教育巴巴 > 学习积累 > 知识点 >

五年级下册数学知识点整理归纳

时间: 梦荧 知识点

要想在考试中取得好成绩就必须注重平时的练习与积累,那么关于五年级下册数学知识点有哪些呢?以下是小编准备的一些五年级下册数学知识点,仅供参考。

五年级下册数学知识点整理归纳

小学五年级数学下册知识点

1、由6个长方形(特殊情况有两个相对的面是正方形)围成的立体图形叫做长方体。两个面相交的边叫做棱。三条棱相交的点叫做顶点。相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。

长方体特点:

(1)有6个面,8个顶点,12条棱,相对的面的面积相等,相对的棱的长度相等。

(2)一个长方体最多有6个面是长方形,最少有4个面是长方形,最多有2个面是正方形。

2、由6个完全相同的正方形围成的立体图形叫做正方体(也叫做立方体)。

正方体特点:

(1)正方体有12条棱,它们的长度都相等。

(2)正方体有6个面,每个面都是正方形,每个面的面积都相等。

(3)正方体可以说是长、宽、高都相等的长方体,它是一种特殊的长方体。

相同点

不同点

面棱

长方体

都有6个面,12条棱,8个顶点。

6个面都是长方形。

(有可能有两个相对的面是正方形)。

相对的棱的长度都相等

正方体

6个面都是正方形。

12条棱都相等。

3、长方体、正方体有关棱长计算公式:

长方体的棱长总和=(长+宽+高)×4=长×4+宽×4+高×4

L=(a+b+h)×4

长=棱长总和÷4-宽-高

a=L÷4-b-h

宽=棱长总和÷4-长-高

b=L÷4-a-h

高=棱长总和÷4-长-宽

h=L÷4-a-b

正方体的棱长总和=棱长×12

L=a×12

正方体的棱长=棱长总和÷12

a=L÷12

4、长方体或正方体6个面和总面积叫做它的表面积。

长方体的表面积=(长×宽+长×高+宽×高)×2

S=2(ab+ah+bh)

无底(或无盖)

长方体表面积=长×宽+(长×高+宽×高)×2

S=2(ab+ah+bh)-ab

S=2(ah+bh)+ab

无底又无盖长方体表面积=(长×高+宽×高)×2

S=2(ah+bh)

贴墙纸

正方体的表面积=棱长×棱长×6 S=a×a×6用字母表示:S= 6a2

生活实际:

油箱、罐头盒等都是6个面

游泳池、鱼缸等都只有5个面

水管、烟囱等都只有4个面。

注意1:用刀分开物体时,每分一次增加两个面。(表面积相应增加)

注意2:长方体或正方体的长、宽、高同时扩大几倍,表面积会扩大倍数的平方倍。

(如长、宽、高各扩大2倍,表面积就会扩大到原来的4倍)。

5、物体所占空间的大小叫做物体的体积。

长方体的体积=长×宽×高V=abh

长=体积÷宽÷高a=V÷b÷h

宽=体积÷长÷高b=V÷a÷h

高=体积÷长÷宽h= V÷a÷b

正方体的体积=棱长×棱长×棱长

V=a×a×a = a3

读作“a的立方”表示3个a相乘,(即a·a·a)

长方体或正方体底面的面积叫做底面积。

长方体(或正方体)的体积=底面积×高

用字母表示:V=S h(横截面积相当于底面积,长相当于高)。

注意:一个长方体和一个正方体的棱长总和相等,但体积不一定相等。

6、箱子、油桶、仓库等所能容纳物体的体积,通常叫做他们的容积。

固体一般就用体积单位,计量液体的体积,如水、油等。

常用的容积单位有升和毫升也可以写成L和ml。

1升=1立方分米

1毫升=1立方厘米

1升=1000毫升

(1L = 1dm3 1ml = 1cm3)

长方体或正方体容器容积的计算方法,跟体积的计算方法相同。

但要从容器里面量长、宽、高。(所以,对于同一个物体,体积大于容积。)

注意:长方体或正方体的长、宽、高同时扩大几倍,体积就会扩大倍数的立方倍。

(如长、宽、高各扩大2倍,体积就会扩大到原来的8倍)。

x形状不规则的物体可以用排水法求体积,形状规则的物体可以用公式直接求体积。

排水法的公式:

V物体=V现在-V原来

也可以V物体=S×(h现在- h原来)

V物体=S×h升高

8、【体积单位换算】

大单位乘进率=小单位

小单位÷进率=大单位

进率:1立方米=1000立方分米=1000000立方厘米(立方相邻单位进率1000)

1立方分米=1000立方厘米=1升=1000毫升

1立方厘米=1毫升

1平方米=100平方分米=10000平方厘米

1平方千米=100公顷=1000000平方米

注意:长方体与正方体关系

把长方体或正方体截成若干个小长方体(或正方体)后,表面积增加了,体积不变。

重量单位进率,时间单位进率,长度单位进率

大单位乘进率=小单位

小单位÷进率=大单位

1、公式:

(1)长方形:

周长=(长+宽)×2字母公式:C=(a+b)×2

长=周长÷2—宽字母公式:a=C÷2—b

宽=周长÷2—长字母公式:b=C÷2—a

面积=长×宽字母公式:S=ab

(2)正方形:

周长=边长×4字母公式:C=4a

面积=边长×边长字母公式:S=a2

(3)平行四边形:

面积=底×高字母公式:S=ah

底=面积÷高字母公式:a=S÷h

高=面积÷底字母公式:h=S÷a

(4)三角形:

面积=底×高÷2字母公式:S=ah÷2

底=面积×2÷高字母公式:a=S×2÷h

高=面积×2÷底字母公式:h=S×2÷a

(5)梯形:

面积=(上底+下底)×高÷2字母公式:S=(a+b)h÷2

高=面积×2÷(上底+下底)字母公式:h=2S÷(a+b)

上底+下底=面积×2÷高字母公式:a+b=2S÷h

上底=面积×2÷高—下底字母公式:a=2S÷h—b

下底=面积×2÷高—上底字母公式:b=2S÷h—a

2、平行四边形面积公式推导:

平行四边形可以转化成一个长方形;长方形的长相当于平行四边形的底;长方形的宽相当于平行四边形的高;长方形的面积等于平行四边形的面积。

因为长方形面积=长×宽,所以平行四边形面积=底×高。

3、三角形面积公式推导:

两个完全一样的三角形可以拼成一个平行四边形,平行四边形的底相当于三角形的底,平行四边形的高相当于三角形的高;平行四边形的面积等于三角形面积的2倍。

因为平行四边形面积=底×高,所以三角形面积=底×高÷2

4、梯形面积公式推导:

两个完全一样的梯形可以拼成一个平行四边形,平行四边形的底相当于梯形的上下底之和;平行四边形的高相当于梯形的高;平行四边形面积等于梯形面积的2倍。

因为平行四边形面积=底×高,所以梯形面积=(上底+下底)×高÷2

5、等底等高的平行四边形面积相等;等底等高的三角形面积相等;等底等高的平行四边形面积是三角形面积的2倍。

6、长方形框架拉成平行四边形,周长不变,高和面积变小。

7、组合图形:转化成已学的简单图形,通过加、减进行计算。

小学数学等式的性质

性质1:等式两边同时加上(或减去)同一个整式,等式仍然成立。

若a=b,那么a+c=b+c

性质2:等式两边同时乘或除以同一个不为0的整式,等式仍然成立。

若a=b,那么有a·c=b·c或a÷c=b÷c(c≠0)

性质3:等式具有传递性。

若a1=a2,a2=a3,a3=a4那么a1=a2=a3=a4

小学数学量的计算单位及进率归类

1、长度计量单位及进率:

千米(公里)、米、分米、厘米、毫米

1千米=1公里1千米=1000米

1米=10分米1分米=10厘米

1厘米=10毫米

2、面积计量单位及进率:

平方千米、公顷、平方米、平方分米、平方厘米

1平方千米=100公顷

1平方千米=1000000平方米

1公顷=10000平方米

1平方米=100平方分米

1平方分米=100平方厘米

3、体积容积计量单位及进率:

立方米、立方分米、立方厘米、升、毫升

1立方米=1000立方分米

1立方分米=1000立方厘米

1立方分米=1升1立方厘米=1毫升

4、质量单位及进率:

吨、千克、公斤、克

1吨=1000千克

1千克=1公斤

1千克=1000克

5、时间单位及进率:

世纪、年、月、日、小时、分、秒

1世纪=100年1年=12月

1天=24小时1小时=60分

1分=60秒

(31天的月份有1、3、5、7、8、10、12月份,30天的月份有4、6、9、11月份,平年2月28天,闰年2月29天)

一、小数的乘除法

(1)小数乘法计算法则:

①先按整数乘法算出积,再给积点上小数点。

②看因数中一共有几位小数,就从积的右边起(或个位)数出几位,点上小数点。

③当乘得的积的小数位数不够时,要在前面用0补足,再点小数点。

(2)小数除法的计算方法:

①按整数除法的方法去除。

②商的小数点要和被除数的小数点对齐;如果整数部分不够除,商0,点上小数点。

③如果有余数,要添0再除。

想一想:除数是小数怎么计算?(要把除数是小数转化为除数是整数)

(3)一个数(0除外)乘大于1的数时,积比原来的数大。

一个数(0除外)乘小于1的数时,积比原来的数小。

一个因数扩大多少倍,另一个因数缩小相同的倍数,积不变。

一个因数不变,另一个因数扩大(缩小)多少倍,积也扩大(缩小)多少倍。

被除数和除数同时扩大(缩小)相同的倍数,商不变。

被除数扩大(缩小)多少倍,除数不变,商扩大(缩小)多少倍。

被除数不变,除数扩大(缩小)多少倍,商缩小(扩大)多少倍。

(4)小数的四则运算顺序跟整数是一样的。

(5)整数乘法的交换律、结合律和分配律,对于小数也同样适用。

二、简易方程

(1)用字母表示数

想一想:怎样用字母表示下面的公式?

①加法的交换律②加法结合律③乘法交换律④乘法分配律

⑤正方形的周长和面积⑥长方形的周长和面积⑦平行四边形的面积⑧三角形的面积⑨梯形的面积

(2)方程的基本性质:

①方程两边同时加上或减去同一个数,左右两边仍然相等。

②方程两边同时乘同一个数,左右两边仍然相等。

③方程两边同时除以同一个不等于0的数,方程左右两边仍然相等。

三、多边形的面积

①平行四边形的面积

②三角形的面积

③梯形的面积

④组合图形的面积

四、统计与可能性

想一想:中位数的求法

第一单元小数除法

1、除数是整数的小数除法计算法则:除数是整数的小数除法,按照整数除法的法则去除,商的小数点要和被除数的小数点对齐;如果除到被除数的末尾仍有余数,就在余数后面添0再继续除。

2、除数是小数的小数除法计算法则:除数是小数的除法,先移动除数的小数点,使它变成整数;除数的小数点向右移动几位,被除数的小数点也向右移动几位(位数不够的,在被除数末尾用0补足),然后按照除数是整数的小数除法进行计算。

3、连除的算式可以写成被除数除以几个数的积,但除以几个数的积时,必须给这个相乘的式子加上小括号。

4、在小数除法中的发现:

①当除数不为0时,除数大于1时,商小于被除数。如:3.5÷5=0.7

②当除数不为0时,除数小于1时,商大于被除数。如:3.5÷0.5=7

当除数不为0时,除数等于1时,商等于被除数。如:3.5÷1=3.5

5、小数除法的验算方法:

①商×除数=被除数(通用) ②被除数÷商=除数

6、商的近似数:根据要求要保留的小数位数,决定商要除出几位小数,再根据“四舍五入”法保留一定的小数位数,求出商的近似数。例如:要求保留一位小数的,商除到第二位小数可停下来;要求保留两位小数的,商除到第三位小数停下来……如此类推。

7、循环小数:

A、小数部分的位数是有限的小数,叫做有限小数。如,0.37、1.4135等。

B、小数部分的位数是无限的小数,叫做无限小数。如5.3… 7.145145…等。

C、一个数的小数部分,从某位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。(如5.3… 3.12323… 5.7171…)

D、一个循环小数的小数部分,依次不断重复的数字,叫做小数的循环节。(如5.333…的循环节是3,4.6767…的循环节是67,6.9258258…的循环节是258)

E、用简便方法写循环小数的方法:

①只写一个循环节,并在这个循环节的首位和末位上面记一个小圆点

②例如:只有一个数字循环节的,就在这个数字上面记一个小圆点,5.333…写作5.3;有两位小数循环的,就在这两位数字上面,记上小圆点,7.4343…写作7.4 3;有三位或以上小数循环的,在首位和末位记上小数点,10.732732…写作10.732

8、除法中的变化规律:①商不变性质:被除数和除数同时扩大或缩小相同的倍数( 0除外),商不变。②除数不变,被除数扩大,商随着扩大。 ③被除数不变,除数缩小,商扩大。

9、小数的四则混合运算顺序与整数四则混合运算的运算顺序相同。

第二单元轴对称和平移

轴对称:

1.轴对称图形:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是轴对称图形,那条直线就叫做对称轴。两图形重合时互相重合的点叫做对应点,也叫对称点。

2.轴对称图形的性质:对应点到对称轴的距离相等,对应点连线垂直于对称轴。

3.轴对称图形具有对称性。

4轴对称图形的法:

(1)找出所给图形的关键点,如图形的顶点、相交点、端点等;

(2)数出或量出图形关键点到对称轴的距离;

(3)在对称轴的另一侧找出关键点的对称点;

(4)按照所给图形的顺序连接各点,就画出所给图形的轴对称图形。

平移:

1.平移的定义:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移。

2.平移的基本性质:

(1)平移不改变图形的形状和大小,只改变图形的位置。

(2)经过平移,对应线段,对应角分别相等;对应点所连的线段平行且相等。

3.平移图形的画法:

(1)确定平移的方向与距离。

(2)将关键点按所需方向平移所需距离。

(3)按原来图形的连接方式依次连接各对应点。

4.平移几格并不是指原图形和平移后的新图形之间的空格数,而是指原图形的关键点平移的格数。

设计图案的基本方法:平移、对称

1.运用平移设计图案的方法:

(1)选好基本图案;

(2)根据所选的基本图案确定平移的格数和方向;

(3)平移,描出对应点;

(4)按顺序连接对应点

2.运用对称设计图案的方法:

(1)先选好基本图案;

(2)依据基本图案的特点定好对称轴;

(3)选好关键点,并描出关键点的对应点;

(4)按顺序连接对应点,画出基本图形的对称图形

第三单元倍数和因数

像0,1,2,3,4,5,6,…这样的数是自然数。

像-3,-2,-1,0,1,2,3,…这样的数是整数。

我们只在自然数(零除外)范围内研究倍数和因数。

倍数与因数是相互依存的关系,要说清谁是谁的倍数,谁是谁的因数。

补充知识点:一个数的倍数的个数是无限的,因数个数是有限的。

一个数最小的因数是1,最大的因数是它本身;一个数最小的倍数是它本身,没有最大的倍数。

小学五年级数学解题技巧

1、对照法

如何正确地理解和运用数学概念?小学数学常用的方法就是对照法。根据数学题意,对照概念、性质、定律、法则、公式、名词、术语的含义和实质,依靠对数学知识的理解、记忆、辨识、再现、迁移来解题的方法叫做对照法。

这个方法的思维意义就在于,训练学生对数学知识的正确理解、牢固记忆、准确辨识。

例1:三个连续自然数的和是18,则这三个自然数从小到大分别是多少?

对照自然数的概念和连续自然数的性质可以知道:三个连续自然数和的平均数就是这三个连续自然数的中间那个数。

例2:判断题:能被2除尽的数一定是偶数。

这里要对照“除尽”和“偶数”这两个数学概念。只有这两个概念全理解了,才能做出正确判断。

2、公式法

运用定律、公式、规则、法则来解决问题的方法。它体现的是由一般到特殊的演绎思维。公式法简便、有效,也是小学生学习数学必须学会和掌握的一种方法。但一定要让学生对公式、定律、规则、法则有一个正确而深刻的理解,并能准确运用。

例3:计算59×37+12×59+59

59×37+12×59+59

=59×(37+12+1)…………运用乘法分配律

=59×50…………运用加法计算法则

=(60-1)×50…………运用数的组成规则

=60×50-1×50…………运用乘法分配律

=3000-50…………运用乘法计算法则

=2950…………运用减法计算法则

3、比较法

通过对比数学条件及问题的异同点,研究产生异同点的原因,从而发现解决问题的方法,叫比较法。

比较法要注意:

(1)找相同点必找相异点,找相异点必找相同点,不可或缺,也就是说,比较要完整。

(2)找联系与区别,这是比较的实质。

(3)必须在同一种关系下(同一种标准)进行比较,这是“比较”的基本条件。

(4)要抓住主要内容进行比较,尽量少用“穷举法”进行比较,那样会使重点不突出。

(5)因为数学的严密性,决定了比较必须要精细,往往一个字,一个符号就决定了比较结论的对或错。

例4:填空:0.75的位是(),这个数小数部分的位是();十分位的数4与十位上的数4相比,它们的()相同,()不同,前者比后者小了()。

这道题的意图就是要对“一个数的位和小数部分的位的区别”,还有“数位和数值”的区别等。

例5:六年级同学种一批树,如果每人种5棵,则剩下75棵树没有种;如果每人种7棵,则缺少15棵树苗。六年级有多少学生?

这是两种方案的比较。相同点是:六年级人数不变;相异点是:两种方案中的条件不一样。

找联系:每人种树棵数变化了,种树的总棵数也发生了变化。

找解决思路(方法):每人多种7-5=2(棵),那么,全班就多种了75+15=90(棵),全班人数为90÷2=45(人)。

4、分类法

根据事物的共同点和差异点将事物区分为不同种类的方法,叫做分类法。分类是以比较为基础的。依据事物之间的共同点将它们合为较大的类,又依据差异点将较大的类再分为较小的类。

分类即要注意大类与小类之间的不同层次,又要做到大类之中的各小类不重复、不遗漏、不交叉。

例6:自然数按约数的个数来分,可分成几类?

答:可分为三类。(1)只有一个约数的数,它是一个单位数,只有一个数1;(2)有两个约数的,也叫质数,有无数个;(3)有三个约数的,也叫合数,也有无数个。

5、分析法

把整体分解为部分,把复杂的事物分解为各个部分或要素,并对这些部分或要素进行研究、推导的一种思维方法叫做分析法。

依据:总体都是由部分构成的。

思路:为了更好地研究和解决总体,先把整体的各部分或要素割裂开来,再分别对照要求,从而理顺解决问题的思路。

也就是从求解的问题出发,正确选择所需要的两个条件,依次推导,一直到问题得到解决为止,这种解题模式是“由果溯因”。分析法也叫逆推法。常用“枝形图”进行图解思路。

例7:玩具厂计划每天生产200件玩具,已经生产了6天,共生产1260件。问平均每天超过计划多少件?

思路:要求平均每天超过计划多少件,必须知道:计划每天生产多少件和实际每天生产多少件。计划每天生产多少件已知,实际每天生产多少件,题中没有告诉,还得求出来。要求实际每天生产多少件玩具,必须知道:实际生产多少天,和实际生产多少件,这两个条件题中都已知。

五年级数学新学期计划

一、班情分析

本学期执教五(4)班。大部分学生,能从已有的知识和经验出发,获取知识,抽象思维水平有了一定的发展,基础知识掌握牢固,具备了一定的学习数学的能力。绝大多数学生养成了良好的思想品德和学习习惯。在课堂上能积极主动地参与学习过程,实行分工合作,各尽其责。能充分动口、动手、动脑,主动收集、交流、加工和处理学习信息,勇于发表自己的意见,听取和尊重别人的意见,独立思考,掌握学法,大胆实践,并能自评、自检和自改。

但个别学生基础知识差。对数学不感兴趣,学习被动,上课不认真听讲,作业不能按时完成,学习有困难,特别对应用题数量关系的分析存在问题。还有个别学生比较聪明,但学习不勤奋,成绩不高。

二、教材分析

在数与代数方面,这一册教材安排了因数与倍数、分数的意义和性质,分数的加法和减法。因数与倍数,在前面学习整数及其四则运算的基础上教学初等数论的一些基础知识,包括因数和倍数的意义,2、5、3的倍数的特征,质数和合数。教材在三年级分数的初步认识的基础上教学分数的意义和性质以及分数的加法、减法,结合约分教学最大公因数,结合通分教学最小公倍数。

在空间与图形方面,这一册教材安排了观察物体、图形的变换、长方体和正方体三个单元。在已有知识和经验的基础上,通过丰富的现实的数学活动,让学生获得探究学习的经历,认识图形的轴对称和旋转变换;探索并体会长方体和正方体的`特征、图形之间的关系,及图形之间的转化,掌握长方体、正方体的体积及表面积公式,探索某些实物体积的测量方法,促进学生空间观念的进一步发展。

在统计方面,本册教材让学生学习有关单式和复式折线统计图的知识。

在用数学解决问题方面,教材一方面结合分数的加法和减法、长方体和正方体两个单元,教学用所学的知识解决生活中的简单问题;另一方面,安排了“数学广角”,引导学生通过观察、猜测、实验、推理等活动向学生渗透优化的数学思想方法,体会解决问题策略的多样性及运用优化的方法解决问题的有效性,感受数学的魅力。

本册教材根据学生所学习的数学知识和生活经验,安排了两个数学综合应用活动,让学生通过小组合作的探究活动或有现实背景的活动,运用所学知识解决问题,体会探索的乐趣和数学的实际应用,感受用数学的愉悦,培养学生的数学意识和实践能力。

三、教学目标

1、理解分数的意义和基本性质,会比较分数的大小,会把假分数化成带分数或整数,会进行整数、小数的互化,能够比较熟练地进行约分和通分。

2、掌握因数和倍数、质数和合数、奇数和偶数等概念,以及2、3、5的倍数的特征;会求100以内的两个数的最大公因数和最小公倍数。

3、理解分数加、减法的意义,掌握分数加、减法的计算方法,比较熟练地计算简单的分数加、减法,会解决有关分数加、减法的简单实际问题。

4、知道体积和容积的意义及度量单位,会进行单位之间的换算,感受有关体积和容积单位的实际意义。

5、结合具体情境,探索并掌握长方体和正方体的体积和表面积的计算方法,探索某些实物体积的测量方法。

6、能在方格纸上画出一个图形的轴对称图形,以及将简单图形旋转90°;欣赏生活中的图案,灵活运用平移、对称和旋转在方格纸上设计图案。

7、通过丰富的实例,理解众数的意义,会求一组数据的众数,并解释结果的实际意义;根据具体的问题,能选择适当的统计量表示数据的不同特征。

8、认识复式折线统计图,能根据需要选择合适的统计图表示数据。

9、经历从实际生活中发现问题、提出问题、解决问题的过程,体会数学在日常生活中的作用,初步形成综合运用数学知识解决问题的能力。

四、教学措施

1、改变教学思想。

具有新观念、新思想、新体验。改变原有的老师讲、学生学的思想

观念,实施互动学习,自主探究,老师给营造一个宽松、合谐,充满爱、民主、喜悦的学习氛围。

2、注重生活与数学的密切联系。

重视从学生的生活经验和已有的知识中学习数学和理解数学,教学要考虑学生的身心发展特点,结合他们的生活经验和已有的知识设计富有情趣的习题,使他们有更多的机会从生活中学习数学和理解数学。重视数学知识的课外延伸,加强数学知识的实用性和开放性。

3、注意教学的开放性,重视培养学生的创新意识和创新能力。

学生是学习活动的主体,在数学教学中,教师要根据学生的年龄特点和认知水平,适当设计一些开放性问题,给学生提供自主探索的机会。

4、面向全体、全面提高学生的整体素质。

①加强基础训练,在计算方面,重点是要加强口算训练,。在应用题方面,要重视一步计算应用题的练习。在练习中必须重视应用题结构的训练,如根据条件补充问题、根据问题补充条件等,这种题目要经常训练,它对于提高学生分析数量关系的能力是大有裨益的。

②实施分层教学,弹性教学,针对学生的不同特点,不同的接受能力,采取不同的方法,布置不同的作业,注意因材施教,力求“下要保底,上不封顶”即下要保义务教育的共同要求,上要引导兴趣浓厚,学有余力的学生进一步发展。把共同要求和发展个性结合起来。

③重视学生的课时目标过关和单元素质过关,作业严把关,加强信息交流,及时反馈,增强教学的针对性。

5、结合多媒体、教具、学具教学。

在课堂教学中,利用计算机对文字、图象、声音、动画等信息进行处理,形成声、像、图、文并茂的多媒体教学系统,进行视、听、触、想等多种方式的形象教学;通过实物教具、学具引导学生在理解的基础上掌握概念、法则、知识之间的联系规律和解答方法;改革课堂问答方式,实施参与性教学。

6、作业设计力求准确、简洁、规范、方便教学。

学生学业成绩的提高有赖于高质量的练习,我们必须重视课堂作业的设计和学生练习的达成度。课内外作业均要经过精心设计,力求从培养学生能力出发,体现课改精神,同生活实践紧密结合,重在发展学生思维,培养学生想象能力和创新能力。此外,采取“基础练习个性作业”形式,针对学生不同的学习水平,分层设计作业。教师针对不同层面的学生完成不同难度的作业,让学生选择适合自己的作业内容和形式,实现差异发展。

五、主要教具、学具

本册教材除了使用之前教学时用过的一些教具和学具外,还需要一些新教具和学具。如长方体、正方体等。

六、教学课时的安排

五年级下学期数学教学安排了61课时的教学内容。

五年级数学期末复习计划

一、学生知识现状分析:

第一单元:图形的变换

学生能认识轴对称图形,理解图形成轴对称的特征和性质,能在方格纸上画出一个图形的轴对称图形。学生进一步认识了图形的旋转,探索图形旋转的特征和性质,

能在方格纸上把简单图形旋转90°。初步能运用对称、平移和旋转的方法在方格纸上设计图案。

部分学生在方格纸上画出连续多次旋转后图形,容易出现错误。

第二单元:因数与倍数

学生掌握了因数、倍数、质数、合数等基本概念,知道因数与倍数等概念之间的联系和区别。掌握了2、3、5的倍数的特征。

少数学生混淆了因数与倍数、质数与合数等概念;虽然理解并掌握了2、3、5的倍数的特征,但在综合运用情况较差。

第三单元:长方体与正方体

学生认识了长方体和正方体的特征以及它们的展开图,了解体积(容积)的意义及体积和容积单位,会进行单位间的换算。感受了每个单位的实际意义。掌握了长方体、正方体的棱长和以及表面积、体积的计算方法,能运用所学知识解决一些简单的实际问题。

少数学生没有理解表面积、体积等公式的算理,因此实际运用中不能准确使用公式进行计算;还有部分学生对某些实际生活中的特例(如:粉刷教室、游泳池贴瓷砖等)不注意观察实际生活现象,不能正确解题。

第四单元:分数的意义和性质

学生理解了分数的意义,明确了分数与除法的关系;认识了真分数和假分数,知道了带分数是假分数的另一种书写形式,能把假分数化成带分数或者整数;理解掌握了分数的基本性质,会比较分数的大小;理解了公因数与最大公因数、公倍数与最小公倍数,能找出两个数的最大公因数与最小公倍数,能比较熟练的进行通分和约分;会进行分数与小数的互化。

很多学生“量”、“率”不分;通分时找不到最小公倍数,导致在计算分数加减法时增加无谓的约分步骤;部分学生约分时没有

约成最简分数; 部分学生不能灵活运用分数的基本性质解决实际问题。

第五单元:分数的加法和减法

理解了分数加减法的算理,掌握分数加减法的计算方法,并能正确地计算出结果。理解整数加法的运算定律对分数加法仍然适用,并会运用这些运算定律进行一些分数加法的简便运算。

个别学生在计算出结果后,往往不能对结果进行约分;在运用减法的性质进行简便运算时学生错误率较高。

第六单元:统计

理解了众数的含义及其在统计学上的意义;掌握了求一组数据众数的方法;能根据数据的具体情况,选择适当的统计量表示数据的不同特征;认识复式折线统计图,了解其特点,能根据需要,选择条形、折线统计图直观、有效地表示数据,并能对数据进行简单的分析和预测。

学生在求项数较多的一列数的中位数时找不到准确数据进行计算;在对统计结果进行分析时比较片面,语言缺乏准确性。

第七单元:数学广角

学生通过观察、猜测、试验、推理等活动,在解决找次品这个问题的过程中,体会解决问题策略的多样性及运用优化的方法解决问题的有效性。

个别学生在找次品的过程中,往往不能找出最优方法。在解题思路的叙述上也存在一定的困难,不能准确地用恰当的方式来合理解释自己的解题思路。

二、复习重、难点:

复习重点:

1、因数与倍数、质数与合数、奇数与偶数等概念以及2、3、5的倍数的特征,以及综合运用这些知识解决实际问题。

2、分数的意义和基本性质,以及运用分数的基本性质解决实际问题,熟练地进行约分和通分,分数大小比较,把假分数化成带分数或整数以及整数、小数的互化。

3、求两个数的最大公因数和最小公倍数。

4、分数加减法的意义以及计算方法,把整数加减法的运算定律推广运用到分数加减法。

5、体积和表面积的意义及度量单位,能进行单位间的换算,长方体和正方体表面积和体积的计算方法以及一些生活中的实物的表面积和体积的测量和

计算。

6、在方格纸上画轴对称图形以及将简单图形旋转900

复习难点:

1、在方格纸上将一个简单图形旋转900。

2、分数的意义和基本性质的实际运用。

3、生活中的某些实物的表面积和体积的测量及计算。

4、整数加减法的.运算定律推广运用到分数加减法。(尤其是减法的性质的运用)

5、根据具体问题,选择适当的统计量(平均数、中位数、众数)表示数据的不同特征。

6、对统计图中的数据进行合理分析。

三、复习目标:

知识目标:

1、掌握长方体和正方体的特征,会计算它们的表面积和体积,认识常用的体积和容积单位,能够进行简单的名数的改写。

2、使学生进一步掌握因数和倍数、质数和合数等概念,会分解质因数;会求最大公因数和最小公倍数。

3、进一步理解分数的意义和基本性质,会比较分数的大小,会进行假分数、带分数、整数的互化,能够比较熟练地进行约分和通分。

4、进一步理解分数加、减法的意义,掌握分数加、减法的计算法则,比较熟练地计算分数加、减法。

5、探索轴对称图形及旋转的特征和性质,能在方格纸画轴对称图形及旋转图形,认识众数及作用,会制作复式折线统计图及根据统计图解决简单问题。

能力目标:

1、通过对本册知识的系统归类、整理、综合,进一步提高学生的解题能力,提高解题的正确率。

2、加强对知识点的区别比较,包括纵向、横向的比较。分析知识的意义性质、规律的异同,把各方面的知识像串珍珠一样连接起来,纳入学生的认知系统,便于记忆储存,理解运用。进一步提高学生运用知识解决生活中的实际问题的能力。

3、通过复习,进一步加强学生的审题和分析能力,能正确解答各种类型的实际问题。

4、通过复习,提高学生解题的灵活性以及正确性。

四、复习措施:

1、对本册内容进行系统归类、整理,帮助学生形成网状立体知

识结构系统,在归纳中,要让学生有序、多角度概括地思考问题,沟通知识间的内在联系,全面而系统地思考各类问题,同时对该类型知识进行整合。

如:第二单元因数与倍数和第四单元分数的意义与性质的知识点有着紧密的联系,复习时可将这两个单元合并在一起进行复习。

注意因数与最大公因数、倍数与最小公倍数、质数与互质数等概念的区别与联系。

2、复习内容要有针对性,对学生知识的缺陷、误区、理解困难的重难点进行有针对性的复习。复习知识的覆盖面要广,针对性和系统性要强。

如:这样的练习题,始终有学生混淆不清

把一根3米长的木条平均分成7段,每段是这根木条的,每段长米,是1米的,是3米的

这样的练习题要引导学生从数量关系上以及分数的意义上去理解:每段是这根木条的,是把3米长的木条看作单位“1”,把单位“1”平均分成7份,列式为1÷7,所以应填;每段长米,是把3米长的木条平均分成7份,列式为3÷7,所以应填;而从分数的意义上来理解米:表示把1米平均分成7份,取其中的3份,也可以表示把3米平均分成7份,取其中的1份,所以米既是1米的,又是3米的。

3、教师要主动理清知识的体系,分层、分类,拉紧贯穿全册教材的主线,要深钻本册教材,仔细领会编者意图,掌握教材的重难点和学生知识现状,发现学生普遍不会的,难理解的,遗漏的要重点讲。

4、加强作业设计,进行分层练习,使不同层次的学生能学习到不同层次的数学知识。但绝不搞题海战术,不加重学生负担。复习中的练习设计,不是旧知识的单一重复,机械操作,要体现知识的综合性,每天在练习过程中,教师要有针对性让学生尝试做智力冲浪式的题目,体现质的飞跃,训练学生思维的敏捷性、创造性。

如在复习长方体和正方体的有关知识时,对于学困生,要求他们掌握简单的求棱长和、表面积、体积的计算方法,对于优生,可适当增加长方体与正方体的拓展提高练习,如:“切、拼”长方体与正方体后,求表面积和体积的练习,拓展学生的思维空间和解题的灵活性以及运用知识解决实际问题的能力。

5、重视学生能力的培养以及数学知识与现实生活的联系,能够运用所学知识解决生活中的实际问题。

6、加强对学困生的辅导,建立一个优生与一个学困生结对的互帮小组,对学困生的作业尽量进行面批。

五、复习时要注意的几个问题:

1、要重视查漏补缺。要根据所教班级的具体情况,进行有效的期末复习,对相对比较薄弱的内容要加强复习和练习。

2、要注意区别对待不同的学生。对不同的学生要有不同的要求。注意复习题设计的层次性。

3、要重视学生积极主动的参与到复习过程中去。鼓励学生自己去整理知识,学生与学生之间形成交流与合作。

4、加强复习考试期间的安全教育。

六、复习课时安排:

1、长方体和立方体2课时

2、分数加减法1课时

3、分数意义和性质2课时

4、因数和倍数1课时

5、图形的变换、统计、数学广角2课时

6、综合练习:2课时

77814