教育巴巴 > 小学教案 > 数学教案 > 五年级 >

2024年人教版五年级上册数学教案全册

时间: 梦荧 五年级

在教学工作者开展教学活动前,编写教案是必不可少的,那么关于人教版五年级上册数学教案怎么写呢?以下是小编整理的一些关于人教版五年级上册数学教案,仅供参考。

2024年人教版五年级上册数学教案全册

2024年人教版五年级上册数学教案全册(精选篇1)

教学目标

1.理解小数比大小的方法,会比较两个小数的大小。

2.让学生经历从具体—表象—抽象的学习过程,获得小数比大小的方法,并发展迁移能力。

3、让学生感受小数比大小的方法是有价值的。

教学重点:

会比较两个小数的大小。

教学难点:

让学生经历从具体—表象—抽象的学习过程,获得小数比大小的方法,并发展迁移能力。

教学过程:

一、复习导入:

1、在数射线上放一放下面各数,并选两个数比一比大小。

502510055

2、在○里填上“><=”

○○○

3、揭题:小数的大小比较

二、自主探究新知。

(一)数射线上比大小。

1、出示情景

这是四(3)班同学在进行跳远比赛呢?

徐夏豪的成绩是:2.90米。

沈珺的成绩是:3.60米。

夏陈的成绩是:3.45米。

你能给他们排出名次吗?

2、学生操作交流并排出名次

3、练一练:

用数射线上的点表示下面各小数,并比较每组数中两个数的大小。

(二)脑子里比大小。

1、出示

沈佳妮的成绩是:2.98米。

徐璐婕的成绩是:2.89米。

顾雨菲的成绩是:3.05米。

离开数射线,把三张卡片在桌上排一排。

交流说出她们排列的名次。

(三)归纳比较小数大小的一般方法

1、还有其他的方法排出名次吗?

2、小组讨论

3、交流并出示:比较两个小数的大小,先比较整数部分,整数部分大的那个数就大;整数部分相同的,再比较十分位上的数,十分位上的数大的那个数就大;……

4、小结:小数大小的比较方法与多位数大小的比较方法是相通的。

三、巩固运用

1、比较下面每组中两个小数的.大小。

3.14○4.130.473○0.46

5.0192○5.01297.281○8.001

2、综合运用。

2004年雅典奥运会男子110m栏决赛真激烈!

加西亚的成绩是13.20秒

刘翔的成绩是12.97秒

特拉梅尔的成绩是13.18秒

(1).提问:刘翔(中国)、加西亚(古巴)、特拉梅尔(美国)跑在前三位,你能给他们排出名次吗?

(2).独立思考:有哪些好办法能很清楚地比较出这三个小数的大小?

(3).学生交流。

思考:跑步比赛与跳远比赛的成绩排名有什么不一样?

四、总结:这节课学习了什么?

你有什么收获?

设计意图:

本设计注意挖掘学生身边的学习资源,为学生创建了一个发现、探究的思维空间,运用大量的实践活动引导学生去发现、去创造,培养学生的初步创新意识和创新能力:

1、关注学生的生活经验和已有的知识体验。

2、体现了活动是学习的载体,使学生在活动中学习。

3、联系实际,灵活应用,培养了学生的创新精神和创新能力。

4、通过学生间的合作探索,并将学习成果展现,使学生充分感受学习的乐趣,体验成功,建立学习自信心。

教材分析:“分数比较大小”这部分内容是实验教材新增设的内容之一,也是教材改革的新变化之一。数学课程标准在探索规律的内容中明确说明:“发现给定事物中隐含的简单规律”,并给出了具体例子。我在教学时,为了激发学生的学习兴趣,选取了更贴近学生生活实际的素材.让学生通过操作、观察、实验、猜测等活动去发现,从而培养其探索数学问题的能力和发现、欣赏数学美的意识。

教材处理:兴趣是的老师,《数学课程标准》指出,数学教学必须注意从学生的生活情境和感兴趣的事物出发,为他们提供参与的机会,使他们体会到数学就在身边,对数学产生亲切感。在教学中就要努力挖掘学生身边的学习资源,为他们创建一个发现、探究的思维空间,使学生能更好地去发现,去创造。在这一理念的指导下,我采用了“以情激学、导入新课——引导观察、探究规律——实践操作、合作互动——联系生活、开放应用——评价体验、畅谈收获”这一教学模式展开教学活动。让学生在自己喜欢的实践活动中探索,通过找一找、摆一摆、涂一涂、演一演等活动去发现事物的规律,从而培养学生初步的观察、概括、推理能力,以及提高学生间相互合作的意识。

2024年人教版五年级上册数学教案全册(精选篇2)

教学目标

1.通过收集图案,小组交流,感受图案的美,并为自身以后创作图案提供借鉴。

2.通过欣赏图案,发展同学的审美意识和空间观念。

3.自身经历创作实践的整个过程,感受创作的乐趣,进一步培养同学的审美情趣。

重点难点:

1.进一步利用对称、平移、旋转等方法绘制精美的图案。

2.加深感受图形的内在美,培养同学的审美情趣。

教学准备:

课件、方格纸、正方形白板纸、手工纸三张和剪刀等。

教学过程:

一、展览导入

课前让同学收集图案,以小组为单位进行交流。

考虑:这些图案是怎样设计的,它有什么特点?

指名介绍本组中最美的图案,并结合考虑说一说它的特点。

二、学习新课

(一)尝试发明:

让同学做第8页第1、2题。

1、鼓励同学用学过的图形设计图案,对不同的.同学提出不同的要求。

2、交流时,教师对有创意、绘图美观的同学给予褒扬和激励。

(二)设计图案:

做第10页“实践活动”7题。

1、提出三个步骤:

(1)先选择一个喜欢的图形;

(2)再确定你选用的对称、平移和旋转的方法;

(3)动手绘制图案。

2、分别利用对称、平移和旋转创作一个图案后,全班交流。

三、巩固练习

(一)反馈练习:

1、制作“雪花”:

取一张正方形纸,按书上所示的方法对折和剪裁。可以经过多次练习,直到会剪一朵美丽的“雪花”。

2、作品展示。

3、独立观察并尝试做第9页第5题。

四、全课总结

全班交流各自的作品,选出好的作品互相评价,全班展览。

2024年人教版五年级上册数学教案全册(精选篇3)

教学内容分析:

简易方程的教学,是在学生学习了用字母表示数以后教学的,在解方程式,学生可以根据等式的性质进行教学,也可以根据四种运算中各部分之间的关系进行教学。

【教学目标】

1、使学生进一步理解用字母表示数的优点。会用字母表示常见的`数量关系,会根据字母所取的值,求含有字母式子的值。

2、进一步理解方程的意义,会解简易方程。

3、会列方程解应用题。

【教学重点

用字母表示常见的数量关系,根据字母所取的值,求含有字母式子难点】的值,解简易方程和列方程解应用题。

【教学过程】

一、揭示课题

今天我们复习的内容是有关简易方程的知识,通过复习要进一步理解用字母表示数的优点,会用字母表示常见的数量关系,进一步理解方程的意义,会解方程,会列方程解应用题。

二、复习用字母表示数量关系,公式,运算定律

1、 出示表:用字母表示运算定律。

名称 用字母表示

加法交换律 a+b=b+a

加法结合律 (a+b)+c=a+(b+c)

乘法交换律 ab=ba

乘法结合律 (a×b)×c=a×(b×c)

乘法分配律 (a+b)×c=ac+bc

2、请学生说平面图形面积计算公式和长方形、正方形周长公式。

3、用字母还可以表示数量关系,a表示单价,b表示数量,c表示总价,说出分别求总价、单价及数量的字母公式。

4、练习:期末复习第16题。

5、求含有字母式子的值。做期末复习第17题。

(1)原来每月烧的煤用30c表示;现在每月烧的煤用30×(x-15)表示。

(2)学生计算现在每月烧煤的千克数。

三、复习方程的意义和解方程

1、什么是方程?什么是方程的解和解方程?方程和等式关系是怎样的?

2、练习:做期末复习第18题。

学生练习。讲解第(3)题,在方程3x=y中y=21,先把y=21代人原方程成为3x=21再解方程。

3、做期末复习第19题。

请学生说一说解方程的方法。

4、做期末复习第20题。

学生列方程并解方程。

四、复习列方程解应用题

1、(1)列方程解应用题的特征是什么?解题时关键是找什么?

(2)请学生说一说列方程解应用题的一般步骤。

2、做期末复习第21—23题。

第21题:

学生说数量关系式,列方程并解答,根据已列方程写出另外两个不同的方程。

第22题:

师画线段图表示题目的条件和问题,学生列方程解答。

第23题:

学生说数量关系式、列方程解答。

五、全课总结

这节课复习了什么内容。

六、布置作业

2024年人教版五年级上册数学教案全册(精选篇4)

教学目的:

1、让学生在说一说、分一分、画一画、写一写、折一折、涂一涂等体验中理解单位”1”,感受什么是分数,进而理解分数的意义,培养学生实际操作能力和抽象概括能力。

2、让学生在轻松和谐的氛围中主动参与、积极合作、充分体验,感受数学与生活的密切联系,激发学生学习数学的兴趣和树立学好数学的信心。

教学重点:

分数的意义

教学难点:

单位”1”的建立

学具准备:

学具袋(圆形纸片1张、长方形纸片1张、一分米棉线1根、水蜜桃图片5个、火柴棒12根、同一样式的纽扣8个)

教学过程:

一、单位“1”的意义

教师在黑板上板书数字1。

师:这是几?表示什么?能具体说说可以表示1个什么吗?

学生回答(1个苹果、一张白纸、一根绳子、一群羊、一个学校的全体学生……)

师:对于数字1如此丰富的意义,老师可以给它加上引号,起名叫作单位“1”。

师:取出学具袋,倒出其中的学具,分一分、说一说,哪些能用单位“1”表示?

【评:开门见山教学单位“1”,突出“从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程”,单刀直入式的导入无疑是本课亮点之一,不仅大大提高了教学效率,有效突破了教学难点,其分一分、说一说的教学设计为学生提供了丰富的体验,激发了学生的求知欲。】

师:我们可以把单位“1”怎么分?

师:以前我们学过分数的初步认识,今天我们继续研究分数,研究“分数的意义”。(教师板书课题)

师:用以前所学的分数的知识,分你手中的单位“1”,你能得到哪些分数?

学生操作,组内交流,各组推荐汇报。

教师提醒学生注意倾听别人的意见,对不准确的地方要加以修正,尤其要强调“平均分”,尽量做到不要重复别人的发言内容。

【评:把学习的主动权真正交给了学生,教师将几种学具材料交给学生,让学生通过小组合作的方式操作用分数表示,既尊重了学生的已有知识储备,又在不知不觉中为新知的构建架设桥梁。】

二、研究分数单位

师:你们想研究别的分数吗?

教师出示1/○

师:这是分数吗?你会读吗?它有什么特别之处?

师:请大家拿出12根火柴棒,分一分、说一说,看看可以有多少种不同方法来表示1/○ ?

学生操作,小组讨论、交流,教师巡视,引导学生用不同的方式表示。

学生汇报,教师板书1/2 →6根、1/3 →4根、1/4 →3根、1/6 →2根、1/12 →1根。

师:你又发现了什么?

师:同学们真了不起,发现了这么多知识!

【评:富有挑战性的问题犹如一枚枚石子投进蓄势已入的湖里,激起了层层涟漪,让学生在足够自主的空间、足够活动的机会中自主探究、积极合作,足以让学生获得积极的、深层次的体验。行云流水般的分数单位的教学全无例行公事,思路闭锁,空间狭小之嫌。正所谓“灵感总青睐有准备的头脑。”】

三、深入研究分数的意义

教师出示○/○

师:猜猜看,老师想让你干什么?

教师出示要求:

分一分(选择合适的学具表示这个分数)

画一画(用简单的图形来表示这个分数)

折一折、涂一涂(选择合适的学具,用折叠、涂色的方法表示这个分数)

说一说(组内互相说说这个分数)

学生动手操作、组内交流,教师巡视指导。

各组推荐学生汇报……

【评:遵循小学生数学学习的心理规律,问题设计得精且极具开放性、挑战性,以丰富的操作实践刺激学生的多种感官,注重学生感性认识,学生真正在“做数学”。】

师:关于分数的知识,以前我们学习过一些,在课前我们也通过自学课本、查阅资料、请教别人,你现在知道多少分数的知识,能告诉老师吗?

学生回答……

师:让我们看看数学书上专家是怎样说的?

学生看书、圈划、摘读,组内交流。

师:什么是分数单位?我们刚才研究了吗?35的分数单位是什么?有几个? 7/12 、11/20呢?

【评:教者注重对学生学习方法的熏陶。在设计时,教者注意到学生自我获取信息能力以及良好学习习惯的培养,让学生课前自学课本、查阅资料、请教别人,了解分数的有关知识,拓宽学生的学习渠道,促进学生全面、持续、和谐的发展,为学生的终身发展打下坚实的基础。】

四、分数的写法

师:从交流的过程中,老师已经知道同学们会读分数了,想写吗?

师:会写的请到黑板上在任意位置任意写一个你喜欢的分数,比一比,看谁写的规范好看。(学生一拥而上,在黑板的上上下下写下大大小小、各不相同的分数。)

师:生活中人们常用分数来进行描述。谁能联系生活实际说说你是怎样理解黑板上这些分数的?你愿意说哪个就说哪个?

学生汇报……

【评:教者不再将黑板视为教师神圣的领地,把板书的权利回归学生。黑板上每个分数后面都藏着那句经典的概念,学生的交流无不是将已经获得的主观印象投射在所写的分数中,萝卜青菜各有所爱,学生的求异的心态无时无刻不让其他学生处于活跃的互动之中。】

师:你觉得谁写得规范好看?写分数是要注意什么?分数有几个部分?能结合具体分数说说各个部分表示的意义吗?

【评:生成性的课堂评价让学生体验到了成功的喜悦,强烈地拨动着思维之弦。】

师:下面请同学们练习写分数,比一比谁写得规范好看?任务是8个。

学生在写分数的过程中教师突然叫停。

师:数一数,你写了几个分数?你能用刚学的分数说一句话,让大家猜一猜你完成的情况吗?

师:对于分数的意义你还有什么不懂的可以提问。

学生质疑,学生解答,教师补充。

师:关于分数的知识你掌握的情况如何,你能用今天学习的`分数的知识说一说吗?

(如果学生说出类似5/5这样的分数)

师:这是一个特殊的分数,在今后的学习中我们将继续研究。

【评:学以致用,在应用中赋予数学活力与灵性,让学生在生动活泼的数学学习活动感受到数学与生活的紧密联系。所谓“人人学有价值的数学”、“不同的人在数学上得到不同的发展。”】

总评:

纵观本节课,有以下特色:

1、淡化形式,注重实质

分数的意义对于小学生来讲是一个比较抽象的概念,本课设计淡化形式,注重实质,一切以学生的发展为本,不过分刻意地去体现数学教学的严谨性,以解决问题为中心,以引导学生发现问题、分析问题、解决问题的逻辑性来体现教学的严谨性。整节课教师都没有将“把单位‘1’平均分成若干份,表示这样的一份或者几份的数,叫做分数”这句严密、枯燥、抽象的话语塞给学生,但是整节课彻头彻尾都紧扣“分数的意义”教学的重点和难点,苦心经营,匠心运作。

2、源于生活,回归生活。

现在的学生生活是丰富多彩的,他们接触到的世界是五彩缤纷的,他们能够用不同的生活来感悟书本。小学生学习的数学应是生活中的数学,是学生“自己的数学”,同时数学又必须回归于生活,数学只有在生活中才能赋予活力与灵性。本课设计注意到数学的教与学紧密联系生活,帮助学生在生活中发现意义和充满意义,注重现实体验,力避传统的“书本中学数学”,体现生活中教学相长的互动关系,大胆改革教材的例题呈现方式,“跳出教材教数学”。

3、强调合作,知识增殖。

《数学课程标准》中提出:数学教育应该“在学生的认知发展水平和已有的知识经验基础之上”,“帮助他们在自主探索和合作交流过程中真正理解和掌握基本的数学知识与技能、数学思想和方法”,“获得广泛的数学活动经验”。本课设计做到均衡学生差异,组建合做学习小组,把学习的主动权交给学生,多给学生思考和表现的机会,多些成功的体验,突出每个个体的作用,使每一个学生不仅对自己的学习负责,而且要对所在小组中的其他同学负责,形成人人教我,我教人人,让学生在主动参与合作中完成任务,没有把学生当作所谓新教学方式的道具,实现知识在交流中增殖,思维在交流中碰撞,情感在交流中融通。

4、以人为本,注重发展

《数学课程标准》“以人为本”的理念决定了数学教学的目标指向:适应并促进学生的发展。本课设计时注意从学习者的角色去分析学生,以了解什么知识是学生最需要的,什么学习方式是学生最喜欢的,积极寻求以的教学方式为学生提供所需要的知识。

5、注重体验,培植兴趣。

学生学习的不只是“文本课程”,而更是“体验课程”,“学生的数学学习内容应当是现实的、有趣的、富有挑战性的”。本课教学中的说一说、分一分、画一画、写一写、折一折、涂一涂为学生提供了高频率、多维度、深层面的体验,我们的学生在学习时感到了乐趣,体验到了成就感,激励他们进行更深入的学习与研究。

2024年人教版五年级上册数学教案全册(精选篇5)

教学目的:

1、会用数学的语言描述获胜的可能性。

2、通过游戏活动,让学生亲身感受到游戏规则的公平性,学会用概率的思维去观察和分析社会中的事物。

3、通过游戏的公平性,培养学生的公平、公正意识,促进学生正直人格的形成。

教学重、难点:

让学生认识到基本事件与事件的关系。

教学准备:

投影仪、扑克牌。

教学过程:

一、复习

说出下列事件发生的可能性是多少?

1、盒子中有红、白、黄三种颜色的球各一个,只取一次,拿出红色球的'可能性是多少?白色呢?黄色?

2、商场促销,将奖品放置于1到9号的罐子里,幸运顾客有一次猜奖机会,一位顾客猜中得奖的可能性是多少?

3、盒子中有红色球5个,蓝色球12个,取一次,取出红色球的可能性大还是蓝色球?

二、新授

1、在上题中,我们知道取出蓝色球的可能性大,到底取出蓝色球的可能性是多大呢?这就是我们今天要研究的问题。

出示击鼓传花的图画。

请学生说一说,击鼓传花的游戏规则。

小结:每一个人得到花的可能性相等,每个人得到花的可能性都是。

2、画图转化,直观感受

(1)每一个人得花的可能性是,男生得花的可能性是多少呢?

生发表意见,全班交流。我们可以画图来看看同学们的想法是否正确。画图......

生:从图中可以发现,每一个人得花的可能性是,两个人就是,9个人就是,女生的可能性也是。

师:如果18个学生中,男生10人,女生8人,男生女生得到花的可能性又各是多少呢?......

(2)练习本班实际,同桌同学相互说一说,男生女生得到花的可能性分别是多少?

(3)解决复习中的问题

拿到蓝色球的可能性是......

3、小结

4、巩固练习

完成P。101。做一做。

(2)题讲评中须注意,指针停在每个小区域的可能性相等,因此次数也大体上相等,红色区域占了这样的3个,因此停在红色区域的次数就是一个区域的3倍。要让学生感受到这只是一可能性,出现的次数不是绝对的。

三、练习

完成练习二十一

1、第一题,准备9张1到9的扑克牌,通过游戏来完成。

2、第二题,学生在独立设计,全班交流。

3、第三题,独立思考,小组合作,全班交流。

四、课内小结

通过今天的学习,你有什么收获?

板书:

2024年人教版五年级上册数学教案全册(精选篇6)

教学目标:

1、通过学生给班里或学校图书角的图书编上书号这一实践活动,使学生进一步认识到数字编码在生活中的作用。

2、让学生体会用字母也可以进行编码,进一步探索编码的方法,经历用字母和数字一起进行编码的过程。

3、使学生在数学活动中养成与人合作的良好习惯,初步学会表达和交流解决问题的过程和结果。

教学重难点:

通过观察、比较、猜测来探索用字母和数字一起进行编码的简单方法

教学具准备:

课前到图书馆进行实地调查,在图书馆借阅图书,怎样方便快捷地查找图书?

教学过程:

一激趣引入:

同学们,课前到图书馆去调查了吗?图书馆那么多图书,怎样方便快捷地查找图书?(用字母和数字给图书编码),对了!图书编号、车子牌号都是用字母和数字一起进行编码的,今天我们就来学一学。

二、新知学习:

1、生交流课前各自调查的收获。

2、在学生汇报的基础上,教师对图书的检索号进行简单的介绍:

图书的检索号一般包括分内号和书次号,分内号是按照《中国图书馆分类法》的标准对图书进行分类,用字母来表示图书的种类,中文图书共分为22大类,分别用A、B、C……Z字母表示,字母后的数字表示进一步细分。一般来说,数的位数标志类名的级别,多一位数码表示细分一层。书次号则表示同一类图书的序号,这里也可以考虑作者、出版日期等。

3、 提出问题:我们教室图书角里也有很多书,为了方便我们查书,我们应该做些什么?(给图书编号,整理出图书角的图书目录)

4、分组为图书角的图书编排号码,并整理出目录。

①、讨论并确定好图书的'书号要包含的信息:图书的类别、作者、捐书人等。

②、讨论每个信息如何用字母和数字进行编排。比如用字母表示类别,用A表示童话故事书,还可以用序号代表捐书人的信息。

③、设计好方案后,全班同学对每个小组汇报的方案进行评价。

④、挑选出大家最满意的方案,按照这个方案,再分工完成图书角的目录登记表。

三、巩固练习:

1、书P118第2题是让学生体会汽车车牌号中的编码,除了数字还有汉字和字母的应用,用各省的简称表示省份,用字母表示地市。

2、书P118第3题向学生介绍图书的“身份证”——国际标准书号。

3、独立完成书P119第4题。

四、全课小结:

同学们,今天我们学习了什么?你有什么收获?在用字母和数字一起进行编码的时候要注意些什么?在生活中你还在哪里见到过编码?举例说一说。

2024年人教版五年级上册数学教案全册(精选篇7)

教学目标:

1、初步体会整数乘法的运算定律在小数乘法中仍然适用。

2、能运用这些运算定律使计算简便。

3、培养学生独立思考、认真审题灵活运用运算定律简算的习惯和能力。

教学重点:

学生通过观察能找出正确的简便算法。

教学难点:

学生通过观察能找出正确的'简便算法。

教学准备:

媒体等

教学过程:

一、复习准备:

1、口算: 5× = × = 125×= ×= ×= ×80= ×20= 250×= ×=

2、简便计算:

32×25×125 79×21+21×21

二、探究新知:

1、师:同学们,在整数乘法中我们学过哪些运算定律?用字母怎么表示呢?

2、出示:观察并计算,下面每组中的两个算式有什么关系:

×○× (×)×○×(×)

×+×○(+)× 3、通过观察、计算、讨论,引导学生自主发现规律:整数乘法的交换律、结合律和分配律,对于小数乘法也同样适用。

4、揭题:整数乘法运算定律推广到小数 5、你能用这些运算定律来巧算吗? __ ×+× (+)×4

a. 让学生独立思考完成

b. 让学生汇报:你应用哪条乘法运算定律进行简便计算的。

三、分层练习:

1、将一个数分解成两个数的积或两个数的差:

=8× ( ) =0.8× ( ) =× ( ) =10- ( ) =100- ( ) =1- ( )

2、下面各题怎样计算比较简便? ×25×125 ×99+ 64× 3、判断下面各题是否正确,并说说理由。(书P17—练一练)

4、你认为怎样算简便?×

四、课堂总结:

整数乘法的交换律、结合律和分配律,对于小数乘法也同样适用。

五、思考题:

判断是否正确(机动)

× + ×38 = ×( + ) = ×10 = 83

六、板书:

整数乘法运算定律推广到小数 乘法交换律:a×b=b×a 乘法结合律:(a×b)×c=a×(b×c) 乘法分配律:a×(b+c)=a×b+a×c

2024年人教版五年级上册数学教案全册(精选篇8)

教学目标:

1、让学生在实际情境中,认识计算梯形面积的必要性。

2、在自主探索活动中,让学生经历推导梯形面积公式的过程。

3、能运用梯形面积的计算公式,解决相应的实际问题。

教学重难点:

理解梯形面积公式的推导过程,帮助学生形成思考问题的习惯。

教学准备:

梯形纸片、多媒体课件、剪刀。

教学过程:

一、复习引入

回顾平行四边形、三角新的面积公式,想一想:三角型面积的公式是怎么推导出来的

二、探究新知

实际操作,自主探究。

电脑演示地24页的`情境图,启发学生思考:如何把体型转化成我们已经学过的图形呢?

1、独立操作,自主探索。

学生用事先准备的学具自己进行剪拼,在探索的过程中,逐步形成特有的思考问题的习惯。

2、小组讨论。

四人小组继续运用转化的方法将梯形转化成前面学过的图形,进而求出梯形的面积。

3、交流汇报,发现规律。

(1)引导观察,转化后的图形与原来的梯形有什么关系?请学生用语言描述梯形面积的推导过程。

(2)联系三角形的面积公式,分析理解:为什么梯形和三角形的面积计算公式都要除以2?

(3)经观察分析后,引导学生得出结论,并用字母公式来表示。

三、看书质疑,交流感想

阅读第24页内容,回顾自己探索梯形面积公式的过程,并与同伴谈谈自己的想法。

完成课前提出的问题

四、巩固应用,拓展提高

完成25页习题

五、全课总结与反思

通过本课的学习,你又有哪些收获?你在学习方法上又有了那些提高。

2024年人教版五年级上册数学教案全册(精选篇9)

【教学内容】

九年义务教育小学《数学》教科书(人教版)第九册。

【教材分析】

梯形而积的计算是在学生学会计算平行四边形、三角形的面积计算的基础上进行教学的。教材的编排不同于平行四边形和三角形。它的编排特点是引导学生把梯形转化为已经学过的图形。

再求面积。因此教材的编写跨越了数方格的感性认识阶段。引导学生思考怎样仿照求三角形面积的方法。用转化的思想。探究梯形面积的计算方法。这部分内容是学生以后学习圆面积和立体图形表面积的基础。

【学情分析】

学习本课内容时学生己经掌握了长方形、正方形、平行四边形、三角形的面积计算方法。而且在学平行四边形、三角形面积时。对转化、平移等数学思想的方法己经有了一定的认识。学生具备一定的知识和方法基础。因此。梯形面积的学习是运用旧知识解决新问题。实现迁移类推和新旧转化。进一步发展学生思维的创新能力和动手实践能力。

【教学目标】

1.使学生用转化的思想方法自行尝试学习,通过不同途径探究推导出梯形面积的计算方法。学会应用公式计算梯形的面积。

2.进一步发展学生利用旧知识解决新问题的能力。发展学生的创造思维能力、动手实践能力。通过讨论、争辩、操作和推理。提高学生解决实际问题的能力。发展学生的空间概念。

3.向学生渗透转化的思想。培养学生的合作意识和竞争意识。

【教学准备】

多媒体课件。同样大小的梯形纸片(至少四弓长)。剪刀。

【教学过程】

一、复习旧知,引入探究情境

1.教师谈话:请说出所学过的平面图形的面积计算公式。

2.教师出示一个梯形。提问:“这是什么图形?’’看到这个图形大家想提出关于这个图形的什么问题?

3.猜测:梯形面积计算能转化成我们以前学过的图形面积来进行计算吗?

4.下面就请同学利用手中的材料动手实践。进行验证。

【设计意图】

通过义习。梳理学过的`直线型图形的而积计算公式。并通过质疑激发学生自主探究的。

二、自主探究,寻求规律

(一)推导面积计算公式

1.谈话指导:请同学们根据我们以前学过的有关平面图形面积计算公式推导的知识和方法。利用自己手中的材料以小组为单位尝试推导梯形的面积。

2.学生尝试探究验证。教师巡视观察指导学生的学习方法并帮助学习有困难的小组。

【设计意图】

给学生提供充分动手动脑的机会,给学生利用旧知探求新知的时间。把知识产生的过程创造出来。培养学生的探究精神并学会探究的方法。

3.展示汇报自己的学习成果。

(1)让学生自由发表意见,说出自己转化推导的方法。

(2)教师配合学生的叙述。用课件演示梯形是如何转化成己学过的平而图形的,并让其他同学质疑、评价(这里可能会出现拼一拼、割补、分一分等多种方案)。

4.引导学生总结计算公式。

(”教师提问:“谁能总结出梯形的面积计算公式?请说明你的根据。”

(2)教师根据学生的回答进行小结并板书:

梯形的面积=(上底+下底)X高=25.根据推导过程和公式。让学生提出问题:

(1)二上底加下底”指的是什么?

(2)为什么要“除以2"?

(3)通过对三角形、梯形面积计算公式的学习。你有哪些新的发现和收获(让学生谈想法)?

6.教师小结:(略)7.让学生用字母表示出梯形的面积的计算公式:

【设计意图】

学生通过自主探究合作交流。不仅知道了梯形的面积计算公式。而且更明确如此计算的原因。达到“知其然。

更知其所以然”的学习效果。培养学生科学学习的习惯和创新能力。通过教师的课件演示,使学生形象地感知转化思想的内涵。

(二)运用公式。进行计算1.出示例题:一条新挖的渠道,横截面是个梯形。渠口宽2.8米。渠底宽1.4米,渠深1.2米。它的横截面的面积是多少平方米?

2.学生自己尝试独立计算。

3.学生互相出题进行公式应用练习。

【设计意图】

通过学生互相出题训练。不但巩固了知识。而且实现学生真正的自主参与。同时充分地发挥了学生的聪明才智,使训练多样而有趣。变苦学为乐学。

三、巩固练习完成做一做。

2.完成练习十九的1-4题。

3.灵活变换条件。联系实际进行练习。

4.拓展尝试:下图是两个相同的汽角三角形补在一起。求涂色部分的面积。(单位:分米)

【设计意图】

灵活的练习是检验学习效果的有效方法。联系实际能充分体现学以致用的原则。数学来源于生活更应该服务于生活,因此。联系实际的练习才是更为科学的训练方法。

【教学反思】

本节课的学习是由学生独立思考、讨论、归纳、概括解决的。体现了学生主体的发展。但不足之处是:由于学生个体间发展的不平衡。因此并不是每一个学生都能去积极地思考、讨论。另外。还应多提一些开放性强的问题。使学生的思维得到充分的训练。

2024年人教版五年级上册数学教案全册(精选篇10)

教学内容:

人教版小学数学五年级上册第五单元第三节内容。

教学目标:

知识与技能:在实际情境中,认识计算梯形面积的必要性,能运用梯形面积的计算公式,解决相应的实际问题。

过程与方法:培养学生学会发现知识之间的规律,加强学生动手操作能力和观察能力,在小组合作探索的活动中,经历推导梯形面积公式的过程。

情感态度价值观:在探索梯形面积计算方法的过程中,获得探索问题成功的体验。

教学重点:

理解梯形面积的计算方法,正确计算梯形的面积。

教学难点:

梯形面积计算方法的推导过程。

教学准备:

给每个小组准备梯形若干个,剪刀一把;课件。

教学过程:

一、复习导入,创设情境。

师:同学们,我们在学平行四边形和三角形面积的计算时,学到一种非常重要的学习方法,还记得是什么方法吗?(转化)

师:谁来说说平行四边形式三角形的面积是怎样推导出来的?

(根据学生所述,教师电脑演示平行四边形和三角形面积公式的推导过程)

师:推导平行四边形和三角形面积公式时,我们都用到了转化的方法,把我们要研究的图形转化成已经学过的图形来发现他们之间的联系,进而推导出面积计算的公式。

师:在生活中,我们能看到各种形状的物体,(出示课件)这辆小汽车的车窗玻璃是什么图形?还记得梯形各部分的名称吗?(出示课件)这是一大一小两个梯形,你认为梯形面积的大小可能会与什么有关?它们之间到底有着怎样的关系呢,这节课我们就来探究梯形的面积计算。(板书课题)

二、猜测验证,自主探究。

师:现在请大家想一想,你准备怎么出梯形的面积?看来“转化”这种方法确实很重要,我们在解决很多问题的时候都是利用已有的知识去解决新问题,那么你们认为梯形可以转化成我们以前学过的什么图形呢?

1、生猜想。(平行四边形、长方形、三角形……)

2、公式探究。

师:你们的这些想法是否正确呢?下面我们一起来验证一下。

先给同学们30秒的时间独立思考,自己想办法。

(30秒过后)

师:好了,下面的时间请同学们把自己的想法在小组内先交流一下,然后选出一种的方法,利用你们手中的学具推导出梯形面积公式。

3、学生进行探究,师相机指导。

4、生汇报。

师:刚才老师在下面走的时候发现第x组的同学最先推导出了梯形的面积公式,下面请第x组的同学派代表到前面展示一下你们是怎么做的。

(生展台展示)

组1:我们组用两个完全一样的梯形拼成了一个平行四边形,得出拼成的平行四边形的面积是梯形面积的2倍,平行四边形的高与梯形的高相等,平行四边形的底等于梯形的上底与下底之和,从而推导出梯形的`面积=(上底+下底)×高÷2(师随机贴图并板书)

师:其它组有没有不同的拼摆方法?(让生在座位上说)

请你说说你们组是怎么拼的,推导出的梯形面积公式是什么?

组2:我们用两个完全一样的直角梯形拼成了一个长方形,推导出梯形的面积公式是梯形的面积=(上底+下底)×高÷2

师:老师在下面走的时候发现有一个组采用了割补的方法推导出了梯形的面积公式,是哪个小组?请到前面展示一下。

组3:我们选择了一个梯形,沿着它的腰对折,然后剪开,再移到右边拼成了一个平行四边形,平行四边形的面积与梯形的面积相等,平行四边形的底等于梯形的上底与下底的和,平行四边形的高等于梯形高的一半,所以梯形的面积=(上底+下底)×高÷2(师随机贴图)

师:哪个小组还有不同的方法?

组4:我们组把梯形剪成了两个三角形,得出梯形的面积等于两个三角形面积之和,这个小三角形的底等于梯形的上底,高等于梯形的高,所以小三角形的面积=上底×高÷2,这个大三角形的底等于梯形的下底,高等于梯形的高,所以大三角形的面积=下底×高÷2,从而推导出梯形的面积=上底×高÷2+下底×高÷2(师随机贴图)

(注:师在生汇报的过程中要让生到黑板上画出小三角形也就是钝角三角形的高在哪里,并引导生说明钝角三角形的高为什么和梯形的高相等)

师:刚才同学们说出了这么多的方法,你们真了不起!老师也想出了一种方法,我们一起来看看。

(幻灯出示转化过程)

师:谁能根据老师展出的这种方法推导出梯形的面积公式?

生口头叙述。

师:你真聪明!其实推导梯形面积公式的方法还有很多很多,有兴趣的同学可利用课下时间进一步探究。

师:好了,如果用s表示梯形的面积,用a、b和h分别表示梯形的上底、下底和高,那么梯形的面积公式用字母可以怎样来表示?

生:s=(a+b)h÷2

(师板书)

师:请同学们观察这个公式,想一想,要想求梯形的面积必须知道哪些条件?

由此看来梯形面积的大小与它的上、下底和高这三个因素有关,那么,在计算时应注意什么呢?

三、实践运用,解决问题

接下来我们一起走进生活,来解决一个实际问题。

师:课件出示例题:

(这是我国长江三峡水电站大坝,它的横截面的一部分是梯形,求它的面积。)

师:让生以最快的速度在练习本上只列式不解答。老师算了一下这道题的结果,等于10530平方米,同学们可利用课下时间验证一下老师算的到底对不对。

师:梯形的面积应用很广泛,在很多物体中经常会看到梯形。下面我们来解决另一个日常生活中的问题。(幻灯出示)

一辆汽车侧面的两块玻璃是梯形(如下图),它们的面积分别是多少?

师:好,剩下的时间我们来解决其他问题。

1.算出下面每个梯形的面积。(单位:厘米)90页第3题

2.判断题。

(1)两个梯形都能拼成一个平行四边形。()

(2)两个形状一样的梯形一定能拼成一个平行四边形。()

(3)两个完全一样的梯形一定能拼成一个平行四边形。()

(4)平行四边形的面积是梯形面积的2倍。()

3选择题

(1)梯形的上底是4米,下底是6米,高是5米,它的面积是()。

A.45平方米B.25平方米C.25米

(2)一个梯形上底是80厘米,下底是12分米.高是5分米,它的面积是()平方分米。

A50B.25C.230

4.90页第3题

5.一条新挖的渠道,横截面是梯形,渠口宽2.8米,渠底宽1.4米,渠深1.2米.横截面的面积是多少平方米?

四、小结。

师:这节课同学们在探索的过程中发挥了自己的聪明才智,利用转化的思想创造出了多种推导梯形面积计算公式的方法,并能用所学的知识解决生活中的问题。你们真了不起!今后我们将会利用这种方法来探究更多的有关图形的知识。相信你们今后会有更加出色的表现。

2024年人教版五年级上册数学教案全册(精选篇11)

教学内容:

人教版小学数学教材五年级上册第50~51页掷一掷相关内容。

教学目标:

1.在活动中运用已学过的组合、统计、可能性等有关知识,探讨事件发生的可能性大小,渗透概率思想,让学生在数学活动中充分经历猜想、实验、验证的过程。

2.通过活动,培养学生合作意识、动手实践能力,感受数学的价值,体验学习数学、应用数学的乐趣。

教学重点:

探索同时掷两个骰子,得到点数之和2,3,4,11,12,明确掷出哪些和的可能性大。

教学难点:

探索同时掷两个骰子,得到点数之和为什么是5,6,7,8,9的可能性大。

教学准备:

教师准备红色、蓝色骰子各1个、课件一套;学生两人一组,每组红色、蓝色骰子各1个、彩色笔及学习单等。

教学过程:

一、设置悬念,提出问题

1.认识骰子。课件出示骰子图片,请学生说出它的名称及特征。

2.创设情境,提出问题。通过庄家用掷骰子来设骗局引出本节课的主题──掷一掷。(出示课题:掷一掷)

二、学习新知,探索奥秘

(一)组合

1.思考:一次掷一个骰子,面朝上的点数可能有哪些?不可能是哪些?

2.教师演示:同时掷两个骰子,算一算它们的和是多少?如果两个骰子朝上的两个面的点数相加的和是4,那么红色、蓝色骰子上的点数分别可能是多少?

3.猜一猜:一次掷两个骰子,得到的两个面朝上的点数之和可能有哪些?

(板书:点数之和可能有2,3,4,5,6,7,8,9,10,11,12。)

4.动手实践,验证猜想:同时掷两个骰子,每个同学掷几次,看看点数之和是不是在2~12之间?

(二)事件的确定性与可能性

1.刚才,有谁掷出两个骰子的点数之和是1或13的吗?

教师:看来,在上面的所有组合中,最小的和是1+1=2,最大的和是6+6=12,所以,两个数的和是2,3,4,12都是可能发生的事件;但两个骰子的点数之和不可能是1或13,这是一个确定事件。

2.思考:同时掷两个骰子,得到的两个朝上的面的点数之和可能为2,3,4,12,这些和出现的可能性大小一样吗?

教师:虽然掷出的两个骰子的点数之和可能是2,3,4,12中的任意一个数,但这些和出现的可能性大小是不同的。下面老师把可能出现的这11个和分成A、B两组,如下图所示:

(三)动手实践,探索奥秘

1.教师提出规则,学生猜想结果

(1)分组

教师:如果老师和你们玩掷骰子的比赛,你们想选哪一组的'数?A组还是B组?

(2)猜一猜:如果掷出的两数之和在A组算老师赢,如果掷出的两数之和在B组算同学们赢,哪一组赢的可能性大?你是怎么想的?

(3)究竟谁赢的可能性大?哪些同学猜得对呢?让我们在比赛中见分晓吧!

2.动手实践,发现问题

(1)教师与部分学生游戏,课件出示游戏规则(一)。

①如果掷出的两数之和在A组,算老师赢;如果掷出的两数之和在B组,算同学们赢。

②每个小组派出一个选手上台跟老师比赛,其他的同学当记录员,和是多少就在对应的数字上方涂一格,并按要求涂在下面的统计图中。

师生共同游戏,下面的同学做记录。

统计后,宣布赢家。

教师:在刚才一轮的游戏中,老师赢得多,同学们赢得少,同学们不服气,认为还有很多同学没有掷,不能说明问题。接下来继续掷,老师还会赢吗?为了体现公平、满足大家的要求,在下一轮的游戏中,我们每个人都动手轮流掷,好吗?

(2)全体学生参与游戏,课件出示游戏规则(二)。

①继续游戏:两人一组,轮流掷,和是多少就在对应的数字上方涂一格。涂满其中任意一列,游戏结束。

②游戏结束后每小组派一名代表在黑板上用正字统计法来给最先涂满的和作记录。

学生两人小组进行游戏,并作好记录。

教师:观察实验统计结果,你们发现了什么?

想一想:为什么掷出的点数之和是A组数的可能性大一些,而点数之和是B组数的可能性小一些呢?

教师:其实,我们用数学上的组合知识来思考一下,就能揭开这个奥秘!

三、理论验证,揭示奥秘

1.教师引导学生思考:如果点数之和是2,那么红色骰子上是1,蓝色骰子上是多少?

2.如果点数之和是3,红色骰子上是1,蓝色骰子上是多少?;如果红色骰子上是2,蓝色骰子上是多少?还有其点数之和是3的情况吗?一共有几种情况?

3.点数之和是4的有几种情况呢?和是5呢?(学生回答后,教师在课件中依次呈现各种点数之和的组成情况。)

4.思考:和是2只有一种情况,和是3有2种情况,和是4有3种情况,和是5就有4种情况。那么,和是6,7,8,9,10,11,12又各有哪几种情况呢?红色骰子的可能点数是多少,蓝色骰子呢?

教师:你可以想一想、写一写;也可以借助骰子摆一摆并写下来进行验证,然后把你得到的组合一一填在学习单的列举记录表中。

5.汇报、交流,完成上表。

6.组内讨论:刚才有的同学们认为点数之和为8的有7种情况,有的认为只有5种情况。那么,点数之和为8的到底有几种情况?为什么?

7.观察和是2,3,4,5,12的列举记录表并进行统计(课件出示)。

和是2,3,4,12的各有几种组合呢?请大家在下表中一一填出来!

8.学生汇报、交流并完成上表。

9.组内交流:同学们,现在你们发现A组能赢的秘密了吗?(学生独立观察组成图及统计表,然后小组内交流。)

10.每组派代表汇报,交流小组的发现。

教师小结:这就是我们做的游戏。老师选择的A组是中间的5,6,7,8,9五个数,共有24种组合;而同学们选择的B组是两边的1,2,3,10,11,12这6个数,共有12种组合,所以老师赢的机会更多。这也是这节课一开始我给大家讲的那个骗局中,庄家为什么赢得多的缘故!

四、畅谈收获,回顾问题

教师:今天我们学习了什么内容?是用什么方法学习的?通过今天的学习,你有什么收获?

五、 课后延伸,拓展思维

教师:同学们,如果同时掷三个骰子,朝上的三个面有三个数,它们的和可能有哪些?哪些和出现的可能性大呢?你们想知道结果吗?有兴趣的同学课后去探讨一下吧!

2024年人教版五年级上册数学教案全册(精选篇12)

教学目标:

1、使学生进一步认识用字母表示数及其作用,能正确地用含有字母的式子表示数量及数量关系、计算公式,培养学生抽象,概括的能力。

2、使学生加深对方程及相关概念的认识,掌握解简易方程的步骤和方法,能正确地解简易方程。

教学重点:

能够熟练地理解字母表示数,数量关系。

教学难点:

能够熟练并正确地解简易方程。

教学过程:

一、揭示课题

我们在复习了整数、小数的概念,计算和应用题的基础上,今天要复习解简易方程,(板书课题)通过复习,要进一步明白字母可以表示数量、数量关系和计算公式,加深理解方程的概念,掌握解简易方程的步骤、方法,能正确地解简易方程。

二、复习用字母表示数

1、用含有字母的式子表示

(1)求路程的数量关系。

(2)乘法交换律。

(3)长方形的面积计算公式。

让学生写出字母式子,同时指名一人板演。指名学生说说每个式子表示的意思。提问:用字母表示数有什么作用?用字母表示乘法式子时要怎样写?

2、做“练一练”第1题。

让学生做在课本上。指名口答结果,老师板书,结合提问怎样求式子的值的。

3、做练习十四第1题。

指名学生口答。选择两道说说是怎样想的。

三、复习解简易方程

1、复习方程概念。

提问:什么是方程?你能举出方程的例子吗?(老师板书出方程的例子)这里用字母表示等式里的什么?指出:字母还可以表示等式里的未知数。含有未知数的等式就叫方程。(板书定义)

2、做“练一练”第2题。

小黑板出示,学生判断并说明理由。提问:5x—4x=2里未知数x等于几,x=2是这个方程的什么?7×0.3+x=2.5里未知数x等于几?x=0.4是这个方程的什么?那么,什么叫做“方程的解”?(板书定义)它与“解方程”有什么不同?(强调解方程是一步一步完成的过程)你会解方程求出方程的解吗?根据什么解方程?

3、解简易方程。

(1)做“练一练”第3题第一组题。

指名两人板演,其余学生做在练习本上。集体订正:解第一个方程是怎样想的,检查解方程时每一步依据什么做的。第二个方程与第一个有什么不同,解方程时有什么不同?指出:解方程时先看清题目,根据运算顺序,能先算的'就先算出来。不能算的就看做一个未知数。我们现在解方程是一般根据加减法之间、乘除法之间的关系来进行的。(结合板书:解方程:能先算的要先算,再按各部分关系来解)追问:这两题可以怎样检验方程的解对不对?

(2)做“练一练”第3题后两组题。

指名两人板演,其余学生分两组,分别做其中的一组题。集体订正,并让学生说说每组两题有什么不同,解方程的过程有什么不同。强调一定要先看清题,按运算顺序能先算的就先算出来,然后根据四则运算之间的关系求出方程的解。

(3)做“练一练”第4题。

让学生列出方程。指名口答方程,老师板书。提问列方程的等量关系是什么。

四、课堂小结

今天复习了哪些知识?你进一步明确了什么内容?

五、布置作业

课堂作业;完成“练一练”第4题解方程;练习十四第2题,第3题后三题,第4题。

家庭作业;练习十四第3题前三题、第5题。

2024年人教版五年级上册数学教案全册(精选篇13)

教学目标:

1、初步理解“平均数”的含义,探讨“求平均数”问题的分析方法。

2、能正确列式解答“求平均数”问题。

教学重点难点:

初步理解“平均数”的含义。探讨“求平均数”问题的分析方法。

教学过程:

一、引入

1、师:三个数学小伙伴都想和老师比赛投篮,1分钟内看谁投中的个数多。小胖1分钟投中了5个,他认为这不能完全代表他的水平,于是要求再给他两次机会,让他能充分发挥出水平。第二次,他投中了5个,第三次,还是5个。看来他的水平很稳定,用5来代表他1分钟投篮的水平合适吗?

二、新授

1、师:小淘气1分钟投了3个,他也要求再给两次机会。第二次投中5个,第三次投中4个。

刚刚小胖三次都投中5个,那显然就用5来代表小胖的水平。现在用几来代表小淘气1分钟的水平呢,说说理由。

生:用4来表示……; 用5来表示……。

师:用超常发挥的补救发挥失常的,这时候,用4来代表他的水平比较合适。这个方法叫做移多补少。(板书)还有其它想法吗?

生:因为4在3和5的中间;把超常发挥和发挥失常的去掉,他们不具备代表性;因为4是3、4、5的平均数……

师:不管超常发挥还是发挥失常,都是他自己投的,就先求和再均分,(板书)能使每一次的个数一样多。移多补少的目的也是将每一次的个数变成一样多(板书)。用一样多的这个数来代表他的水平合适吗?

遇到这样数据多多少少的,就可以通过先求和再均分,找到能代表他水平的数。

2、师:小丁丁直接要求有3次机会,不看不知道,一看吓一跳。

第一次投了3个,第二次投了7个,第三次2个,看来水平很不稳定,一起用手势高低来表示他的三次投篮结果。

师:你觉得用几来代表他1分钟的水平呢?

生:计算,是4。

师:4是从哪里来的?前面的小淘气是3个、4个、5个,好歹还有个4出现,这里一个4都没有,怎么会用4来代表呢?和同桌说说道理。

生:3+7+2=12个 12÷3=4个(板书算式)

生:还可以用移多补少的方法,把7拿出1给3,再拿出2给2。(媒体)

师:现在用4来代表小丁丁的水平合适吗?不管是求和均分还是移多补少,这两个方法的目的都是使得数据变得同样多,像这样通过求和均分或者移多补少,使得数据变得同样多,就是在求原来这些数据的平均数。(板书)

我们说,4是3、7、2这3个三个数的平均数。

那么小淘气的投篮水平也是4,这个4又是哪些数的平均数呢?

生:他投了3次,所以4是3、4、5的平均数。

师:这个4能代表小丁丁第一次的投篮水平吗?能代表他第二次的投篮水平吗?能代表他第三次的投篮水平吗?我们辛苦了那么久,结果这个4既不能代表第一次的``水平,又不能代表第二次的水平,也不能代表第三次的水平,那它到底代表的什么呢?

师:平均数不代表某一次的水平,而是代表这一组数据的平均水平、整体水平。(板书)

3、师:终于轮到老师投篮了,老师想要4次投篮机会,小朋友会同意吗?为什么?

师:小丁丁笑了,老师,我们比的是平均水平,又不是比总数,你投好了,还要除以4,投得差了,仍然要除以4,更差了。我们就同意你投4次。

老师第一次1分钟投进了4个,第二次6个,第三次5个。到这里老师心里十分后悔,如果只投三次就好了。老师想就此收手,你们猜3个小朋友会同意吗?为什么?老师如果投第四次,可能赢吗?也可能输。

老师第四次投中了1个。我赢了还是输了?算一算。

如果我第四次投中了5个,我的水平是多少?如果第四次投中了9个呢?

三、练习

1、姚明比平均身高高,既然有人比平均身高高一点,就有人的身高……不然移多补少补给谁去呢?

2、平均身高160,但不是人人都160,排在中间的人一定是160吗?

3、平均水深才110,所以以他140的身高肯定淹不死,是吗?

生:这是平均水深,是移多补少的结果,是求和均分的结果,也许有的地方比140深得多。

出示水下图片。

师:掌握了平均数以后,回到生活中再来看在这些数据还会上当吗?

4、有一则调查新闻,说先在的男性平均寿命是71岁。30年过去了,男性平均寿命从68上升到了71,该高兴还是难过?可是一个老爷爷看到新闻都难过得哭出来了,他今天刚过了70岁生日,你觉得他为什么会难过?他有必要去难过吗?说明他不懂平均数。你懂不懂平均数?你能用今天学的本领来劝劝他,让他喜笑颜开吗?

5、想不想猜一猜女性的平均寿命比男性长还是短?出示。《2010年世界卫生报告》显示:目前,中国男性的平均寿命大约是71岁,女性的平均寿命大约是74岁。

四、总结

2024年人教版五年级上册数学教案全册(精选篇14)

教学目标:

(1)理解梯形面积公式的推导过程,会应用公式正确计算梯形的面积。

(2)培养学生合作学习的能力。

(3)继续渗透旋转、平移的数学思想。

教学重点:

理解并掌握梯形面积公式的计算方法。

教学难点:

理解梯形面积公式的推导过程。

教学过程:

一、复习旧知

1.求出下面图形的面积。

2.回忆三角形面积公式推导过程(演示课件:拼摆三角形)

二、设疑引入

教师出示一个梯形和一个三角形(已标出底和高)。这个梯形比三角形的面积大还是小?相差多少呢?要想得到准确地结果该怎么办?

板书课题:梯形面积的计算。

三、指导探索

1.小组合作推导公式。教师谈话:利用手里的`学具,仿照求三角形面积的方法推导梯形面积的计算公式提纲:

2.演示课件:拼摆梯形。电脑演示转化推导的全过程。

2024年人教版五年级上册数学教案全册(精选篇15)

教学目标:

1、经历知识的形成过程,理解约分的含义。

2、探索并掌握约分的方法,能正确地进行约分。

3、经历观察、操作和讨论等学习活动,体验数学学习的乐趣。

教学重点:

理解约分的含义。

教学难点:

能正确地进行约分。

教学准备:

卡纸、彩笔。

教学活动:

一、创设情境,导入新课。

师:“美味蛋糕店”的师傅招收学员时考了这样一道题目:请你在最快的时间里切出一块蛋糕的8/24,要求切得比较均匀。今天老师也想拿这道题目考考你们,看看哪些同学们能被选上。

二、实践操作,探究新知。

1.引导发现,明确概念。

师:请同学们拿出一张卡纸。表示出这张卡纸的8/24,想一想怎样做?

(学生动手操作,展示成果并解说)

师:从上面这些学生的'发言中你能得到什么结论?

让生通过用分数表示阴影部分找出一组相等的分数:

8/24=4/12=2/6=1/3

教师根据学生汇报,有选择地板书。

师:现在请同学们观察黑板上的三个式子,你发现了什么?引导学生回答出:

(1)它们的分子和分母都同时除以了一个相同的数,所以这些分数的大小都不变。

(2)是同时除以它们的公因数。

师:说得非常准确,这里的除数都是什么数?

生:分子和分母的公因数。

引导学生归纳出:像这样,把一个分数的分子、分母同时除以公因数,分数的值不变,这个过程叫作约分。

师:还有什么发现?

引导学生说出:约分后这些分数的分子和分母都越来越小,但分数值都相等。最后一个式子的得数是1/3不能“再往下除了”。

师肯定:准确地说1/3不能再约分了。谁知道,为什么不能“再约分了”?

引生答出:因为1和3没有公因数。所以不能“再约分了”。

总结并揭示:像1/3这样的分数,当分子和分母没有公因数的分数,我们把它叫做最简分数。约分的最后结果应该是:最简分数。

师:谁能举个例子来说明,什么是最简分数?

生:(举例说明)。

2.探索约分的方法。

请两个同学来介绍一下约分的过程。

师:谁能完整的说一说约分的方法和应注意的问题。

3.师:通过上面的学习我们知道了,要在最快的时间里切出一个蛋糕的8/24,其实也就是切出这块蛋糕的1/3,这样也就顺利地完成了题目要求!

三、课堂练习,巩固应用。教材第48页“练一练”。

(1)学生试做。

(2)集体交流。

四、畅谈收获,全课总结。

通过本课的学习,你有什么收获?

教学反思:

1.创设了生动有趣的情境,调动了学生的学习积极性,激发了学生强烈的求知欲。

2.在学习约分之前,学生已经探索了分数的基本性质,学习了求最大公因数的方法,因此合理的知识迁移,较好地帮助了学生理解“约分”的含义,使知识深入浅出,便于学生理解和掌握。

3.为学生提供了充分探究和发现的时间与空间,从约分含义的理解到约分方法的学习,教学的重点和难点都是在学生的发现、探究、交流中解决,使课堂充满了活力。

2024年人教版五年级上册数学教案全册(精选篇16)

教学内容:

人教版义务教育课程标准实验教科书五年级上册44—45页。

教学目标:

1.理解用字母表示数的意义,初步掌握用字母表示数的方法,发展学生的数感、符号感。

2.初步理解用字母表示数的优越性,体会用字母表示数的作用。提高对用字母表示运算定律的认识。

3.学会在含有字母的式子里乘号的简写和略写法。

重点难点:

重点:用字母表示书的意义。

难点:理解用字母表示书的意义。

教具、学具准备:

多媒体课件。

教学过程

一、谈话引入

教师:同学们,你们能发现黑板上的规律吗?板书:红、黑、蓝、红、黑。指名回答。

二、探究新知

1.理解用字母表示数的意义。

2.教师投影出示例1的3组题。

3.教师:屏幕上的几组数,都是按一定的规律排列的,发现了吗?请同学们先独立思考,然后在题单上完成。

学生独立完成,算出图形或字母表示的数。

(1)学生理解题意。

(2)老师讲述题目要求:

第①题要求找出每行图中各组数的规律,根据规律确定用图形、字母表示的数。

第②题根据这个等式,求出用图形、字母表示的数。

第③题根据给出的数列,找出它的规律,再确定数列中用字母表示的那个数。

(3)根据题目要求,学生独立思考,尝试找出规律,写出未知数的值。

(4)全班交流。

老师引导学生用自己的话叙述每个小题的规律或已知条件的含义。

(5)独立算一算图形或字母所表示的数。

(6)全班交流。

说一说自己是怎样算的`,或怎样想的。

(7)提问:

这三道题都是由图形或字母表示什么?(用字母表示数)我们这节课,就一起来研究“用字母表示数”的问题。

教师板书课题:用字母表示数

(8)讲述:通过刚才的题目,我们可以发现在数学中经常会用到□、△、○或a、、n、m等符号或字母表示数。你们还见过哪些用符号或字母表示数的例子吗?

教师:谁来说说?

学生举出数学学习中、日常生活中用字母表示数的具体例子。

老师板书:下列a表示几?1+a=301+a<1001+a。

学生思考后回答。

质疑:同样表示未知数,为什么有时候a只能表示一个数,有时候表示一些数,有时候表示任何数呢?

引导学生通过思考,得出结论:字母可以表示任何数;但是根据具体条件,同一个字母可以表示不同范围内的不同数。

4.学习阅读材料。

(1)出示幻灯片为了书写方便,人们常用字母表示计量单位。自己阅读。

(2)交流自己发现的规律。

5.学习用字母表示运算定律。

2024年人教版五年级上册数学教案全册(精选篇17)

教学目标

(1)使学生初步理解“方程的解”、“解方程”的含义以及“方程的解”和“解方程”之间的联系和区别。

(2)初步理解等式的基本性质,能用等式的性质解简易方程。

(3)关注由具体到一般的抽象概括过程,培养学生初步的代数思想。

教学重、难点:

(1)“方程的解”和“解方程”之间的联系和区别。

(2)利用天平平衡的道理理解比较简单的方程的方法。

教学过程

一、揭示课题,复  师:(出示课件)老师在天平的左边放了一杯水,杯重100克,水重X克,一杯水重多少?生:(100+X)克

师:在天平的右边放了多少砝码,天平保持平衡呢?(教师边讲边操作100克、200克、250克)

师:请你根据图意列一个方程。生:100+X=250(课件显示:100+X=250)

师:这个方程怎么解呢?就是我们今天要学的内容。

二、探究新知,理解归纳

(1)概念教学:认识“方程的解”和“解方程”的两个概念

师:(出示课件)那你猜一猜这个方程X的值是多少?并说出理由。

生1:我有办法,可以用250-100=150,所以X=150.

生2:我有办法,因为100+150=250,所以X=150

生3:老师我也有办法,我是这样想的,假如方程的两边同时减去100,就能得出X=150师:黎明同学的'想法太棒了!我们一起探索验证一下。请看屏幕,怎样操作才使天平左边只剩X克水,而天平保持平衡。

生:我在天平的左边拿走一个重100克空杯子,在天平的右边拿走100克的砝码,天平保持平衡。

师:你能根据操作过程说出等式吗?

生:100+X-100=250-100

(课件显示:100+X-100=250-100)

师:这时天平表示未知数X的值是多少?生:X=150(课件显示:X=150)

师:是的,黎明同学的想法是正确的,方程左右两边同时减100,就能得出X=150。我们表扬他。把掌声送给他。

师:根据刚才的实验,我们来认识两个新的概念———“方程的解”和“解方程”。师:(课件显示X=150的)指着方程100+X=250说:“X=150是这个方程的解。(课件显示:方程的解)

师:100+X=250100+X-100=250-100说:“这是求方程的解的过程,叫解方程。

师:在解方程的开头写上“解:”,表示解方程的全过程。(课件显示:解:)

师:同时还要注意“=”对齐。师:都认识了吗?请打开课本第57页将概念读一次,并标上重点字、词。

师:你们怎么理解这两个概念的?(学生独立思考,再在小组内交流。)

师:谁来说说你想法?

生1:“解方程”是指演算过程

生2:“方程的解”是指未知数的值,这个值有一个前提条件必须使这个方程左右两边相等。

师:“方程的解”和“解方程”的两个解有什么不同?

生:“方程的解”的解,它是一个数值。“解方程”的解,它是一个演变过程。

[设计意图:通过自主学精神。]

(2)教学例1。

师:要是老师出一个方程,你会求这个方程的解吗?

生:会。

师:请自学第58页的例1的有关内容。

[学生独立学  师:(出示例1)左边有X个,右边有3个,一共用9个。根据图意列一个方程。

生:X+3=9(板书:X+3=9)

师:X+3=9这个方程怎么解?我们可以利用天平保持平衡的道理帮助理解,请看屏幕。师:怎样操作才使天平的左边只剩X,而天平保持平衡。

生:天平左右两边同时拿走3个球,使天平左边只剩X,天平保持平衡。(教师随着学生的回答演示课件)

师:根据操作过程说出等式?

生:X+3-3=9-3(板书:X+3-3=9-3)

师:这时天平表示X的值是多少?生:X=6(板书:X=6)

师:方程左右两边为什么同时减3?

生1:使方程左右两边只剩X。

生2:方程左右两边同时减3,使方程左边只剩X,方程左右两边相等。

师:“方程左右两边同时减3,使方程左边只剩X,方程左右两边相等。”就是解这个方程的方法。

师:这个方程会解。我们怎么知道X=6一定是这个方程的解呢?生:验算。

师:对了,验算方法是什么?

生:将X=6代入原方程,看方程的左边是否等于方程的右边。

(板书:验算:方程的左边=6+3=9方程的右边=9

方程的左边=方程的右边所以,X=6是方程的解。)

师:以后解方程时,要求检验的,要写出检验过程;没有要求检验的,要进行口头检验,要养成口头检验的  解方程:3x=18?

[学生独立思考,再在小组内交流。]

汇报交流,指生说,然后课件演示。

方程两边同时除以一个不等于0的数,左右两边仍然相等。

做一做:

身高问题

小明去年的身高+比去年长高的8cm=今年的身高

小明今年的身高-小明去年的身高=8cm

小明今年的身高-8cm=小明去年的身高

小红高165cm,比小华高10cm,小华高多少cm?

我们用桶接水接了30分钟水,一共接了1.8KG,每分钟接水多少克?

三、巩固应用

1、填空。

(1)使方程左右两边相等的()叫做方程的解。

(2)求方程的解的过程叫做()。

(3)比x多5的数是10。列方程为()

(4)8与x的和是56。方程为()

(5)比x少1.06的数是21.5。列方程为()。

2、你能说出下列方程的解是多少吗?

X+19=21x-24=15

5x=10x÷2=4

3、用含有字母的式子表示下列数量关系。

(1).比x多3的数。

(2).X的1.5倍。

(3).每枝铅笔x元,买30枝铅笔需要多少钱?

(4).小明13岁,比小红小x岁,小红多少岁?

4、练小结:解含有加法方程的步骤。(口述过程)

四、拓展延伸。

1、挑战501--502

五年级参加科技小组的人数是34人,比参加文艺小组的人数的2倍少6人,参加文艺小组人数有多少人?(写出数量关系式,列方程解)

师:看来,解加法方程同学们掌握得很好,老师得提高一点难度,敢挑战吗?

生:敢。

师:谁愿意读读这个方程?[学生都争着读这个方程,可激烈了]

师:这是一个含有减法的方程,你能根据解加法方程的步骤,尝试完成。

(指名王欣同学到黑板板演,其他同学在单行纸完成)[学生试着解方程并进行口头验算]集体交流、评价、明确方法。

师:王欣同学做对了吗?生:对。

师:方程左右两边为什么同时加几?

生:方程左右两边同时加6,使方程左边只剩2X,方程左右两边相等......(由板演

王欣同学面向大家回答)

3、提炼升华

师:谁能说说解含有加法和减法的方程的步骤?(随着学生,课件显示全过程。)

生:解方程的步骤:

a)先写“解:”。

b)方程左右两边同时加或减一个相同的数,使方程左边只剩X,方程左右两边相等。

c)求出X的值。

d)验算。

4、全课小结,评价深化

通过今天的学  以小组为单位自评或互评课堂表现,发扬优点、改正缺点。

对老师的表现进行评价。

[设计意图:教师始终把学生放在主体地位,为学生提供了一个自己去想去说,去回味知识掌握过程的舞台,这样将更有助于学生掌握正确的学总结失败原因,发扬成功经验,培养良好的学习习惯。]

[板书设计]解方程例1:书本图X+3=9验算:X-2=15解:X+3-3=9-3方程左边=6+3=9解:X-2+2=15+2X=6方程右边=9X=17方程左边=方程右边所以,X=6是方程的解。

82365