正比例和反比例的意义,能找出生活中成正比例和成反比例量的实例,能运用比例知识解决简单的实际问题。

3、认识正比例关系的图像,能根据给出的有正比例关系的数据在有坐标系的方格纸上画出图像,会根据其中一个量在图像中找出或估计出另一个量的值。

4、了解比例尺,会求平面图的比例尺以及根据比例尺求图上距离或实际距离。

5、认识放大与缩小现象,能利用方格纸等形式按一定的比例将简单图形放大或缩小,体会图形的相似。

6、渗透函数思想,使学生受到辩证唯物主义观点的启蒙教育。

7、比例的意义:表示两个比相等的式子叫做比例。如:2:1=6:

8、组成比例的四个数,叫做比例的项。两端的两项叫做外项,中间的两项叫做内项。

9、比例的__质:在比例里,两个外项的积等于两个两个内向的积。这叫做比例的基本__质。例如:由3:2=6:4可知34=2或者由x1。5=y1。2可知x:y=1.2:1.5。

10、解比例:根据比例的基本__质,如果已知比例中的任何三项,就可以求出这个数比例中的另外一个未知项。求比例中的未知项,叫做解比例。例如:3:x=4:8,内项乘内项,外项乘外项,则:4x=38,解得x=6。

11、正比例和反比例:

(1)、成正比例的量:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,他们的关系叫做正比例关系。用字母表示y/x=k(一定)

例如:①、速度一定,路程和时间成正比例;因为:路程时间=速度(一定)。

②、圆的周长和直径成正比例,因为:圆的周长直径=圆周率(一定)。

③、圆的面积和半径不成比例,因为:圆的面积半径=圆周率和半径的积(不一定)。

④、y=5x,y和x成正比例,因为:yx=5(一定)。

⑤、每天看的页数一定,总页数和天数成正比例,因为:总页数天数=每天看页数(一定)。

(2)、成反比例的量:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,他们的关系叫做反比例关系。用字母表示xy=k(一定

例如:①、路程一定,速度和时间成反比例,因为:速度时间=路程(一定)。

②、总价一定,单价和数量成反比例,因为:单价数量=总价(一定)。

③、长方形面积一定,它的长和宽成反比例,因为:长宽=长方形的面积(一定)。

④、40x=y,x和y成反比例,因为:xy=40(一定)。

⑤、煤的总量一定,每天的烧煤量和烧的天数成反比例,因为:每天烧煤量天数=煤的总量(一定)。

12、图上距离:实际距离=比例尺;

例如:图上距离2cm,实际距离4km,则比例尺为2cm:4km,最后求得比例尺是1:200000。

13、实际距离=图上距离比例尺;

例如:已知图上距离2cm和比例尺,则实际距离为:21/200000=400000cm=4km。

14、图上距离=实际距离比例尺;

例如:已知实际距离4km和比例尺1:200000,则图上距离为:4000001/200000=2(cm)

四、数学广角

1、经历抽屉原理的探究过程,初步了解抽屉原理,会用抽屉原理解决简单的实际问题。

2、通过抽屉原理的灵活应用感受数学的魅力。

六年级数学下册基础知识点

一、圆柱

1、圆柱的形成:圆柱是以长方形的一边为轴旋转而得的。

圆柱也可以由长方形卷曲而得到。

两种方式:

1、以长方形的长为底面周长,宽为高;

2、以长方形的宽为底面周长,长为高。

其中,第一种方式得到的圆柱体体积较大。

2、圆柱的高是两个底面之间的距离,一个圆柱有无数条高,他们的数值是相等的

3、圆柱的特征:

(1)底面的特征:圆柱的底面是完全相等的两个圆。

(2)侧面的特征:圆柱的侧面是一个曲面。

(3)高的特征:圆柱有无数条高

4、圆柱的切割:

①横切:切面是圆,表面积增加2倍底面积,即S增=2πr?0?5

②竖切(过直径):切面是长方形(如果h=2R,切面为正方形),该长方形的长是圆柱的高,宽是圆柱的底面直径,表面积增加两个长方形的面积,即S增=4rh

5、圆柱的侧面展开图:

①沿着高展开,展开图形是长方形,如果h=2πr,则展开图形为正方形

②不沿着高展开,展开图形是平行四边形或不规则图形

③无论怎么展开都得不到梯形

圆柱变形记,圆柱怎么变形成长方体?与长方体又有什么联系?怎么借助长方体的体积计算圆柱的体积?

6、圆柱的相关计算公式:

底面积:S底=πr?0?5

底面周长:C底=πd=2πr

侧面积:S侧=2πrh

表面积:S表=2S底+S侧=2πr?0?5+2πrh

体积:V柱=πr?0?5h

考试常见题型:

①已知圆柱的底面积和高,求圆柱的侧面积,表面积,体积,底面周长

②已知圆柱的底面周长和高,求圆柱的侧面积,表面积,体积,底面积

③已知圆柱的底面周长和体积,求圆柱的侧面积,表面积,高,底面积

④已知圆柱的底面面积和高,求圆柱的侧面积,表面积,体积

⑤已知圆柱的侧面积和高,求圆柱的底面半径,表面积,体积,底面积

以上几种常见题型的解题方法,通常是求出圆柱的底面半径和高,再根据圆柱的相关计算公式进行计算

无盖水桶的表面积=侧面积+一个底面积油桶的表面积=侧面积+两个底面积

烟囱通风管的表面积=侧面积

只求侧面积:灯罩、排水管、漆柱、通风管、压路机、卫生纸中轴、薯片盒包装

侧面积+一个底面积:玻璃杯、水桶、笔筒、帽子、游泳池

侧面积+两个底面积:油桶、米桶、罐桶类

二、圆锥

1、圆锥的形成:圆锥是以直角三角形的一直角边为轴旋转而得到的。圆锥也可以由扇形卷曲而得到。

2、圆锥的高是两个顶点与底面之间的距离,与圆柱不同,圆锥只有一条高

3、圆锥的特征:

(1)底面的特征:圆锥的底面一个圆。

(2)侧面的特征:圆锥的侧面是一个曲面。

(3)高的特征:圆锥有一条高。

4、圆锥的切割:

①横切:切面是圆

②竖切(过顶点和直径直径):切面是等腰三角形,该等腰三角形的高是圆锥的高,底是圆锥的底面直径,面积增加两个等腰三角形的面积,即S增=2rh

5、圆锥的相关计算公式:

底面积:S底=πr?0?5

底面周长:C底=πd=2πr

体积:V锥=1/3πr?0?5h

考试常见题型:

①已知圆锥的底面积和高,求体积,底面周长

②已知圆锥的底面周长和高,求圆锥的体积,底面积

③已知圆锥的底面周长和体积,求圆锥的高,底面积

以上几种常见题型的解题方法,通常是求出圆锥的底面半径和高,再根据圆柱的相关计算公式进行计算

圆柱和圆锥的关系

1、圆柱与圆锥等底等高,圆柱的体积是圆锥的3倍。

2、圆柱与圆锥等底等体积,圆锥的高是圆柱的3倍。

3、圆柱与圆锥等高等体积,圆锥的底面积(注意:是底面积而不是底面半径)是圆柱的3倍。

4、圆柱与圆锥等底等高,体积相差2/3Sh

六年级下册数学知识点梳理篇3

1.认识圆柱和圆锥,掌握它们的基本特征。认识圆柱的底面、侧面和高。认识圆锥的底面和高。

2.探索并掌握圆柱的侧面积、表面积的计算方法,以及圆柱、圆锥体积的计算公式,会运用公式计算体积,解决有关的简单实际问题。

3.通过观察、设计和制作圆柱、圆锥模型等活动,了解平面图形与立体图形之间的联系,发展学生的空间观念。

4.圆柱的两个圆面叫做底面,周围的面叫做侧面,底面是平面,侧面是曲面。

5.圆柱的侧面沿高展开后是长方形,长方形的长等于圆柱底面的周长,长方形的宽等于圆柱的高,当底面周长和高相等时,侧面沿高展开后是一个正方形。

6.圆柱的表面积=圆柱的侧面积+底面积×2即S表=S侧+S底×2或2πr×h+2×π。

7.圆柱的侧面积=底面周长×高即S侧=Ch或2πr×。

8.圆柱的体积=圆柱的底面积×高,即V=sh或πr2×。

进一法:实际中,使用的材料都要比计算的结果多一些,因此,要保留数的时候,省略的位上的是4或者比4小,都要向前一位进1。这种取近似值的方法叫做进一法。

9.圆锥只有一个底面,底面是个圆。圆锥的侧面是个曲面。

10.从圆锥的顶点到底面圆心的距离是圆锥的高。圆锥只有一条高。(测量圆锥的高:先把圆锥的底面放平,用一块平板水平地放在圆锥的顶点上面,竖直地量出平板和底面之间的距离)

11.把圆锥的侧面展开得到一个扇形。

12.圆锥的体积等于与它等底等高的圆柱体积的三分之一,即V锥=1/3Sh或πr2×h÷。

13.常见的圆柱圆锥解决问题:

①压路机压过路面面积(求侧面积);

②压路机压过路面长度(求底面周长);

③水桶铁皮(求侧面积和一个底面积);

④厨师帽(求侧面积和一个底面积);通风管(求侧面积)。

77832