教育巴巴 > 小学教案 > 数学教案 > 六年级 >

六年级数学下册教案

时间: 启权 六年级

《比例的基本性质》是人教版数学第十二册的内容。比例的知识在工农业生产和日常生活中有广泛的应用。这部分知识是在学习了比的知识和除法、分数等基础上教学的。下面是由小编为大家整理的“六年级数学下册教案”,希望对您的工作和生活有所帮助。

六年级数学下册教案

六年级数学下册教案精选篇1

教学目的:

1、培养学生灵活、全面的运用知识的能力,及运用所学知识解决简单实际问题的能力。

2、培养学生认真审题的良好学习习惯。

教学重点:

灵活运用周长或面积公式解决实际问题。

教学过程:

一、周长与面积的区别。

1、什么是圆?圆周长的计算公式是什么?圆面积公式的计算公式是什么?

2、计算下题。求出它的周长与面积。

(1)学生动手计算。

(2)周长与面积有什么不同?

概念不同,计算公式不同,单位不同。

3、判断。两个图形相比较,哪个图形的.周长长,哪个图形的面积就大。

(错。周长的长短和面积的大小没有必然的联系。)

二、运用所学知识解决实际问题。

1、一个圆形花坛,直径是4米,周长是多少米?

3.144=12.56(米)

2、一个圆形花坛,周长是12.56米,直径是多少米?

12.563.14=4(米)

3、一个圆形花坛的半径是2米,它的面积是多少平方米?

3.1422=12.56(平方米)

4、一个圆形花坛的周长是12.56米,它的面积是多少平方米?

r=12.56(23.14)=2(米)3.1422=12.56(平方米)

5、一个环形铁片,外直径是6米,内直径是4米,它的面积是多少平方米?

6、先测量所需要的数据,再计算半圆的周长和面积。(解答结果保留整厘米数)

7、一个圆形餐桌面直径是2m,它的周长多少米?它的面积是多少米?如果一个人需要0.5M宽的位置就餐,这张餐桌大约能坐多少人?+

三、综合练习。

1、判断对错,

(1)圆的半径都相等。

(2)在同圆或等圆中圆周长约是半径的6.28倍。

(3)半圆的周长是圆周长的一半。

2、只列式不计算。

(1)一个圆形铁板的半径是5分米,它的面积是多少平方分米?

(2)一个圆形的铁板的直径是6分米,它的面积是多少平方分米?

(3)一个圆形铁板的周长是28.26分米,它的面积是多少平方分米?

3、说一说下面各题的解题思路。

(1)一个圆形花坛,直径是5米,小明围着它跑了5圈,小明一共跑了多少米?

(2)在草地的木桩上栓着一只羊,绳长3米,这只羊能吃到草的面积最大是多少平方米?

四、布置作业

练习十七1-3,思考第4题。

六年级数学下册教案精选篇2

教学目标

1、通过观察和操作认识轴对称图形和轴对称的含义。

2、会画出轴对称图形的对称轴。

3、使学生在操作中加深对图形的认识,建立空间观念。

教学重点

认识轴对称图形,画对对称图。

教学难点

认识图形,建立空间观念。

教学过程

一、铺垫孕伏

1、口算

二、探究新知

1、投影出示

树叶图、青蜓图、天平图,任意不对称图形。

2、引导学生分组讨论

(1)这些图形,形状有什么特点?

(2)再找出一些生活中实例图形。

3、通过汇报,在教师指导下,使学生明确到:

树叶图、青蜓图、天平图,图形左右部分一样,并且说明:这些图形给人以美感,如果想象一个图形不对称,使人觉得不舒服。

4、(课件演示:对称图形下载)

将树叶图对折、青蜓图对折,天平图对折,使学生观察到这些图形,沿着一条直线对折,两侧的图形能够完全重合。

5、同桌同学合作实验

先把一张纸对折,在折好的一侧画出图形,剪下来,再把纸打开,看一看能得到一个什么样的图形?

6、教师明确:这个图形就是轴对称图形,折痕所在的这条直线叫做对称轴。

7、投影出示,做一做和练习二十六1题,引导学生判断。

(1)教师出示投影。

(2)学生讨论、交流。

8、分组实验,组内每人画一种图形。

(1)出示101页上图。

(2)每人在方格纸上画一种图形,并剪下来。

(3)比较,哪些图形是轴对称图形,画出它们的对称轴。

(4)教师指导。

(5)使学生明确:正方形、长方形、等腰三角形、等腰梯形、圆,都是轴对称图形。

(6)启发学生,每一种图形,可以画几条对称轴。

学生分组讨论交流。

汇报:正方形可以画4条对称轴。

长方形可以画2条对称轴。

等腰三角形、等腰梯形各有一条对称轴。

圆有无数条对称轴。

(7)引导学生回忆判断,学过的平面图形,哪些是轮对称图形,哪些图形只有一条对称轴,哪些不止一条,可以出示图形。

三、课堂练习

1、下面的.数字,哪些是轴对称图形?它们各有几条对称轴?

2、把一张纸对折后,剪下一个图形,把剪下的图形展开,所得的图形是不是轴对称图形?

引导学生同桌或组内操作。

引导学生在书上填画。

四、课后作业

运用学过的知识,用纸剪去一个对称图形,可以怎样剪?

六年级数学下册教案精选篇3

教材分析

这部分内容是在学生理解并掌握分数乘法的意义以及分数乘法的计算方法基础上进行教学的。它是分数应用题中最基本的,不仅分数除法应用题以它为基础,很多复合的分数应用题也是在它的基础上扩展的。因此,使学生掌握这咎应用题的解答方法对他们今后进一步学习较复杂的分数应用题具有重要的意义。例1只涉一个数量,要求一个数量的几分之几是多少。要求的是已知数量的一部分,属于部分与整体的问题。在这里用线段图帮助学生题意,明确求我国人均耕地面积,就是求2500的是多少。从而掌握求一个数的几分之几是多少的实际问题的解答方法。

学情分析

学生对单位1已经有了一定的理解和认识。已经掌握分数乘法的意义以及分数乘法的计算方法。本课让学生分清把谁看作单位1。借助线段图分析题意,学生在画线段图时会遇到一定的`困难,教师要适时指导。

教学目标

1、经历对实际问题的探究的过程,掌握求一个数的几分之几的问题的解答方法。并能正确地解答。

2、培养学生的分析能力与表达能力。

教学重点

掌握求一个数的几分之几的问题的数量关系,并能正确地解答。

教学难点

正确地确定单位1

教学过程

活动一:分析题意,理解数量关系。

教师出示例1:20__年世界人均耕地面积为2500平方米,我国人均耕地面积仅占世界人均耕地面积的。我国人均耕地面积是多少平方米?

教师引导学生理解我国人均耕地面积仅占世界人均耕地面积的是什么意思?(是把占世界人均耕地面积五光平均分成5份,我国人均耕地面积占其中的2份。)

教师然后让学生试着画一画线段图,分析题意。

全班与教师一起画线段图,借助于线段图理解题意,要求我国人均耕地面积就是求2500的是多少。

列式为:2500=

学生独立完成。

集体订正。

活动二:巩固练习。

1、教师出示做一做。

这是一道关于两个量之间的,一个量是另一个量的几分之几的问题。在解答时,教师也先让学生画线段图分析。

然后再独立解答。

2、完成练习四中的部分练习。

活动三:课堂小结。

六年级数学下册教案精选篇4

单元教学内容:

面的旋转、圆柱的表面积、圆柱的体积、圆锥的体积

单元教学目标:

1、结合具体情境和操作活动,引导学生整体把握点、线、面、体之间的联系。

2、从多种角度探索圆柱和圆锥的特征。

3、探索圆柱表面积的计算方法,发展空间观念。

4、经历圆柱和圆锥体积计算方法的探索过程,体会类比的思想。

5、在解决实际问题中用活所学知识,感受数学与生活的联系。

单元教材分析:

学生已经直观认识了长方体、正方体、圆柱和球,并初步了解了长方形、正方形、圆等平面图形的性质,学习了这些图形的面积计算,学生还认识了长方体(正方体),掌握了长方体(正方体)表面积与体积的含义及其计算方法。在此基础上,本单元进一步学习圆柱和圆锥的知识。本单元主要通过五个活动,引导学生学习面的旋转(圆柱和圆锥的认识)、圆柱的表面积、圆柱的体积、圆锥的体积等内容,并参与实践活动。本单元教材编写力图体现以下主要特点:

1.结合具体情境和操作活动,引导学生经历点动成线线动成面面动成体的过程,体会点、线、面、体之间的联系教材的第一个活动体现的内容是由平面图形经过旋转形成几何体,这不仅是对几何体形成过程的学习,同时体会面和体的关系也是发展空间观念的重要途径,这也是教材将此课题目定为面的旋转的.原因。教材呈现了几个生活中的具体情境,鼓励学生进行观察,激活学生的生活经验,使学生经历点动成线线动成面面动成体的过程。在结合具体情境感受的基础上,教材又设计了一个操作活动,通过快速旋转小旗,引导学生结合空间想象体会立体图形的形成过程,发展空间观念。教材还提供了若干由面旋转成体的练习。

2.重视操作与思考、想象相结合,发展学生的空间观念操作与思考、想象相结合是学生认识图形、探索图形特征、发展空间观念的重要途径。在本单元中,教材重视学生操作活动的安排,在每个主题活动中都安排了操作活动,促进学生理解数学知识、发展空间观念。如圆柱的表面积的教学中,教材引导学生通过操作来说明圆柱的侧面展开后是一个怎样的图形,并呈现了两种操作的方法:一种是把圆柱形纸盒剪开,侧面展开后是一个长方形;另一种是用一张长方形纸卷成圆柱形。再如本单元的最后专门安排了一个用长方形纸卷圆柱形的实践活动,先让学生用两张完全一样的长方形纸,一张横着卷成一个圆柱形,另一张竖着卷成一个圆柱形,研究两个圆柱体积的大小;然后组织学生将两张完全一样的长方形纸裁开,把变化形状后的纸再卷成圆柱形,研究圆柱体积的变化,引导学生发现规律,深化对圆柱表面积、体积的认识,并体会变量之间的关系。

3.引导学生经历圆柱和圆锥体积计算方法的探索过程,体会类比等数学思想方法是一种重要的数学思想方法,是合情推理时常用的方法。教材重视类比、转化等数学思想方法的渗透。在圆柱的体积教学时,教材引导学生经历类比猜想—验证说明的探索过程。由于圆柱和长方体、正方体都是直柱体,而且长方体与正方体的体积都等于底面积×高,由此可以产生猜想:圆柱的体积计算方法也可能是底面积×高。在形成猜想后,教材再引导学生验证说明自己的猜想。在圆锥的体积教学时,教材继续渗透类比的思想,再次引导学生经历类比猜想—验证说明的探索过程。另外,教材还注意转化、化曲为直等思想方法的渗透,如在验证说明圆柱的体积=底面积×高时,引导学生把圆柱切割拼成近似的长方体进行研究,体现了化曲为直的思想方法。

4.在解决实际问题中巩固所学知识,感受数学与生活的联系圆柱和圆锥的知识在生活中有着较为广泛的应用,教材在编排练习时,选择了来自于现实生活的问题,引导学生灵活运用所学知识解决问题。如学习圆柱的表面积时,鼓励学生计算薯片盒的包装纸的大小、通风管需要的铁皮的面积、压路机压路的面积等,由于实际情形变化比较多,需要学生根据实际情况灵活地选择有关数据进行计算。在学习圆柱和圆锥的体积后,教材鼓励学生计算水桶的容积、圆木的体积、圆锥形小麦堆的体积、铅锤的质量等。这些实际问题的解决,将使学生巩固对所学知识的理解,体会数学知识在生活中的广泛应用,丰富对现实空间的认识,逐步形成学好数学的情感和态度。

六年级数学下册教案精选篇5

教学资料:

《义务教育课程标准实验教科书数学》(人教版)六年级下册第47、48页,练习八第1—3题。

设计理念:

数学程标准指出,“数学课程不仅仅要思考数学自身的特点,更就遵循学生学习数学的心理规律”。学生数学概念的获得要在观察、比较、概括、归纳等数学活动中才能构成。对于“比例尺”这样的数学概念,抓住其外延和内涵设计有效的数学活动是促进学生发展的主要途径。

学情与教材分析:

“比例的应用”是在学生已经学习了比和比例的好处、比例的基本性质之后的一个教学资料。“比例尺”是运用数学解决生活问题的一个典型范例之一。本节课,要通过在生活中的应用,把握比例尺的内涵――图上距离与实际距离的比,认识两种不同的比例尺――数值比例尺和线段比例尺。比例尺的内涵是教学的一个重点,学生在学习时,对于比例尺的本质――比例尺是一个比,往往容易因为名称的误导产生歧义,对于由比例尺的规定形式――前项或后项为1,而产生的计算上的易错点,都是教学中需要关注的。

教学目标:

1、在实践活动中体验生活中需要的比例尺,能读懂两种形式的比例尺。

2、在操作、观察、思考、归纳等学习活动中理解比例尺的好处,正确计算比例尺,了解比例尺在实际生活中的各种用途。

3、感受数学在解决问题中的作用,培养亲近数学的良好情感。

教学准备:

多媒体课件

教学重点:

理解比例尺的好处

教学难点:

把线段比例转换成数值比例尺

教学过程:

一、激发兴趣,引入比例尺

(脑筋急转弯)

师:同学们,你们必须去过漳州,那你们坐车从华安到漳州大约需要多长时间?(1个多小时),但是有只蚂蚁却只用了4秒钟。你明白是怎样回事吗?

生猜:蚂蚁可能在从华安到漳州的地图上爬。

师:对了。蚂蚁爬的是地图上的图上距离,(板书:图上距离)而我们坐车所行的是从华安到漳州的实际距离。(板书:实际距离)

师:看,在这幅地图上(出示第一幅地图)从华安到漳州蚂蚁只用了4秒钟,(出示第二幅地图)在这幅地图上蚂蚁用4秒钟还能到达吗?(出示第三幅地图)在这幅地图上呢?

师:为什么同样是从华安到漳州,有的只需4秒钟就能到达,而有的却到达不了呢?(地图有大有小)

请同学们观察这几幅地图,它们虽然大小不同,但形状却一样,这是什么原因呢?(让学生思考片刻后才说,可先让学生说)是因为人们在制作这三幅地图时所用的比例尺不同,这就是我们这天要学习的资料:比例尺(板书课题)

【设计意图:脑筋急转弯意在激趣引出地图,对学生都比较熟悉的地图,通过“这几幅地图,它们虽然大小不同,但形状却一样,这是什么原因呢?”这个问题来引导学生思考,通过三张地图大小不一样,而表示的实际距离却相同,引起学生认知冲突,聚焦依据比例不同,表示的大小也不相同,从而引出比例尺,引导学生从生活中学习有关比例尺的资料。】

二、自主学习,认识比例尺

1、什么叫比例尺?它是尺吗?是比例吗?请同学们打开课本48页,自学48页的资料。

2、揭示比例尺的好处。

你们从书上了解到什么叫比例尺?(嗯,是个比板书于课题后)

前项是什么?后项呢?(在板书的图上距离与实际距离中加入“:”)

那就是说只要用图上距离比实际距离就能求出比例尺,还能写成什么形式?

你能说说这些比例尺的好处吗?

请同学们仔细观察这几个比例尺上的数字的变化以及这几幅地图的大小变化,你又有什么发现,同桌交流一下

比例尺前项都是1,后项数字越大,图上1厘米所表示的实际距离越长,所画出的图形就越小,后项数字越小,图上1厘米所表示的实际距离越短,所画出的图形就越大

【设计意图:学生自学可能因为自身学习潜力的差异而产生不同的效果,如何让不同学力的学生在自学中都能真正学有所获?问题引领是一个比较有效的方法。因此,我设计了以上三个问题,聚焦比例尺的内涵,帮忙学生清晰把握。】

3、练习:

明白了什么是比例尺,如果我想求一幅图的比例尺,那要怎样办呢?老师给你们数据你们会求出一幅图的比例尺吗?

①、一张桌子画在图纸上的高度是8厘米,实际高度是80厘米,求这幅图纸的比例尺是多少?

②、一栋楼房东西方向长40m,在图纸上的长度是50cm、这幅图纸的比例尺是多少

③、在一幅地图上,量得甲地到乙地的距离是4厘米,而甲地到乙地的实际距离是160千米,这幅地图的比例尺是多少?

注意:单位统一

要化简结果不带单位(因为它表示的是两个量之间的关系)

【设计意图:在学生理解比例尺的好处之后立刻呈现三道不同梯度的习题,一是让学生进一步理解掌握比例尺的实际好处,二是让学生正确计算比例尺,了解比例尺在实际生活中的各种用途。并能用自己的语言正确说明比例尺所表示的具体好处。】

4、认识放大比例尺

观察这三个比例尺,你有什么发现?(前项为1)也就是说图上距离比实际距离小,其实现实中还能见到这样的比例尺(课件出示一些精密零件的图纸)

看,把比例尺读出来,你有什么发现?(选一个说好处)

小结:比例尺根据它的作用可分为缩小比例尺和放大比例尺。(板书)通常状况下,为了计算的方便,把比例尺写成前项或后项是1的比。

5、认识线段比例尺

刚才我们认识的比例尺都是用数字来表示的,它们都叫做数值比例尺。请同学们再来看这幅比例尺(出示线段比例尺)它与数值比例尺有什么不同?

学会看线段比例尺。图上每一段都是长1厘米,每一厘米都相当于实际多少千米?

用线段来表示图上距离与实际距离的关系,这叫做线段比例尺

区别:形式不同,但都表示图上距离与实际距离的倍数关系

小结:比例尺根据表现形式的不同分为数值比例尺和线段比例尺。(板书)

6、把上面的线段比例尺改写成数值比例尺

(1)这个线段比例尺它表示图上1厘米相当于实际50千米,那你们会将它改写成数值比例尺吗?

(2)1厘米:50千米=1厘米:5000000厘米=1:5000000

(3)根据数值比例尺标出线段比例尺

小结:线段比例尺和数值比例尺是比例尺的两种基本形式、它们之间能够进行转换、把线段比例尺转换成数值比例尺只要把写出图上距离与实际距离的比再化简就能够了、

【设计意图:在具体情景中,通过操作、观察、思考、归纳等学习活动中理解放大比例尺、线段比例尺的好处以及线段比例尺和数值比例尺两种比例尺基本形式之间的转换,并准确理解比例尺的书写特征。】

三、巩固练习,灵活运用

(一)填一填

1、在比例尺是1:20__的地图上,图上距离1厘米表示实际距离厘米或米

2、在比例尺是1:250000的地图上,图上距离1厘米表示实际距离(千米。

3、在比例尺是1:4000000的地图上,图上距离是实际距离的,实际距离是图上距离的倍,把这个数值比例尺该成线段比例尺是

(二)辨一辨

1、所有的比例尺的前项都是1。

2把一个电脑零件放大到原先的100倍画在图纸上,应选用1:100的比例尺。

3、比例尺就是一把尺子。

4、一幅地图的比例尺是1:50000厘米。

5、一幅图的比例尺是8:1,这幅图所表示的实际距离大于图上距离。

(三)、选一选

1、用图上距离5厘米,表示实际距离200米,这幅图的比例尺是

5:200B、C、1:4000厘米

2、长4厘米的零件,画在图纸上是40毫米,这幅图的比例尺是

1:10B、10:1C、1:1D、1

3、线段比例尺改成数值比例尺是

A、1:23B、1:2300000C、1:2300000km

【设计意图:通过填一填、辨一辨、选一选等不同形式的练习让学生体会比例尺在生活中的应用,能够解决实际问题。同时通过具体情景,感受数学与生活的紧密联系】

四、课后延伸

选取适宜的比例尺画图

红光小学有一块长方形草坪,长85米,宽30米,把这块草坪按必须的比缩小,你能在纸上画出这个长方形草坪的平面图形吗?(1:1000、1:5001:10000)

结论:一幅图的比例尺由纸张的大小来决定。

【设计意图:让学生选用比例尺解答,以此培养学生思维的灵活性、这样让孩子在获得知识的同时,培养了潜力,让学生真真切切的感受到生活中有数学,生活中处处有数学,提高了学生学数学用数学的意识。】

五、谈学后体会。这节课你学到了什么?

【设计意图:让学生回顾学习过程,反思评价,再一次体验学习经历,促进学生对知识的掌握。】

六年级数学下册教案精选篇6

教学目标:

1、使学生理解并掌握比例的基本性质,学会应用比例的基本性质判断两个比能否组成比例,并能正确组成比例。

2、培养学生的观察能力、判断能力

教学重点:引导学生观察、讨论、试算,探究比例的基本性质。

教学难点:应用比例基本性质判断两个比能否组成比例,并能正确地组成比例。

教学过程:

一、激趣导入

1、今天老师给大家带来了一件东西,放在口袋里呢,这东西大家平时都玩过,还挺熟悉的,四四方方的,猜猜看是什么?(学生猜)

2、还是让老师给你点提示吧!

课件逐句出示:买来方方一小盒,用时却有几十张,红黑兄弟各一半,还有一对“双胞胎”。

3、现在知道是什么了吧!课件出示:扑 克牌

(设计说明:通过一则小小的谜语导入新课,与之后的新授的比赛巧妙衔接,以扑 克牌激发学生的兴趣。)

二、探究新知

(一)我们今天这堂课研究的数学问题就跟扑 克牌有关。你们都知道扑 克牌有四种花色,而每一种花色都有13张。(课件出示)A,2,3,4,5,6,7,8,9,10,J,Q,K

1、同学们你们都学过比例,请同学们用快的速度从这13个数字中选择你所需要的数字来写出一个比例。

2、学生汇报写出的比例并说明理由。

3、们都是选择4个数字来组成比例。那你们想知道组成比例的4个数叫什么名字呢?(想)那就请同学们自己预习课本43页后两段(师出示课件预习提纲)。(板书:组成比例的四个数,叫做比例的项。两端的两项叫做比例的外项。中间的两项叫做比例的内项。)

4、就学生汇报的比例,找出内项与外项。

(设计说明:通过一个写比例的小活动,一是复习了比例的意义,二是教学了内项与外项。)

(二)在刚才同学们写比例的过程中,老师发现同学们的脑子转得可真快,王老师想跟你们比一比,比谁能更快地按要求写出比例。怎样?敢接受老师的挑战吗?(生:敢)

1、那我们就开始吧,请同学们先看“冠军攻略”(比赛规则)

课件出示:

冠军攻略

参赛者:王老师,全班同学

规则:迅速判断由电脑随机抽取出来的4张牌面上的数学能否组成比例,如果能,请写下来。(至少写两个)(完成的可先举手示意)

2、第一轮:6、8、9、12

(老师比学生提前写完,并由学生验证,得出老师胜)

第二轮:3、5、4、8

(老师比学生提前判断出不能组成比例,并由学生验证,老师胜)第三轮:4、8、6、3

(老师比学生提前写完比例,并由学生验证,老师胜)

(设计说明:由扑 克牌引出三轮比赛,设计都由老师胜出,学生由此产生疑问,为什么老师能这么厉害,这么快地写出8个比例,借此激发学生探究。)

3、同学们一定很好奇,老师为什么能这么快地判断出这4个数能否组成比例,并能很快地写出比例,其中有什么奥秘?其实老师是有冠军秘籍的,而秘密就藏在这些比例中。请同学们仔细观察老师所写的比例的内项与外项,小组交流讨论,看看有什么发现?

4、学生汇报,验证,课件出示“比例的基本性质以及字母公式”

5、师讲解如何很快的判断4个数能否组成比例。

(设计说明:给学生提供大量的事例,要求他们多方面验证,从个别推广到一般,让学生学会科学地、实事求是地研究问题。)

看样子,同学们对新知掌握的不错,愿意接受挑战吗?

(三)练习运用。

1、应用比例的基本性质,判断下面哪组中的两个比可以组成比例

6∶3和8∶50  2∶2.5和4∶50

2、如果把2.4:1.6=60:40,改写成分数的形式,你会写吗?等号两边的分子和分母分别交叉相乘,所得的积有什么关系?

指出:2.4与40的乘积等于1.6与60的乘积。

三、课堂巩固,练习提升

1、用你喜欢的方法来判断哪组中的两个比能否组成比例。

(1)14:21和6:9   (2)3/4:1/10和15/2:1

(3)9:12和12:15   (4)1.4:2和7:10

2、把图A按比例放大得到图B,按比例缩小得到图C。根据图中的数据组成比例。(课本46页第3题)

3、根据比例的基本性质,在括号里填上合适的数。

8:2=24:( )  ( )/15=4/5  1.5:3=( ):3.4  48:( )=3.6:9

四、实践活动题

8:A=B:1.5,那么A和B可能是( )和( )

如果A是小数,那么A可能是( ),B可能是( )。

如果A-B=1,那么A可能是( ),B可能是( )

如果A+B=7,那么A可能是( ),B可能是( )

(设计说明:习题的安排旨在对比例的意义和基本性质进行进一步的巩固和应用,后一道开放题答案不,意在进一步让学生体验和感悟数学的“变”与“不变”的美妙与统一)

五、全课总结

通过这节课的学习,你有哪些收获?

六年级数学下册教案精选篇7

教学目标:

1、了解比例各部分的名称,探索并掌握比例的基本性质,会根据比例的基本性质正确判断两个比能否组成比例,能根据乘法等式写出正确的比例。

2、通过观察、猜测、举例验证、归纳等数学活动,经历探究比例基本性质的过程,渗透有序思考,感受变与不变的思想,体验比例基本性质的应用价值。

3、引导学生自主参与知识探究过程,培养学生初步的观察、分析、比较、判断、概括的能力,发展学生的思维。

教学重点:探索并掌握比例的基本性质。

教学难点:根据乘法等式写出正确的比例。

教学准备:多媒体课件

整体设计说明:

本班的孩子基础较差,很多孩子没有养成好的学习习惯,好的思考方法,所以课堂上的重点放在了发现并概括出比例的基本性质上。在比例的基本性质应用时,重点突出孩子的思考过程,强调孩子有根据地思考,养成独立思考的习惯。

教学过程

一、旧知铺垫导入。

1、一辆汽车上午4小时行驶了200千米,下午3小时行驶了150千米。说一说上、下午行驶的路程和时间的比,这两个比能组成比例吗?为什么?

2、比和比例有什么区别?

【设计意图】注重从学生已有的知识出发,为新课做好铺垫。

二、自主探究

过渡:同学们,比有各部位的名称,把比组成比例后我们有了新的名称,请自学课本第34页。生阅读后,请同学说出黑板上比例各部分的名称。

【设计意图】组成比例的四个数的名称的认识对孩子们来说是比较简单的,所以让孩子们自学,培养孩子的自主学习能力,养成读数学书的习惯。

三、反馈练习。

指出下面比例的外项和内项。(投影出示)

先小组之内说一说,然后在指名回答。重点说分数形式的比例外项和内项。

【设计意图】这一环节重点学习组成一个比例的两个比哪两个数是外项,哪两个数是内项。重点突出分数形式下怎么去找比例的内项和外项。

四、探究比例的基本性质

(1)投影出示几组比例,让学生观察看看能有什么发现?细心的同学很快会发现这几组比例数字相同,但是书写位置不同。然后老师在质疑,为什么这些比例里的四个数书写位置不同却能组成比例呢?请小组合作找个这个秘密。

(2)学生找出原因后,教师引导学生用一句话总结出来。并指出这叫做比例的基本性质,板书课题。

(3)继续提出:是不是所有的比例都具有这样的性质,举例验证,后得出结论。

(4)比例写出分数形式后,也就是等号两端的分子分母交叉相乘,乘得的积也一定相等。

【设计意图】这一环节我根据学生好奇的心理,用质疑的方式来激发学生的学习兴趣,让学生主动去探索新知,这样也能让学生体会到总结归纳的过程,并渗透科学态度的教育。

五、巩固练习

1、应用比例的基本性质,判断下面哪组中的两个比能否组成比例(投影出示练习)。

2、应用比例的意义或者基本性质,判断下面哪组中的两个比可以组成比例。

(学生独立完成后,用展示台展示)

3、根据比例的基本性质,在( )里填上适当的数。(投影出示)

六、全课总结:这节课你有什么收获。

【设计意图】关注学生知识与技能的掌握情况,并且留给孩子质疑问难的空间。

七、拓展练习:把下面的等式改写成比例。

3×40=8×15

六年级数学下册教案精选篇8

教学目标:

1、使学生认识比例的“项”以及“内项”和“外项”。

2、理解并掌握比例的基本性质,会应用比例的基本性质正确判断两个比能否组成比例。

3、通过自主学习,让学生经历探究的过程,体验成功的快乐。

教学重点:

理解并掌握比例的基本性质。

教学难点:

引导观察,自主探究发现比例的基本性质

设计理念:

本课时设计,在“项”以及“内项”和“外项”的认识的设计上,以学生在老师的引导下逐步理解比例的有关知识,是以教师讲授为主。而在本课时第二大块内容,理解并掌握比例的基本性质,本课时设计中,为学生提供开放真实的问题,通过学生自主收集信息,尝试探索规律,引导学生写出不同比例,在此基础上放手让学生在观察中发现、思考,引导学生主动探索比例的基本性质。

教学过程:

一、从知识的矛盾冲突中导入并引入。

3:8=9:(  )  0.5:(   )=5:17

制造冲突,也为后面的思考题做理论铺垫,顺便起到引入课题,探索性质后回应开头的知识,也起到一定的教育作用。(请勇敢的同学配合老师)

师:某某你出生的时间哪一年哪一月哪一日?(根据学生的回报板书两次分子分母上下易位,同为比例的外项)

你还想知道教师内谁的生日,请他告诉你.(板书一次,做一个内项,那么括号应该怎样填呢)今天学习了比例的基本性质我们就可以迅速的填出了。(板书:比例的基本性质)

二、探索发现新知。

1、引用练习中的3:8=9:24为例子,比例中的四个数叫什么名字呢?两端的两项叫做什么,中间的两项叫做什么?(自学课本)

学生回报,师完成板书:

(注意板书的时候教师的手势要指明确到位)

2、练习:请指出下列比例的两个外项和内项各是多少?

80:2=200:5

6:10=9:15

1/2:1/3=6:4

0.2:2.5=4:50

2.4:1.6=60:40

3、这么多的比例,每个比例的两个外项和两个内项之间存在有什么共同的特点么?可以说的具体一些。

带着问题小组内展开讨论。(教师可以参与当中若干组的活动)时间2分钟。

4、小组汇报初步形成共识:在比例里,两个外项的积等于两个内项的积,这叫做比例的基本性质。(多找几个小组发表意见)

回到板书例题验证:两个外项的积是:3×24=72

两个内项的积是:8×9=72

5、拿出自己任意找的5个比例,验证是否存在相同的特点。(请学生在展台展示自己的5个比例,并说明外项和内项的积情况)2明,如果出现不相等的,要观察反例,说明两个比组不成比例。

6、完成板书:在比例里,两个外项的积等于两个内项的积

如果把比例写成分数的形式呢,以板书的例子,写成分数的形式,引入等号两边的分子和分母交叉相乘,所得的积相等。

三、基本练习。

1、应用比例的基本性质,判断下面两个比是否能组成比例。

(1)6:3和8:5

(2)1∶5和0.8∶4

(3)1/3:1/4和12∶9

(4)1.2:3/和4/5:5

(注意学生语言叙述的规范性:如1)两个外项的积是6×3=18,两个内项的积是3×8=24,18≠24,所以不能组成比例)

2、在括号里填上适当的数

(1)12:3=(   ):5

(2)(  ):1/3=1/4:1/6

(3)0.2:0.6=6:(   )

(4)4:3=80:(  )

3、用5、3、4、8这四个数组比例,看看你能组几个?为什么?

4、把5、3、4、8这四个数换掉其中的一个,组成比例。

5、在例一个比中,两个外项的积互为倒数,其中的一个内项是4/5,另一个内项是( )。

6、回顾矛盾冲突题目:9解决因为两个外项乘积是1,所以两个外项乘积是1,另一个数就是那个已知数据的倒数。

四、全课总结:

谈一谈通过这节课的学习你有哪些收获?(质疑,并完成课题总结),提出预习任务,(那么利用比的基本性质如和求比例中的未知数呢,请自觉预习课本35页的例题2和3)

81035