教育巴巴 > 小学教案 > 数学教案 > 六年级 >

2025年六年级下册数学教案范本

时间: 梦荧 六年级

作为一名教师,可能需要进行教案编写工作,教案是教学活动的依据,以下是小编整理的一些六年级下册数学教案,仅供参考。

2025年六年级下册数学教案范本

2025年六年级下册数学教案范本篇1

教材分析:

本课是一节数学综合应用的实践活动课,是课程标准实验教材新增加的一个内容。培养学生用数学解决问题的能力是义务教育阶段数学课程的重要目标之一,因此解决问题教学在数学教学中有着重要的作用。它既是发展学生数学思维的过程,又是培养学生应用意识、创新意识的重要途径。本册教材设计了确定起跑线这个数学综合运用活动,让学生通过小组合作的探究性活动,综合运用所学的数学知识和方法(如:圆的知识),动手实践解决问题,体会数学在日常生活中的应用价值,增强学生应用数学的意识,不断提高学生的实践能力和解决问题的能力。

学生分析:

在教学本课之前,大部分学生已经掌握圆的概念、圆的画法还有圆周长的计算方法等知识。学生具备一定的小组自我探究的能力,可以利用小组合作的形式进行学习。

学生对体育活动也很喜欢,相当一部分学生去过体育场,对体育场的跑道和起跑线并不陌生。通过电视节目学生对起跑时运动员不能站在同一起跑线的现象也有一定的认识,但具体这样做是为什么、相邻两跑道起跑线该相差多远呢?学生可能很少从数学的角度去认真的思考。也很难通过经验和观察得到,需要学生收集相关的数据,具体分析起跑线的位子与什么有关。所以在教学中学生可能会在相邻跑道相差多远这一点上有些困难。

教学目标:

1、通过该活动让学生了解椭圆式田径场跑道的结构,学会确定起跑线的方法。

2、通过活动培养学生利用小组合作,探究解决问题的能力。

3、通过活动让学生切实体会到探索的乐趣,感受到数学在体育等领域的广泛应用。

教学重点:

运用圆的`有关知识计算。

教学难点:

结合具体问题,让学生独立思考,提高解决简单问题的能力。

关键:体会数学知识在体育中的应用。

教学过程:

一、汇报调查,引入课题(8分钟)

1、汇报调查情况

课前,我让大家调查运动场的情况,你们得到了哪些信息?

2、课件显示如下情境图:

师:图上画的是什么?指名学生回答,并引导得出:运动员进行跑步比赛。

师:在一些短跑比赛中,运动员所在的起跑位置是不一样的,你知道为什么吗?引导学生回答:弯道处外圈比内圈长一些。

3、揭示课题,下面我们就用几个具体的例子来验证同学们想法是否正确。

二、结合实例、探究问题(24分钟)

实例一:

课件显示:

淘气和笑笑分别从A,B处出发,沿半圆走到C,D。他们两人走过的路程一样长吗?

(1)笑笑所走路线的半径为10米,她走过的路程是()米。

(2)淘气所走的路线半径为()米,他走过的路程为()米。

(3)两人走过的路相差()米。

1、理解题意

根据这幅情境图,你能获得哪些信息?指名回答。

2、小组讨论

先让学生独立思考,待大多数学生基本解决上面3个小题后,在组织学生在小组内交流。

3、全班交流

抽生汇报,教师板书。

实例2:

课件显示:(一)了解跑道结构:出示完整跑道图(跑道最内圈为400米)

1、观察跑道由哪几部分组成?

2、在跑道上跑一圈的长度可以看成是哪几部分的和?

(板书:跑道一圈长度=圆周长+2个直道长度)

(二)简化研究问题:

1、85.96米是指哪部分的长度?一条直道吗?

2、讨论:运动员沿跑道跑一圈,各跑道之间的差距会在跑道的哪一部分呢?

3、小结:既然与直道无关,为了便于我们更好的观察,暂时将直道拿走看看差距在那里,好吗?(课件:直道消失,屏幕上只剩下左右两个弯道。)

(三)寻求解决方法:

1、左右两个半圆形的弯道合起来是一个什么?

2、讨论:你怎样找出相邻弯道的差距?相邻弯道差距其实就是谁的长度之差?

3、交流小结:只要计算出各圆的周长,算出相邻两圆相差多少米,就是相邻跑道的差距,也就是相邻起跑线相差多少米。

(四)、动手解决问题:

1、计算圆的周长要知道什么?(直径)

2、课件出示:第一道的直径为72.6米,第二道是多少?第三道呢?

3、教师带领学生填写表格的前两道,注意计算第1道和第2道相差米数,应指导学生完成。

引导学生将3.14159换成进行计算

汇报结论:相邻起跑线相差都是2.5,也就是道宽2。说明起跑线的确定与道宽最有关系。

4、计算相邻起跑线相差的具体长度:2.5=2.53.14=7.85米

师:同学们通过努力找到了起跑线的秘密,运动员们的比赛应该把起跑线依次提前7.85米才公平。

三、巩固练习、实践应用(3分钟)

400米的跑步比赛,道宽为1.5米,起跑线该依次提前多少米?

四、拓展延伸、自我评价(5分钟)

1、解决问题:在运动场上还有200米的比赛,道宽为1.25米,起跑线又该依次提前多少米?

2、课后自学课本第45页你知道吗?

五、全课小结:

谈一谈,这节课你有什么收获?

六、布置作业

2025年六年级下册数学教案范本篇2

教学内容:

教材第4页的例2和“试一试”、“练一练”,练习二第1-4题。

教学目标:

1.使学生初步认识纳税和税率,理解和掌握应纳税额的计算方法。初步培养学生的纳税意识,继续感知数学就在身边,提高知识的应用能力。

2.培养解决简单实际问题的能力,体会生活中处处有数学。

3.进一步体会知识间的内在联系,感受数学知识和方法的应用价值,获得一些成功的体验,增强学好数学的信心。

教学重点:

掌握百分数在实际生活中的应用。

教学难点:

正确、熟练地运用百分数的知识进行纳税的计算。

预习题:弄清什么是纳税?怎样纳税?纳税的意义是什么?(课前布置学生上网查询相关信息)

教学准备:

教师准备有关纳税的一些资料;教学光盘及多媒体设备

教学过程:

一、认识、了解纳税

纳税是根据国家税法的规定,按照一定的比率把集体或个人收入的一部分缴纳给国家,用于发展经济、国防、科学、文化、卫生、教育和社会福利事业,以不断提高人民的物质和文化生活水平,保卫国家安全。因此,任何集体和个人,都有依法纳税的义务。

税收是国家财政收入的主要来源之一。税收的种类主要有增值税、消费税、营业税和所得税等几种。我国的税收逐年增长,到20__年,全年税收收入已达到30866亿元。(进行纳税意识教育)

提问:你知道生活中到税务部门纳税的事吗?那么究竟什么是纳税,纳税额应该怎样计算?今天我们就来学习纳税的有关知识。板书:纳税

二、教学新课

1.教学例2.

出示例2:星光书店去年十二月份的营业额约为50万元。如果按营业额的 6%缴纳营业税,这个书店去年十二月份应缴纳营业税约多少万元?学生读题。

提问:想一想,题里的营业额的6%缴纳营业税,实际上就是求什么?怎样列式计算?你们会做吗?试试看!

学生尝试练习,集体订正,教师板书算式。

强调:求应纳税额实际上就是求一个数的百分之几是多少,也就是把应该纳税部分的总收入乘以税率百分之几,就求出了应纳税额。

2.我们怎样计算呢?

方法1:引导学生将百分数化成分数来计算。

方法2:引导学生将百分数化成小数来计算。

3.做“试一试”

提问:这道题先求什么?再求什么?

生:先求5200元的10%是多少?再加上5200元就是买摩托车共付的钱。

学生板演与齐练同时进行,集体订正。

4.学生在课本上完成练一练。

三、同步练习

1.练习二的第1、2题。

指名学生读题,让学生说明算式里的每个数据的意思。

学生独立思考后练习,交流时请学生说说解题思路,教师及时了解学生解答情况。

2.练习二第3题。

学生读题后,教师简单介绍个人所得税的知识。

学生独立思考并列算式计算,然后交流。

四、拓展提高

1.练习二的第4题。

我国20__年10月公布的个人所得税征收标准:个人收入1600元以下不征税。月收入超过1600元,超过部分按下面的标准征税。

不超过500元的 5%

超过500元~20__元的 10%

超过20__元~5000元的 15%

------

李明的妈妈月收入1800元,爸爸月收入2500元,他们各应缴纳个人所得税多少元?

在这道题中,李明的妈妈应纳税的收入是1800元吗?为什么?全班展开讨论李明妈妈的纳税的收入应为多少元?税率是多少?那么爸爸的`收入是2500元,应纳税额为多少?他的税率又是多少呢?

介绍分段纳税,最后让学生分别求出李明的爸爸妈妈各应缴纳的个人所得税。

将三段不同的收税看作三个档次,先用总收入减去1600,看超过的部分是属于哪个档次,如果超过的部分少于500,属第一档次,用超出的部分乘以5%;如果超过的部分大于500小于20__就属第二档次,第一档次的税肯定要交,用500乘5%,再用(超出部分-500)乘10%,然后相加;如果超过的部分大于20__小于5000就属第三档次,第一、二档次的税肯定要交,用500乘5%,1500乘10%,(超出部分-20__)乘15%,再相加。

关键是这里第一、二档次的,要全额交税。

五、课堂回顾

提问:通过本节课的学习你学会了什么内容?认识到什么?如果没有纳税,国家就筹集不到必要的资金为大家办事。因此,我国宪法规定每个集体和公民都有依法纳税的义务。希望同学们长大了争当纳税先锋,为祖国的繁荣贡献力量!

六、布置作业

课内作业:补充习题

板书设计:

纳税问题

营业额×5%=营业税

60×5%=3(万元)

答:应缴纳营业税3万元。

爸爸月收入2500元,应分两段来纳税:

2500-1600=900元

500×5%=25元

(900-500)×10%=40元

25+40=65元

答:爸爸应缴纳个人所得税65元

2025年六年级下册数学教案范本篇3

【教材分析】

正比例是刻画某一现实背景中两种相关联的量的变化规律的数学模型,从常量到变量,是学生认识过程的一次重大飞跃。通过学习,学生可以进一步加深对过去学过的数量关系的理解,初步学会从变量的角度来认识两种量之间的关系,感受函数的思想方法。同时这部分知识在日常生活和生产中有着广泛的应用,学号这一内容,既可以锻炼学生用数学的眼光观察现实生活的意识,通过解决问题的能力,又可以为进一步学习函数知识奠定扎实的基础。

【学情分析】

学生已经认识了比、比例的意义,掌握了一些常见的数量关系。虽然学生在过去学习用字母表示数和运算律的过程中,对变量的思想有一些感知,但真正用函数的观念探索两种相关联的量的变化规律是从本课开始的。在学习过程中,使学生结合生活实例通过观察、操作、讨论等学习方式初步理解正比例的意义。

【设计理念】

数学学习应从学生的认知发展水平和已有的知识经验出发,让学生亲身经历、体验、探索。”在认真分析教材,深入了解学生的实际认知水平的基础上,本节课的设计,我注意了以下几个方面:

1.从学生已有的知识经验出发,将数学学习与生活实际相联系。

2.让学生经历发现和提出问题、分析和解决问题的过程,自主探索、合作交流。

3.注重积累数学学习经验,渗透数学思想方法。

4.注重学生过程的评价,让学生在评价中不断认识、调整自我,建立自信心。

【教学目标】

1.使学生结合具体实例认识正比例的量,初步理解正比例的意义,能正确判断两种相关联的量是不是成正比例。

2.使学生在认识正比例的量的过程中,初步体会变量的特点,感受用数学模型表示特定数量关系及其变化规律的过程和方法,获得从生活现象中抽象出数学知识和规律的意识,发展数学思维能力。

3.使学生在参与数学活动的过程中,进一步体会数学与日常生活的密切联系,获得一些学习成功的体验,激发对数学学习的兴趣。

【教学重点】

理解正比例的意义。

【教学难点】

掌握成正比例的量的变化规律及其特征,学会根据正比例的意义判断两种相关联的量是不是成正比例。

【教学准备】

教学课件。

【教学过程】

一、激趣设疑,铺垫衔接。

1.谈话:看到“正比例的意义”这个课题,你有什么疑问?

2.结合现实情境回忆常见的数量关系。

【设计说明:数学课堂教学应激发学生兴趣,调动学生积极性,引发学生思考。正比例的意义建立在对常见的数量关系间变化规律探索的基础之上,适当的回顾既有利于激活学生已有的知识经验,又为探究新知做好准备,有效沟通新旧知识间的内在联系。】

二、合作探究,发现规律。

1.教学例1

出示例1的表格,让学生说一说表中列出的是哪两种量。并联系这辆汽车的行驶过程,体会表中行驶时间和路程之间有什么关系。

谈话:请同学们仔细观察和比较表中数据,说一说这两种量分别是怎样变化的。

组织反馈,并通过交流,使学生认识到这里的路程和时间是两种相关联的量,汽车的行驶时间变化,路程也随着变化。

谈话:请大家进一步观察表中数据,这辆汽车行驶的时间喝路程的变化是否有一定的规律?

预设:

(1)一种量扩大到到原来的几倍,另一种量也随着扩大到原来的几倍;一种量缩小到到原来的几分之几,另一种量也随着缩小到原来的几分之几。

(2)路程除以对应时间的商都是一样的,也就是相对应的路程和时间的比值都是80。

根据学生的交流的实际情况,如果学生不能主动发现规律的,及时引导学生写出机组相对应的路程和时间的比,并求出比值。

提问:这个比值表示什么?你能用一个式子来表示上面几个量之间的关系吗?

根据学生的回答,板书:

提问:括号里的“一定”表示什么意思?你能结合这个式子说一说上面的例子中汽车行驶路程和时间的变化规律吗?

小结:路程和时间是两种相关联的量,时间变化,路程也随着变化。当路程和对应时间的比的比值总是一定(也就是速度一定)时,我们就说行驶的路程和时间成正比例关系,行驶的路程和时间是成正比例的量。

请学生完整地说一说表中的路程和时间成什么关系。

【设计说明:正比例的意义比较抽象,建立正比例的概念,首先要对变量有比较充分的感知。为此,在呈现表格后,先引导学生联系汽车行驶的.过程体会到汽车行驶的时间和路程是在不断变化的,再通过观察和比较进一步体会到时间和路程是两种相关联的量,时间变化,路程也随着变化。这既有利于学生联系已有的生活经验感知变量的特点,又渗透了变量和自变量的含义,有利于学生初步体会变量之间的关系。在此基础上,引导学生观察表格,讨论时间和路程的变化规律,并对学生中可能出现的情况作充分预设,既为学生自主发现规律提供了足够的空间,凸显了学生的主体地位,又突出了本课的教学重点,使每一个学生都能在观察、比较、分析、归纳等具体活动中经历学习过程,获得对正比例意义的充分感知。在揭示文字表达式后,让学生交流这里的“一定”表示什么意思,并结合文字表达式说一说两种量的变化规律,促使学生对已经积累的感性认识进行抽象和概括,为进一步揭示正比例的意义做好准备。】

2.教学“试一试”。

让学生自主读题,根据表中已经给出的数据把表格填写完整。

谈话:请同学们仔细观察表格,先想一想购买铅笔的数量和总价是怎样变化的,再写出几组对应的总价和数量的比,并比较比值的大小,看这两种量是按什么样的规律变化的。

提问:这里总价好数量的比值表示什么?你能用式子表示它们之间的关系吗?

根据学生的回答,板书:

让学生结合上面的关系式,判断铅笔的总价和数量是否成正比例,并说明理由。

【设计说明让学生继续结合具体的实例进一步感知成正比例的量的特点,积累对成正比例的量的感性经验,为理解正比例的意义提供更丰富的感性认识。】

3.抽象概括

请大家回顾一下,例1和“试一试”中分别是什么样的两种量?成正比例的两种量有什么共同特点?

启发:如果用字母x和y分别表示两种相关联的量,用k表示它们的比值,正比例关系可以用什么样的式子来表示?

根据学生的回答,板书:,并揭示课题。

请大家想一想,生活中还有哪些成正比例的量?

【设计说明:引导学生回顾例1和“试一试”的学习过程,说一说成正比例的量有什么共同特点,并在充分交流的基础上,通过抽象和概括得到正比例关系的字母表达式,既可以促使学生主动把已经积累的的感性经验上升的理性认识,获得对正比例意义的准确把握,又有利于学生初步感悟数学抽象的过程和方法,体验符号化的思想,发展数学思考。】

三、分层练习,丰富体验

1.“练一练”第1题。

出示题目后让学生说一说表中列出了哪两种量,这两种量是怎样变化的。

讨论:这两种相关联的量是按什么规律变化的的呢?请大家先写几组相对应的的生产零件的数量和所用时间的比,并比较比值的大小,再想一想这个比值表示什么,可以用什么样的式子表示题中几种量之间的关系。

学生按要求活动,并组织反馈。

提问:张师傅生产零件的数量和时间成正比例吗?为什么?

2.“练一练”第2题。

出示题目后,请学生说一说表中列出的是哪两种量,它们是怎样变化的,在独立进行判断,并交流判断时的思考过程。

3.练习十第1题。

先请学生说一说是怎样发现订阅数量与总价的变化规律的,可以用什么样的式子表示它们的关系,为什么说订阅的总价和数量成正比例关系?

4.练习十第2题。

出示题目后,让学生按要求在方格纸上把正方形放大,并演示放大后的正方形,并说说是怎样画出放大后的正方形的,放大后的正方形的边长各是多少厘米。

出示题中的表格,让学生独立填表并比较填出的数据,说一说正方形的周长和边长是按什么规律变化的,它们是否成正比例;正方形的面积和边长是按什么规律变化的,它们是否成正比例。

结合学生的回答小结。

追问:判断两种相关联的量是否成正比例关系,关键看什么?

【设计说明:紧紧围绕本节课的重点和难点,有层次、有针对地设计练习,既有利于学生进一步加深对正比例意义的理解,掌握判断两种量是否成正比例关系的过程和方法,又有利于学生初步体会变量的特点,感悟函数的思想,发展用数学语言表达的能力。】

四、反思回顾,提升认识

谈话交流:这节课我们学习了什么?怎样判断两种相关联的量是不是成正比例关系?你还有哪些收获和体会?

【板书设计】

正比例的意义

两种相关联的量

2025年六年级下册数学教案范本篇4

教学目标:

1.使学生进一步理解比例的意义,懂得比例各部分名称。

2.经历探索比例基本性质的过程,理解并掌握比例的基本性质。

3.能运用比例的基本性质判断两个比能否组成比例。

教学重点:

比例的基本质性。

教学难点:

发现并概括出比例的基本质性。

教具准备:

多媒体课件

教学过程:

一、旧知铺垫

1.什么叫做比例?

2.应用比例的意义,判断下面的比能否组成比例。

0.5:0.25和0.2:0.4

0.5 :0.2和5:2

1/2:1/3 和6 : 4

0.2:0.8和1:4

二、探索新知

1.比例各部分名称。

(1)教师说明组成比例的四个数的名称。

板书

组成比例的四个数,叫做比例的项。两端的两项叫做比例的外项,中间的两项叫做比例的内项。

例如:2.4:1.6 = 60:40

内项:1.6 6o

外项:2.4 40

(2)学生认一认,说一说比例中的外项和内项。让学生再写出几个比例。

如:2.4 :1.6 = 60:40

外 内 内 外

项 项 项 项

2.比例的基本性质。

你能发现比例的外项和内项有什么关系吗?

(1) 学生独立探索其中的规律。

(2) 与同学交流你的发现。

(3) 汇报你的发现,全班交流。(师作适当的补充)

在比例里,两个内项的积等于两个外项的积。

板书

两个外项的积是2.440=96

两个内项的积是1.660=96

外项的积等于内项的积。

(4) 举例说明,检验发现。

0.6 :0.5=1.2: 1

两个外项的积是 0.61 =0.6

两个内项的积是0.51.2=0.6

外项的积等于内项的积。

如果把比例改成分数形式呢?

如:2.4/1.6 = 60/40

3.440=1.660

等号两边的分子和分母分别交叉相乘,所得的'积相等。

(5) 学生归纳。

在比例里,两外外项的积等于两个内项的积,这叫做比例的基本性质。

4.填一填。

(1)1/2:1/5 =1/4:1/10

( )( )=( )( )

(2)0.8:1.2=4:6

( )( )=( )( )

(3)45=210

4:( )=( ):( )

5.做一做。

完成课本中的做一做。

6.课堂小结

(1) 说一说比例的基本性质。

(2) 你可以用什么方法来判断两个比能否组成比例(引导学生总结说出两种方法,重点让学生理解掌握比例的基本性质,到此,学生要学会用两种方法判断两个比能否组成比例;1.比值是否相等;2.内项之积是否等于内项之积。)

三、巩固练习

完成课文练习六第4~6题。

补充习题

一题多变化,动脑解决它

(1)在比例里,两个内项的积是18,

其中一个外项是2,另一个外项是()。

(2)如果5a=3b,那么, = ,

(3)a︰8=9︰b,那么,ab=( )

教学反思:

比例的各部分名称通过学生自学,老师提问,完成的较好。让学生通过计算内项之积和外项之积发现比例的基本性质。然后大量的练习巩固新知。

2025年六年级下册数学教案范本篇5

教学内容:

人教版小学数学教材六年级下册第96~97页例1及相关练习。

教学目标:

1.通过学习,使学生初步认识扇形统计图的特点和作用,知道扇形统计图可以清楚地表示出各部分数量和总量之间的关系。

2.能看懂扇形统计图,并能从图中获取所需要的信息,进行简单的分析,进一步增强学生的统计意识,感受统计的.价值。

教学重点:

看懂扇形统计图,知道扇形统计图的特征,并能从统计图中读出必要的信息。

教学难点:

根据统计图进行简单的数据分析。

教学准备:

课前统计本班学生喜欢的体育项目,课前统计学生自己一天的作息时间安排,课件。

教学过程:

一、创设情境,谈话激趣

1.出示教材第96页情境图,说说同学们正在干什么?

2.在这些体育项目中,你喜欢什么活动?出示统计表,进行统计。(可在课前进行调查统计,利用Excel自动生成扇形统计图)

喜欢的项目

乒乓球

足球

跳绳

踢毽

其他

人数

【设计意图】联系学生生活实际,统计自己喜欢的体育项目,为引出有关统计数据提供了现实背景。同时,采用真实的数据进行教学,可以引发学生学习的兴趣,也可以让他们经历数据收集、整理的全过程,进一步体会到统计的意义和价值。

二、整理数据,引入新课

1.通过这张统计表,我们可以得到什么信息?

预设:数量的多少对比:如喜欢乒乓球人数最多,喜欢足球的比喜欢踢毽的多2人等;数量求和:如喜欢乒乓球的和喜欢足球的一共有20人等。

2.如果要比较喜欢每种运动的人数占全班人数的多少,可以怎样比较?

3.如何计算喜欢各种运动项目的人数占全班人数的百分之多少呢?

4.学生进行口算或笔算,完成统计表,并进行校对。

2025年六年级下册数学教案范本篇6

教学目标

1、使学生掌握圆柱体积公式,会用公式计算圆柱体积,能解决一些实际问题。

2、让学生经历观察、操作、讨论等数学活动过程,理解圆柱体积公式的推导过程,引导学生探讨问题,体验转化和极限的思想。

3、在图形的变换中,培养学生的迁移能力、逻辑思维能力,并进一步发展其空间观念,领悟学习数学的方法,激发学生兴趣,渗透事物是普遍联系的唯物辨证思想。

教学重点、难点

1、圆柱体积计算公式的推导过程并能正确应用。

2、借助教具演示,弄清圆柱与长方体的关系。

教具、学具准备

多媒体课件、长方体、圆柱形容器若干个;学生准备推导圆柱体积计算公式用学具。

教学设想

《 圆柱的体积 》是学生在有了圆柱、圆和长方体的相关的基础上进行教学的。在知识与技能上,通过对圆柱的具体研究,理解圆柱的体积公式的推导过程,会计算圆柱的体积,在方法的选择上,抓住新旧知识的联系,通过想象、课件演示、实践操作,从经历和体验中思考,培养学生科学的思维方法;贴近学生生活实际,创设情境,解决问题,体现数学知识“从生活中来到生活去”的理念,激发学生的学习兴趣和对科学知识的求知欲,使学生乐于探索,善于探索。

教学过程

一、创设情境,激疑引入

“水是生命之源!”节约用水是我们每个公民应尽的义务。前两天,老师家的水龙头出了问题,拧上阀门之后,还是不停的滴水,你们看,一刻钟就滴了这么多的水。

1、出示装了水的圆柱容器。

(1)启发思考:容器里面的水形成了什么形状?(圆柱)你能知道这些水的体积?

(2)讨论后汇报:

生1:用量筒或量杯直接量出它的体积;

生2:用秤称出水的重量,然后进一步知道体积;

生3:把它倒入长方体容器中,从里面量出长、宽和水面的高后再计算。

师:现在老师只有这些工具(圆柱形容器,长方形容器,半圆形容器和其他不规则容器),你怎么办?

生1:把水到入长方体容器中……

生2:我们学过了长方体的体积计算,只要量出长、宽、高就行

[设计意图:通过本环节,给学生创设一个生活中的情境,提出问题,学习身边的数学,激起学生的学习兴趣;根据需要渗透圆柱体(新问题)和长方体(已知)的知识联系为所学内容作了铺垫的准备]

2、创设问题情境。

师:(课件显示)如果要求某些建筑中圆柱形柱子的体积,或是求压路机圆柱形大前轮的体积,能用同学们想出来的办法吗?

[设计意图:进一步从实际需要提出问题,激发学生从问题中思考寻求一种更广泛的方法来解决圆柱体积的问题的欲望]

师:今天,就让我们来研究解决任意圆柱体积的方法。(板书课题:圆柱的体积)

二、经历体验,探究新知

1、回顾旧知,帮助迁移

(1)教师首先提出具体问题:圆柱体和我们以前学过的哪些几何图形有联系?

生1:圆柱的上下两个底面是圆形

生2:侧面展开是长方形……

生3:说明圆柱和我们学过的圆和长方形有联系

师:请同学们想想圆柱的体积与什么有关?

生1:可能与它的大小有关

生2:不是吧,应该与它的高有关

[设计意图:温故而知新,既复习了旧知识又引出了新知识,学生在不知不觉中就学到了新知。]

(2)请大家回忆一下:在学习圆的面积时,我们是怎样将圆转化成已学过的图形,来推导出圆面积公式的。

配合学生回答演示课件。

[设计意图:通过想象,进一步发展学生的空间观念,由“形”到“体”;同时使学生感悟圆柱的体积与它的底面积和高的联系,通过圆面积推导过程的再现,为实现经验和方法的迁移作铺垫]

2、小组合作,探究新知

(1)启发猜想:我们要解决圆柱的体积的.问题,可以怎么办?(引导学生说出圆柱可能转化成我们学过的长方体。并通过讨论得出:反圆柱的底面积分成许多相等的扇形,然后反圆柱切开,再拼起来,就转化近似的长方体了。)

(2)学生以小组为单位操作体验。

把圆柱的底面积分成许多相等的扇形,然后把圆柱切开,再把它拼起来,就转化成近似的长方体了。使学生进一步明确分的份数越多,形体中的 越接近 ,也就越接近长方体。同时演示一组动画(将圆柱底面等分成32份、64等份、128等份……)

[设计意图:教师提出问题,学生带着问题大胆猜测、动手体验。这样学生在自主探索、体验、领悟的过程中成为了发现者和创造者。]

(3)学生小组汇报交流:

近似的长方体的体积等于圆柱的体积, 近似的长方体的底面积等于圆柱的底面积,近似的长方体的高就是圆柱的高。根据长方体的体积等于底面积乘高,得出圆柱的体积也等于底面积乘高。

教师根据学生汇报报,用教具进行演示。

(4)概括板书:根据圆柱与近似长方体的关系,推导公式:

长方体的体积 = 底面积 × 高

↓ ↓ ↓

圆柱的体积 = 底面积 × 高

用字母表示计算公式V= sh

设计意图:首先通过学生的联想建立圆柱体和长方体的联系,初步建立转化的雏形,然后再通过实践

2025年六年级下册数学教案范本篇7

设计说明

本课时是百分数知识的拓展和延伸,学生很少关注农业中的成数,贸然地与数学知识、课本中的百分数内容联系起来,欠缺知识间的沟通,所以需要教师规范、指导形成系统的概念,联系生活实际来展开教学。根据本节课的教学目标和内容特点,特作如下设计:

1.复习旧知,为新课的学习作铺垫。

温故而知新。在教学中复习旧知,达到与新知间的贯通。本节课在学习新课之前,设计了三道复习题,其目的是通过复习让学生回忆把分数和小数化成百分数的方法,巩固有关百分数的实际问题的解法。通过复习为新课的学习打好知识基础。

2.交流讨论,充分发挥学生的主体作用。

学生是学习的`主人,在教学过程中要充分发挥学生的潜能。由于有百分数的应用知识作为基础,因此在本节教学中没有过多的进行讲解,而是采用师生交流、生生交流的学习方式,让学生通过合作学习,发现问题并解决问题,体现学生是课堂的主人,促进学生发展的教学理念。

课前准备

教师准备 PPT课件

学生准备 课前收集的有关成数的资料

教学过程

⊙复习准备

1.把下面各数化成百分数。

0.2 1.36

2.李庄去年种小麦50公顷,今年种小麦60公顷。今年比去年多种百分之几?

3.小华家承包了一块菜田,前年收白菜41.6吨,去年比前年多收了25%。去年收白菜多少吨?

师:农业收成可以用百分数来表示,有时也可以用另一种表示方法,这节课我们就来学习成数。

(板书课题:成数)

设计意图:通过复习,为新知的学习作铺垫。

⊙探索新知

1.成数的意义。

师:在一些新闻报道中,我们经常能听到“增产两成”“减少一成”等描述,这里的“两成、一成”就是我们这节课要学习的成数。

(1)质疑:什么是成数呢?

(2)学生交流自己的见解。

(3)教师明确:成数表示一个数是另一个数的十分之几,通称“几成”。

(4)举例说明:“一成”就是十分之一,“二成五”就是十分之二点五……

2.把成数改写成百分数。

(1)课件出示:把下列成数改写成百分数。

三成 三成五 七成 九成四

(2)小组探讨,找出改写方法。

(3)指名汇报:先把成数改写成十分之几,再改写成百分数。

3.教学例2。(理解成数的含义,解决有关成数的实际问题)

(1)课件出示例2。

某工厂去年用电350万千瓦时,今年比去年节电二成五,今年用电多少万千瓦时?

(2)学生读题,理解题中的数学信息。

(3)节电二成五是什么意思?

(4)学生独立解答,指名学生说解题思路。

教师根据学生的思路,板书解题过程:

350×(1-25%)

=350×0.75

=262.5(万千瓦时)

答:今年用电262.5万千瓦时。

师:在列式计算时,我们可以直接把成数改写成百分数,用百分数进行列式计算。

设计意图:首先让学生掌握把成数改写成百分数的方法,再出示实际问题,很自然地就能把成数问题转化成已经学过的百分数问题。这样的设计符合学生的思维过程,从而降低学习的难度。

2025年六年级下册数学教案范本篇8

学习目标:

1、进一步认识图形的旋转,明确含义,感悟特征及性质。能够运用数学语言清楚描述旋转运动的过程。会在方格纸上画出线段旋转90度后的图形。

2、经历观察实例、操作想象、语言描述、绘制图形等活动,积累几何活动经验,发展空间观念。

学习重点:

通过多种学习活动沟通联系,理解旋转含义,感悟特征及性质。

学习难点:

在方格纸上画出线段旋转90度后的图形

课前准备:

钟表,课件,教具

学习过程:

环节学案

回顾旧知

1、物体的运动有( )和( )。

2、平移和旋转都只改变图形的'( ),不改变图形的( )和( )。

自主探索

1、钟面上指针旋转的方向就是( )方向;相反的方向就是( )方向。

2、钟表上旋转一周是( )度,12个时刻将它12等份,所以每份是( )度。

3、从8时到10时,时针绕旋转点( )方向旋转( )度,从11时到15时,时针绕旋转点( )方向旋转( )度。

4、旋转三要素指( )( )( )。

合作探究

当横杆升起时,横杆绕旋转点( )时针旋转( )度;当横杆落下时,横杆绕旋转点( )时针旋转( )度。

达标检测

基础性作业:

课本29页练一练1、2题(看课件)。

一棵小树被扶起种好,这棵小树绕点O( )方向旋转了( )度。

提高性作业:

画出线段AB绕点B顺时针旋转90度后的图形;画出线段AB绕点A逆时针旋转90度后的图形。

拓展性作业:

如图,点P是线段MN上一点,将线段MN绕点P顺时针旋转90度。M P N

2025年六年级下册数学教案范本篇9

【教学目标】

1、在丰富的现实情境中认识生活中的折扣现象,理解折扣的含义。

2、能把折扣问题转化成百分数问题,并能准确、灵活地解决生活中的折扣问题。

3.在探索解决“折扣”问题的过程中,体验百分数在现实生活中的应用,获得用数学解决问题的成功体验,提高对数学学习的兴趣。

【教学重点】

理解折扣的意义,感受折扣在生活中的运用,能正确解决生活中简单的折扣问题。

【教学难点】

能应用“折扣”的知识灵活解决生活中的相关问题。

【教学准备】

多媒体课件

【教学过程】

一、激情导课

1、导入课题

(1)、孩子们!五一和国庆期间,商家为了招揽顾客,经常采用一些促销的手段,你见过哪些促销手段?(降价,打折、买几送几、送货上门等)

(2)、有些同学提到了“打折”,大家看,(出示课件) 你认为打折之后去购买商品,是比原来便宜了还是贵了?

(3)、揭示课题:今天,我们就来学习与打折有关的数学问题——折扣。(板书课题)

2、明确目标

师:对于折扣,你知道些什么?还想知道什么?随着学生的回答教师出示学习目标:

(1)、知意义 。

(2)、会运用

刚才有同学提到他的理解,那是这样吗?在这节课中你一定会找到答案的。好,让我们进行今天的第一个学习任务。

二、民主导学

任务一:理解折扣的意义

1、任务呈现:请大家自学书97页第一自然段,完成下面的问题,有困难的组内互相帮助。

(1)什么是打折?

(2)几折表示( )也就是( )

(3)八折=( — )=( )% 九五折= ( — )= ( )%

(4)八折表示什么?九五折表示什么?

2、自主学习

学生自学后完成,如遇到困难可以组内互相帮助。

3、展示交流

(1)明确”打折”的含义

打折就是商店降价出售,几折就是十分之几,百分之几十。

(2)明确“九折”“八五折”的含义

九折就是现价是原价的十分之九,百分之九十。

八五折表示现价是原价的'十分之八点五,百分之八十五,谁是谁的85%呢?谁能说一说八五折的具体含义?

(3)及时巩固

也就是说,折扣都可以转化成百分数,是这样的吗?那你能不能很快地将下面的折扣改写成百分数。你能说说这些折扣的意思吗?(课件出示图)用谁是谁的百分之几描述。

七折 六五折 八八折

(4)小结

同学们,我们说了这么多折扣的意思,几折就表示十分之几,也就是百分之几十。如八五折:现价是原价的85%(或十分之八点五)

刚才我们了解了这么多的折扣知识,下面看我们能不能利用这些折扣知识帮解决几个实际问题。

任务二:用折扣解决问题(例题4(1))

1、出示例4的第(1)题:

爸爸给小雨买了一辆自行车,原价180元,现在商店打八五折出售,买这辆车用了多少钱?

小结:孩子们,你们听明白了吗?他是把折扣问题转化成百分数问题解决的。看来呀,关于折扣的问题我们只要把它转化成百分数问题就能顺利解决了。看来这道题没有难倒大家,好,来道难点的。

2、任务呈现

幻灯出示例4的第(2)题:

爸爸买了一个随身听,原价160元,现在只花了九折的钱,比原价便宜了多少钱?

2、自主学习

学生独立思考,自主解决。

3、展示交流

是啊!九折就是便宜了一折,我们是说打九折销售,在国外有些国家就说成降价10%。说法是不一样但意思一样吗?六折就是便宜了几折,八五折呢?

4、比较上两题的共同点和不同点,请大家仔细观察我们刚才这两道题,有什么共同点和不同点,都已知了原价的折扣,求现价和便宜了多少钱,在解答方法上我们都是求一个数的百分之几是多少。. 折扣问题的应用题其实就是百分数应用题,解答时可以按照百分数应用题的方法去解答。

5、同学们!通过这几次的购物经历,老师发现大家理解了折扣的含义,其实关于折扣还有很多的小奥秘。如果商场打折你最想让他打几折呢?也就是折扣数越小越好,刚才有同学提到0折,其实0折并不是不花钱,是什么意思呢?大家可以上网查一查。

看这道题,同一款米奇书包,在A店打八折,在B店打九折,如果是你,你会到哪个店去买?

那如果老师告诉你这个书包的原价,你还会这样选择吗?A店原价95元,B店原价80元。想想看你要去哪个店去买?非常好,大家都拿出笔来开始计算了。

小结:同学们灵活运用折扣知识解决了这么多的问题,真不错。看来我们在购物时,不能仅看折扣,还要看这件商品原价,当然我们还要注意这件商品的质量、你是否需要等等,不要被商家的促销手段所蒙骗,做一个理智地消费者。

好,这节课你学得怎么样呢?我们检测一下吧?

三、检测导结

1、七折=( )%=( — ) 95%=( )折。

2、九五折表示现价是( )的( )%。

3、一件衣服打六八折销售,就是便宜了原价的( )%

四、解决问题

一个书包原价100元,现在商店打八八折销售,买这个书包现在要花多少钱?便宜了多少钱?

2、结果反馈

学生独立完成后,教师出示答案,订正。

3、反思小结

折扣是百分数在生活中应用的一个例子,百分数在生活中的应用还非常广泛,这些知识都等着我们去发现、去思考、去探索,希望大家能做个有心人!可不要让自己的学习成绩打了“折扣”哦!

2025年六年级下册数学教案范本篇10

课前准备

PPT课件

教学过程

⊙谈话揭题

上节课我们复习了小数,那么小数与分数之间、分数与百分数之间又有怎样的区别和联系呢?希望通过本节课对分数、百分数的相关知识的复习,你们能找到正确的答案。[板书课题:分数(百分数)的认识]

⊙回顾与整理

1.分数的意义、分数单位及分数与除法的关系。

(1)师:什么是分数?什么是分数单位?

明确:把单位“1”平均分成若干份,表示这样的一份或者几份的数叫做分数,其中的一份叫做分数单位。

(2)师:分数与除法有着怎样的关系?

预设

生1:除法中的被除数相当于分数中的分子,除数相当于分母,除号相当于分数线。

生2:因为0不能作除数,所以分数的分母不能为0。

2.真分数、假分数的特点。

(1)真分数的分子比分母小,真分数的分数值小于1。

(2)假分数的分子大于或等于分母,假分数的分数值大于或等于1。

3.分数的基本性质、约分和通分。

(1)师:什么是分数的基本性质?

分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。这叫做分数的基本性质。

(2)师:什么是约分和通分?

预设

生1:把一个分数化成同它相等,但是分子、分母都比较小的分数,叫做约分。

生2:把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。

(3)师:什么是最简分数?

分子和分母是互质的分数,叫做最简分数。

4.小数、分数、百分数的互化。

(1)小数、分数、百分数的互化。

①小数化成分数。

原来有几位小数,就在1的后面写几个0作分母,把原来的'小数去掉小数点作分子,能约分的要约分。

例如:0.7= 1.25==

②分数化成小数。

用分子除以分母,能除尽的就化成有限小数;有的不能除尽,不能化成有限小数,一般保留三位小数。

例如:=3÷4=0.75 =3÷25=0.12

=3÷7≈0.429 =4÷9≈0.444

③小数化成百分数。

只要把小数点向右移动两位,同时在末尾添上百分号即可。

例如:0.23=23% 1.7=170%

④百分数化成小数。

只要把百分号去掉,同时把小数点向左移动两位即可。

例如:120%=1.2 85%=0.85

⑤分数化成百分数。

通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。

例如:≈0.143=14.3%

⑥百分数化成分数。

把百分数改写成分数,能约分的要约成最简分数。

例如:85%==

(2)师:谁能举例说一说什么样的分数能化成有限小数?

预设

生1:一个最简分数,如果分母中除了2和5以外,不含有其他的质因数,这个分数就能化成有限小数。

例如:=0.65,分母中只含有质因数2和5。

=0.8125,分母中只含有质因数2。

生2:如果一个最简分数的分母中含有除2和5以外的其他质因数,这个分数就不能化成有限小数。

例如:≈0.056

分母中除质因数2以外,还有质因数3。

2025年六年级下册数学教案范本篇11

教学内容:

税率与折扣

教学目标:

1、理解税率、折扣的含义,知道它们在工农业生产和日常生活中的作用,会进行这方面的简单计算并能解决简单的实际问题。

2、在解决实际问题的过程中,进一步体会数学知识间的内在联系,增强思维的深刻性。

教学重点:

理解税率、折扣的含义。

教学难点:

解答税率、折扣的.实际问题。

教具准备:

课件、相关资料。

教学过程:

一、创设情境,提出问题

谈话:同学们,还记得采摘节的情景吗?今天我们一起去彩虹谷看一看吧。

出示信息图,指名说出信息图中的数学信息。

理清信息后,教师直接提出问题:如果按3%的税率缴纳营业税,黄金周期间彩虹谷景区应缴纳营业税多少万元?

二、合作探究,解决问题

1、解决第一个红点问题

谈话:在老师提出的问题中,你有没有什么不懂的地方?

学生提出疑问,疑问大都会集中在有关纳率、税率、税额的相关知识上。

谈话:课前老师让同学们回去搜集有关纳税的一些知识,下面让我们来交流一下,你都知道了些什么?

全班交流,教师适时补充。

谈话:看来百分数在生活中的应用还真是不少呢,通过刚才同学们的交流,再结合信息图中的信息,你认为要求应上缴门票营业税多少万元,就是求什么?为什么?

让学生充分思考后,再指名回答。回答时不光要让学生说出要求应缴纳营业税多少万元,就是求什么,还要让学生说一说自己是怎样想的,重点明确求应缴纳营业税多少万元就是求营业额的3%是多少。

学生明确问题后,独立解答,全班交流。

1153%=3.45(万元)

答:应缴纳营业税3.45万元。

谈话:根据刚才同学们解决的这个问题,你能总结出求营业税问题的基本方法吗?

学生独立思考后,先在小组中讨论交流,然后全班交流,统一方法:税额=营业额税率。

2、小练习:自主练习第1题

第1题是求税额的基本练习题。练习时,在学生独立解答后,重点让学生说说有关税额的数量关系和自己是怎样计算的。

2025年六年级下册数学教案范本篇12

课前准备

教师准备 PPT课件

教学过程

⊙谈话导入

师:看下面的字母,你知道它们分别是什么意思吗?

SOS EMS m2

(SOS:求助信号;EMS:中国邮政快递;m2:平方米)

字母在生活中随处可见,这说明它很重要。今天我们就来进一步巩固用字母表示数及解方程等知识。(板书课题:用字母表示数、解方程)

⊙回顾与整理

1.用字母表示数。

(1)用字母表示数的作用和意义。

用字母可以简明地表示数、数量关系、运算定律和计算公式,为研究和解决问题带来了很多方便。

(2)我们曾经学过哪些用字母表示数的知识?

整理:

①用字母表示数的简写。

②用字母表示数量关系。

③用字母表示运算定律。

④用字母表示计算公式。

(3)常见的用字母表示的数量关系有哪些?

预设

生1:路程用s表示,速度用v表示,时间用t表示,三者之间的关系如下:

s=vt v= t=

生2:总价用a表示,单价用b表示,数量用c表示,三者之间的关系如下:

a=bc b= c=

(4)常用的运算定律有哪些?

预设

生1:加法交换律:a+b=b+a

生2:加法结合律:(a+b)+c=a+(b+c)

生3:乘法交换律:a×b=b×a

生4:乘法结合律:a×b×c=a×(b×c)

生5:乘法分配律:a×(b+c)=a×b+a×c

(5)常见的用字母表示的计算公式有哪些?

预设

生1:长方形的`长用a表示,宽用b表示,周长用C表示,面积用S表示。

C=2(a+b) S=ab

生2:正方形的边长用a表示,周长用C表示,面积用S表示。

C=4a S=a2

生3:平行四边形的底用a表示,高用h表示,面积用S表示。

S=ah

生4:三角形的底用a表示,高用h表示,面积用S表示。

S=

2025年六年级下册数学教案范本篇13

教学内容:

九年义务教育六年制第十二册第36~37页例4、例5及做一做,练习八的第1、2题。

教学目标:

1、理解圆柱体体积公式的推导过程,并会正确地计算出圆柱的体积。

2、培养学生的迁移能力、逻辑思维能力,并进一步发展空间观念。

3、引导学生探索和解决问题,体验转化及极限的思想方法。

教学重点:

圆柱体体积的计算.

教学难点:

理解圆柱体体积公式的推导过程.

教具:多媒体课件、圆柱形容器、水、橡皮泥。

教学过程:

一、激凝导入

师: 大家都知道,水是生命之源!我们要养成节约用水的好习惯。可前两天,老师家的水龙头出了问题,你们看,一刻钟就滴了这么多水。(出示装有水的圆柱容器。)

(1)启发思考:容器里面的水形成了什么形状?(圆柱)你能知道这些水的体积吗?你能想什么办法知道它的体积?

(2)生回答。

2、出示橡皮泥捏成的圆柱体。

那你有办法求出这个圆柱体橡皮泥的体积吗?

生(热情的):老师将它捏成长方体或正方体就可以了!

3、创设问题情境。

师小结:这么说同学们都有办法将一些圆柱形的物体转化为长方形或正方体来求它们的体积,大家真了不起!那如果我们要求某些建筑如(出示课件:人民大会堂东门前的门柱和压路机大前轮)雄伟的人民大会堂东门前的一个圆柱形门柱的体积,或者求压路机圆柱形大前轮的体积,还能用刚才同学们想出来的办法吗?(不能)

那怎么办?

学生试说出自己的办法。

师:看起来前面这些方法虽然可行,但有一定的局限性,我们必须找到一个解决任意圆柱体积的方法才行,是不是?今天,就让我们来共同研究解决任意圆柱体积的方法。(板书课题:圆柱的体积)

二、经历体验、探究新知

1、推导圆柱的体积公式。

师:你们打算怎么去研究圆柱的体积?

小组同学讨论研究的方法。

2、学生动手操作感知

(1)学生以小组为单位操作体验。(操作学具,进行拼组)。

(2)学生小组汇报交流:

近似长方体的体积等于圆柱的体积;近似长方体的底面积等于圆柱的底面积;近似长方体的高就是圆柱的高。根据长方体的体积等于底面积乘高,得出圆柱体的.体积也等于底面积乘高。

(3)想像:如果把圆柱像这样等分成32份、64、128份后再拼起来,会怎么样?有怎样的变化趋势?分成无数份呢?(平均分的份数越多,拼起来的近似长方体的长越近似于直线,这样整个图形越近似于长方体。如果照这样分成无限多份,拼出的图形就是长方体)

3、教师课件演示圆柱转化成长方体的过程。

4、师生共同推导出圆柱的体积公式:

长方体的体积=底面积高

圆柱的体积=底圆柱面积高

V = Sh

5、巩固公式

①V、S、h各表示什么?

②知道哪些条件就可以求圆柱的体积?

а、知道底面积和高可以直接用公式计算圆柱的体积;

b、知道底面半径和高,可以先计算出底面积,再计算体积;

c、知道底面直径和高,要先算出半径,再算出底面积,最后才能计算出圆柱的体积。

学生回答后师板书。

6、教学例4、例5。

课件分别出示例4、例5,让学生找出题中的条件和问题,然后独立完成,集体订正。

三、实践练习

1、出示课件:人民大会堂东门前的门柱和压路机大前轮的有关数据求出它的体积。

2、拓展延伸:同学们到工厂参加社会实践。工人师傅拿出一块长、宽、高分别是6厘米、5厘米、4厘米的长方体,问:同学们,现在我们要把这块木料加工成一个体积最大的圆柱体,你们想一想,圆柱的底面直径和高应是多少?小林想了想说:我知道了。

同学们,你们知道小林是怎样想的吗?

四、课堂总结;

通过本节课的学习,你有什么收获?

2025年六年级下册数学教案范本篇14

一、教学目标

1、能在具体的情境中,探索确定位置的方法,说出某一物体的位置。

2、会在方格纸上用“数对”确定物体的位置。

3、发展空间观念,初步体会到数形结合的思想。

4、体会生活中处处有数学,提高运用知识解决实际问题的能力。

二、教学重点

使学生经历确定位置的全过程,从而掌握用数对确定位置的方法。

三、教学难点

在方格纸上用“数对”确定位置。

1、教法

情境教学法,创设找图书管理员的情境,激发学习兴趣,感知确定位置的方法。

2、学法

积极参与法,在学习过程中积极思考,理解用数对确定位置的方法,并积极参与动手操作活动,提高看图能力。

四、教学准备

1、多媒体课件

五、教学过程

(一)谈话导入

1、师生谈话。

1)学校让我们班推荐一位同学到学校图书室做图书管理员,老师已经选好了,那么你们想不想知道这位同学是谁吗?

2)这位同学在班级中的位置是第三组的。你们知道这位同学是谁吗?他可能是哪几位同学?如果要找到这位同学,还要知道什么条件?

3)这位同学的座位是在第3排,大家知道这位同学是谁吗?

2、导入新课。

今天这节课,我们就一起来学习确定位置的方法。

1)板书课题:用数对确定位置

2)设计意图:通过谈话中引入数学问题,充分调动了学生的学习兴趣和积极性,为学习新知奠定了基础。

二、探索新知

1、教学例1。

(1)出示例题1教学图。

让学生观察图,说说张亮同学坐在第几列?第几行。

(竖排叫做列,横排叫做行)

(2)张亮同学坐在第2列,第3行。用数对来表示(2,3)。

(3)让学生用数对表示王艳和赵强的位置。

王艳(3,4)赵强(4,3)

(4)小结。

确定一个同学在教室的位置,要考虑两个要素:第几列和第几行。

设计意图:通过具体的`实例引导学生认识第几列第几行的判断方法,经历应用数学知识分析问题的解决问题的过程

2、完成第3页的“做一做”。

课件出示电影院和电影票的图片。出示题目:举出生活中确定位置的例子,并说一说确定位置的方法。

(电影院用电影票来确定位置,电影票一般都写着“几排几号”,“排”表示行,“号”表示列。比如“3排7号”用数对表示是(7,3)。

设计意图:从学生熟悉的情景出发,选择学生感举的事物,提出相关问题,激发学生学习兴趣。

3、教学例2。

(1)认识方格图。

出示动物园示意图。

指导学生观察图。

这幅动物园示意图与以前见过的示意图有以下几点不同:一是动物园的各场馆都画成一个点,只反映各场馆的位置,不反映其他内容;二是表示各场馆位置的那些点都分散在方格纸竖线和横线的交点上;三是方格纸的竖线从左到右依次标注了0,1,2,…,6;横线从下往上依次标注了0,1,2,…,6,其中的“0”既是列的起始,也是行的起始。

(2)用数对表示图中各场馆的位置。

提问1:我用了数对(3,0)来表示大门的位置,你们知道我是怎样想的吗?

大门在示意图中处于“竖线3,横线0”的位置上,所以可以用数对(3,0)来表示

你们能用数对表示其他场馆所在的位置吗?

熊猫馆(3,5)大象馆(1,4)猴山(2,2)海洋馆(6,4)

(3)根据数对标位置

在图上标出下面场馆的位置:飞禽馆(1,1)、猩猩馆(0,3)、狮虎山(4,3)。

设计意图:通过具体的事例认识和理解位置与坐标中数值的对应关系,让学生不但会用数对描述现实生活中的位置,还会描述坐标图上的物体的位置。

三、巩固运用

1、小游戏:看谁反应最快。

老师说出一组数对,相应的同学要在3秒内起立。

2、做一做。(课件出示)

设计意图:通过练习,培养学生分析问题、解决问题的能力,加深对知识的理解和应用。

四、课堂总结

这节课我们学习如何用数对来确定位置,用数对确定位置时,数对中的前一个数表示第几列,后一个数是表示第几行。

五、板书设计

1、用数对确定位置

2、竖排叫做列从左往右

3、横排叫做行从前到后

4、张亮坐在第2列第3行(2,3)

2025年六年级下册数学教案范本篇15

教学目的:

1、培养学生灵活、全面的运用知识的能力,及运用所学知识解决简单实际问题的能力。

2、培养学生认真审题的良好学习习惯。

教学重点:

灵活运用周长或面积公式解决实际问题。

教学过程:

一、周长与面积的区别。

1、什么是圆?圆周长的计算公式是什么?圆面积公式的`计算公式是什么?

2、计算下题。求出它的周长与面积。

(1)学生动手计算。

(2)周长与面积有什么不同?

概念不同,计算公式不同,单位不同。

3、判断。两个图形相比较,哪个图形的周长长,哪个图形的面积就大。

(错。周长的长短和面积的大小没有必然的联系。)

二、运用所学知识解决实际问题。

1、一个圆形花坛,直径是4米,周长是多少米?

=(米)

2、一个圆形花坛,周长是米,直径是多少米?

=4(米)

3、一个圆形花坛的半径是2米,它的面积是多少平方米?

=(平方米)

4、一个圆形花坛的周长是米,它的面积是多少平方米?

r=()=2(米)=(平方米)

5、一个环形铁片,外直径是6米,内直径是4米,它的面积是多少平方米?

6、先测量所需要的数据,再计算半圆的周长和面积。(解答结果保留整厘米数)

7、一个圆形餐桌面直径是2m,它的周长多少米?它的面积是多少米?如果一个人需要宽的位置就餐,这张餐桌大约能坐多少人?+

三、综合练习。

1、判断对错,(1)圆的半径都相等。()

(2)在同圆或等圆中圆周长约是半径的倍。()

(3)半圆的周长是圆周长的一半。()

2、只列式不计算。

(1)一个圆形铁板的半径是5分米,它的面积是多少平方分米?

(2)一个圆形的铁板的直径是6分米,它的面积是多少平方分米?

(3)一个圆形铁板的周长是分米,它的面积是多少平方分米?

3、说一说下面各题的解题思路。

(1)一个圆形花坛,直径是5米,小明围着它跑了5圈,小明一共跑了多少米?

(2)在草地的木桩上栓着一只羊,绳长3米,这只羊能吃到草的面积最大是多少平方米?

四、布置作业

练习十七1-3,思考第4题。

2025年六年级下册数学教案范本篇16

教学内容:

课本第79——80页例3和“练一练”,练习十三第3-5题。

教学目标:

1、让学生理解并掌握用分数乘法和加、减法解决一些稍复杂的实际问题的思考方法,能正确解决类似问题。

2、让学生进一步积累解决问题的策略,培养学生运用策略解决问题的习惯,

增强学生应用数学的意识。

教学重难点:

用分数乘法和减法解决一些稍复杂的实际问题。

课前准备:

课件

教学过程:

一、复习导入

王芳看一本120页的故事书,已经看了全书的1/3,还有多少页没有看?

全校的三好学生共有96人,其中男生占3/8,女生有多少人?

学生独立解答后,让学生说说想的过程。

二、教学例3

出示题目,要求学生默读。

指名学生读题,问:题目中的已知条件是什么?我们要解决什么问题?指名回答。

从“今年的班级数比去年增加了1/6”这句话中你看出是哪两个量在比较?比较的结果怎样?

问:今年的班级数比去年多谁的1/6呢?那么应该把什么时候的'班级数看作单位“1”?

教师指导学生画线段图。

教师再根据线段图引导学生分析题意。

“要求今年有多少班,可以先算什么?

请你试着把这道题做一下。

教师找出不同的解法进行板演,并让学生说说思路。

三、完成”练一练“

1、做第1题。

(1)引导学生画线段图理解题意

(2)看线段图分析

(3)学生独立完成,指名板演,集体评讲。

2、做第2、3题。

(1)让学生独立完成,指名板演,集体评讲。

(2)让学生说说自己的想法。

四、巩固提高

1、完成练习十三第3题。

学生直接把结果写在书上,集体核对。

2、练习十三第4题。

3、学生读题后,要求学生画出线段图进行分析,然后列式解答。

集体评讲。

五.本课总结。

通过这节课的学习,你有什么收获呢?

六、布置作业

练习十三第5题。

2025年六年级下册数学教案范本篇17

一、学习目标

(一)学习内容

《义务教育教科书数学》(人教版)六年级下册第五单元第68~69页的例1、2。“抽屉原理”是一类较为抽象和艰涩的数学问题,对全体学生而言具有一定的挑战性。为此,教材选择了一些常见的、熟悉的事物作为学习内容,经历将具体问题“数学化”的过程。

(二)核心能力

经历将具体问题“数学化”的过程,初步形成模型思想,发展抽象能力、推理能力和应用能力。

(三)学习目标

1、理解“鸽巢原理”的基本形式,并能初步运用“鸽巢原理”解决相关的实际问题或解释相关的现象。

2、通过操作、观察、比较、说理等数学活动,经历鸽巢原理的形成活动,初步形成模型思想,发展抽象能力、推理能力和应用能力。

(四)学习重点

了解简单的鸽巢问题,理解“总有”和“至少”的含义。

(五)学习难点

运用“鸽巢原理”解决相关的实际问题或解释相关的现象。

(六)配套资源

实施资源:《鸽巢原理》名师教学课件

二、学习设计

(一)课堂设计

1、谈话导入

师:我这里有一副扑克牌,去掉了两张王牌,还剩52张,我请一位同学任意抽5张,不要让我看到你抽的是什么牌。但是老师却知道,其中至少有两张牌是同种花色的,再找一个学生再次证明。

师:看来我两次都猜对了。谢谢你们。老师为什么能料事如神呢?到底有什么秘诀呢?学习完这节课以后大家就知道了。

2、问题探究

(1)呈现问题,引出探究

出示例1:小明说“把4支铅笔放进3个笔筒里。不管怎么放,总有一个笔筒里至少放进2支铅笔”,他说得对吗?请说明理由。

师:“总有”是什么意思?“至少”有2支是什么意思?

学生自由发言。

预设:一定有

不少于两只,可能是2支,也可能是多于2支。

就是不能少于2支。

(2)体验探究,建立模型

师:好的,看来大家已经理解题目的意思了。那么把4支铅笔放进3个笔筒里,可以怎样放?有几种不同的摆法?(我们用小棒和纸杯分别表示铅笔和笔筒)请大家摆摆看,看有什么发现?

小组活动:学生思考,摆放。

①枚举法

师:大部分同学都摆完了,谁能说说你们是怎么摆的。能不能边摆边给大家说。

预设1:可以在第一个笔筒里放4支铅笔,其它两个空着。

师:这种放法可以记作:(4,0,0),这4支铅笔一定要放在第一个笔筒里吗?

(不一定,也可能放在其它笔筒里。)

师:对,也可以记作(0,4,0)或者(0,0,4),但是,不管放在哪个笔筒里,总有一个笔筒里放进4支铅笔。还可以怎么放?

预设2:第一个笔筒里放3支铅笔,第二个笔筒里放1支,第三个笔筒空着。

师:这种放法可以记作(3,1,0)

师:这3支铅笔一定要放在第一个笔筒里吗?

(不一定)

师:但是不管怎么放——总有一个笔筒里放进3支铅笔。

预设3:还可以在第一个笔筒里放2支,第二个笔筒里也放2支,第三个笔筒空着,记作(2,2,0)。

师:这2支铅笔一定要放在第一个和第二个笔筒里吗?还可以怎么记?

预设:也可能放在第三个笔筒里,可以记作(2,0,2)、(0,2,2)。

预设4:还可以(2,1,1)

或者(1,1,2)、(1,2,1)

师:还有其它的放法吗?

(没有了)

师:在这几种不同的放法中,装得最多的那个笔筒里要么装有4支铅笔,要么装有3支,要么装有2支,还有装得更少的情况吗?(没有)

师:这几种放法如果用一句话概括可以怎样说?

(装得最多的笔筒里至少装2支。)

师:装得最多的那个笔筒一定是第一个笔筒吗?

(不一定,哪个笔筒都有可能。)

【设计意图:在理解题目要求的'基础上,通过操作活动,用画图和数的分解来表示上述问题的结果,更直观。再通过对“总有”“至少”的意思的单独说明,让学生更深入地理解“不管怎么放,总有一个铅笔盒里至少有2支铅笔”这句话。】

②假设法

师:刚才我们研究了在所有放法中放得最多的笔筒里至少放进了几支铅笔。怎样能使这个放得最多的笔筒里尽可能的少放?

预设:先把铅笔平均放,然后剩下的再放进其中一个笔筒里。

师:“平均放”是什么意思?

预设:先在每个笔筒里放一支铅笔,还剩一支铅笔,再随便放进一个笔筒里。

师:为什么要先平均分?

学生自由发言。

引导小结:因为这样分,只分一次就能确定总有一个笔筒至少有几支笔了。

师:好!先平均分,每个笔筒中放1支,余下1支,不管放在哪个笔筒里,一定会出现总有一个笔筒里至少有2支铅笔。

师:这种思考方法其实是从最不利的情况来考虑,先平均分,每个笔筒里都放一支,就可以使放得较多的这个笔筒里的铅笔尽可能的少。这样,就能很快得出不管怎么放,总有一个笔筒里至少放进2支铅笔。我们可以用算式把这种想法表示出来。

【设计意图:让学生自己通过观察比较得出“平均分”的方法,将解题经验上升为理论水平,进一步强化方法、理清思路。】

(3)提升思维,建立模型

①加深感悟

师:如果把5支笔放进4个笔筒里呢?大家讨论讨论。

预设:5支铅笔放在4个笔筒里,先平均分,不管怎么放,总有一个笔筒里至少有2支铅笔。

师:把7支笔放进6个笔筒里呢?还用摆吗?

学生自由发言。

师:把10支笔放进9个笔筒里呢?把100支笔放进99个笔筒里呢?

师:你发现了什么?

预设:我发现铅笔的支数比笔筒数多1,不管怎么放,总有一个笔筒里至少有2支铅笔。

师:你的发现和他一样吗?

学生自由发言。

师:你们太了不起了!

师:难道这个规律只有在铅笔的支数比笔筒数多1的情况下才成立吗?你认为还有什么情况?

练一练:

师:我们来看这道题“5只鸽子飞进了3个鸽笼,总有一个鸽笼至少飞进了2只鸽子,为什么?”

师:说说你的想法。

师:由此看来,只要分的物体比抽屉的数量多,就总有一个抽屉里至少放进2个物体。这就是最简单的鸽巢原理。【板书课题】

介绍狄利克雷:

师:鸽巢原理最先是由19世纪的德国数学家狄利克雷提出来应用于解决问题的,后来人们为了纪念他从这么平凡的事情中发现的规律,就把这个规律用他的名字命名,叫狄利克雷原理,也叫抽屉原理。

②建立模型

出示例2:一位同学学完了“鸽巢原理”后说:把7本书放进3个抽屉里,不管怎么放,总有一个抽屉里至少有3本书。他说得对吗?

学生独立思考、讨论后汇报:

师:怎样用算式表示我们的想法呢?生答,板书如下。

7÷3=2本……1本(2+1=3)

师:如果有10本书会怎么样能?会用算式表示吗?写下来。

出示:

把10本书放进3个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?

10÷3=3本……1本(3+1=4)

师:观察板书你有什么发现?

预设:我发现“总有一个抽屉里至少有2本”,只要用“商+1”就可以得到。

师:那如果把8本书放进3个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?请大家算一算。

学生讨论,汇报:

8÷3=2……22+1=3

8÷3=2……22+2=4

师:到底是“商+1”还是“商+余数”呢?谁的结论对呢?在小组里进行研究、讨论。

师:认真观察,你认为“抽屉里至少有几本书”或“鸽笼里至少有几只鸽子”可能与什么有关?

预设:我认为根“商”有关,只要用“商+1”就可以得到。

师:我们一起来看看是不是这样(引导学生再观察几个算式)啊!果然是只要用“商+1”就可以了。

引导总结:我们把要分的物体数量看做a,抽屉的个数看做n,如果满足【a÷n=b……c(c≠0)】,那么不管怎样放,总有一个抽屉里至少放(b+1)本书。这就是抽屉原理的一般形式。

鸽巢原理可以广泛地运用于生活中,来解决一些简单的实际问题。解决这类问题时要注意把谁看做“抽屉”。

【设计意图:借助直观操作和假设法,将问题转化为“有余数的除法”的形式。可以使学生更好地理解“抽屉原理”的一般思路,经历将具体问题“数学化”的过程,初步形成模型思想,发展抽象能力、推理能力和应用能力。考查目标1、2】

3、巩固练习

(1)学习了“鸽巢原理”,我们再回到课前的“扑克牌”游戏,你现在能解释一下吗?(出示课件)学生思考,讨论。

(2)第69页的做一做第1、2题。

4、全课总结

师:通过这节的学习,你有什么收获?

小结:今天这节课我们一起研究了鸽巢原理,也叫抽屉原理,解决抽屉原理问题关键就是找准物体和抽屉,在一些复杂的题中,还需要我们去制造抽屉。

(三)课时作业

1、一个小组共有13名同学,其中至少有几名同学同一个月出生?

答案:2名。

解析:把1—12月看作是12个抽屉,13÷12=1…11+1=2【考查目标1、2】

2、希望小学篮球兴趣小组的同学中,最大的12岁,最小的6岁,最少从中挑选几名学生,就一定能找到两个学生年龄相同。

答案:8名。

解析:从6岁到12岁一共有7个年龄段,即6岁、7岁、8岁、9岁、10岁、11岁、12岁。用7+1=8(名)【考查目标1、2】

2025年六年级下册数学教案范本篇18

教学内容:

例5体现了找规律对解决问题的重要性。这里的规律的一般化表述是:以平面上几个点为端点,可以连多少条线段。这种以几何形态显现的问题,便于学生动手操作,通过画图,由简到繁,发现规律。解决这类问题的常用策略是,由最简单的情况入手,找出规律,以简驭繁。这也是数学问题解决比较常用的策略之一。

例6以选送节目为题材,讨论怎样分两步找出组合数,再求选送方案的总数。这里渗透了作为排列组合基础之一的乘法原理。

例7是一个比较复杂的逻辑推理问题,借助列表,则比较容易逐步缩小范围,找到答案。这里渗透了逻辑推理的常用方法排除法。

教学目标:

1.通过学生观察、探索,使学生掌握数线段的方法。

2.渗透化难为易的数学思想方法,能运用一定规律解决较复杂的.数学问题。

3.培养学生归纳推理探索规律的能力。

重点难点:

引导学生发现规律,找到数线段的方法

教具学具:

多媒体课件

教学指导:

1.出示例5前,可以先让学生说说几年来每一学期的数学广角学了些什么。探索例5时,应当先让学生理解问题。可以通过读题、说题意,使学生明白每两点之间都能连一条线段。然后让学生自己动手在纸上画画、试试,再来讨论有没有什么好方法

2.探究例6时,可以直接给出题目,由学生自己尝试,也可以将例题分解,让学生先回答

3.探究例7时,必须先让学生仔细读题,理解题意。

教学过程:

一、复习回顾,游戏设疑,激趣导入。

1.师:同学们,课前我们来做一个游戏吧,请你们拿出纸和笔在纸上任意点上8个点,并将它们每两点连成一条线,再数一数,看看连成了多少条线段。(课件出现下图,之后学生操作)

2.师:同学们,有结果了吗?(学生表示:太乱了,都数昏了)大家别着急,今天,我们就一起来用数学的思考方法去研究这个问题。(板书课题)

二、逐层探究,发现规律。

1.从简到繁,动态演示,经历连线过程。

88823