五年级数学上册第五单元教案
数学是折射五千年中华礼貌的一滴水珠,五年级数学老师应让学生体悟到中华礼貌的博大与精深。五年级数学教师的教学工作离不开五年级数学教案,五年级数学教案是他们进行教学活动的保障。你是否在找正准备撰写“五年级数学上册第五单元教案”,下面小编收集了相关的素材,供大家写文参考!
五年级数学上册第五单元教案1
教学目标:
1、结合具体的长方体和正方体的展开与折叠的情景,经历探究长方体和正方体表面积的过程,能够准确的计算长方体和正方体的表面积。
2、能够认识长方体和正方体,具有初步的立体空间想象能力。
3、使学生感受到长方体和正方体的表面积与生活的密切联系,培养学习数学的良好兴趣。
重点难点:
能够准确的计算长方体和正方体的表面积。
教学方法:
师生共同归纳和推理。
教学准备:
长方体纸盒
教学过程:
一、复习导入
教师让学生拿出长方体的盒子并沿着棱剪开,把长方体展开成6个面并观察这6个面有什么特点?
学生举手回答问题。(长方体的表面积由6个面来组成,每组相对的面的面积相等……)
二、讲授新课
教师出示例题,一个知道长、宽、高的长方体纸盒,如何才能求出它的表面积?
学生利用手中的长方体纸盒为参照,探究如何才能求出长方体的表面积。学生同组之间相互讨论,教师巡视指导每个小组的讨论活动。
教师提问学生如何求长方体的表面积。
学生回答:(分别求出每个面的面积,再加起来。就是长方体的表面积。)
教师让学生把长方体的纸盒展开,看一看长、宽、高有什么关系?
组成长方体表面积的6个面,等于(长×宽+长×高+高×宽)×2=长方体的表面积
教师让学生自己求出长7厘米、宽5厘米、高3厘米的长方体的表面积是多少?
学生列式:(7×5+7×3+5×3)×2
教师让学生思考正方体的表面积如何求?
学生同桌之间进行交流,教师提问学生。(正方体的表面积=边长×边长×6)
三、课堂小结
同学们,这一节课你学到了哪些知识?(提问学生回答)
板书设计:
长方体的表面积
长方体的表面积=(长×宽+长×高+高×宽)×2
正方体的表面积=边长×边长×6
五年级数学上册第五单元教案2
教学目标:
1、通过动手操作,理解长方体的表面积的意义,由此建立表面积的概念。
2、能根据现实情景和信息,通过动手操作、小组合作、观察思考等方法,去探求长方体的计算方法,初步培养学生的探求意识和探求能力。
3、使学生感受数学与生活的密切联系,培养初步的数学应用意识,并在探究过程中获得积极的数学情感体验。
教学重点:
理解长方体的表面积的意义,建立表面积的概念。
教学难点:
掌握长方体的表面积的计算方法。
教学流程:
一、复习旧知,引入新课
1、复习长方体的特征。
师:同学们,我们上节课已经认识了长方体,知道它们是由6个长方形围成的立体图形。那么它们都有哪些特征?
生:长方体有6个面,12条棱,8个顶点,相对的面完全相同(特殊情况有两个相对的面是正方形),相对的棱长度相等。
2、师:同学们说得真好,都已经掌握了长方体的特征。那么今天我们继续来研究长方体,一起来探究一下长方体的面。
二、实践操作、探究新知
1、教学长方体表面积的概念。
师:现在老师手中有一个长方体纸盒,昨天同学们回家也都做了一个,刚才我们说长方体有6个面,他们分别是,(边说边指),那么如果我们沿着长方体的某些棱剪开,再展开,会是什么形状呢?
接下来学生动手剪(强调要求)
师:请同学们仔细观察,展开后,你发现了什么?
生:我发现原来的立体图形变成了平面图形。
生:我发现长方体展开后还是由6个长方形组成的。
师:同学们观察得真仔细!课件演示(实物展开后贴在黑板上)
师:同学们,你们现在还能像课件中一样找到刚才指出的前面吗?后面又在哪里呢?你还能找出上、下、左、右分别在什么地方吗?
生:能。
师:那么请你们在自己的长方体展开图中标出上、下、左、右、前、后。
师:观察长方体展开图,回答下面的问题
(1)我们知道长方体有6个面,哪些面的面积是相等的?
生:前后面,左右面,上下面是相等的。
师:为什么?
生:长方体相对的面完全相同。
(2)每个面的长和宽与长方体的长、宽、高有什么关系?(同桌合作)
生:上、下每个面的长和宽是长方体的长和宽,每个面的面积是长x宽;前、后每个面的长和宽是长方体的长和高,每个面的面积是长x高;左、右每个面的长和宽是长方体的高和宽,每个面的面积是宽x高。
师:同学们,像这样我们把长方体6个面的总面积,叫做长方体的表面积。
(板书:表面积)
(2)计算长方体的表面积。
师:那么怎样求长方体的表面积呢?
小组合作:1,先独立思考,记录下自己的方法。
2,小组内交流,探讨哪种方法更简便。
学生作业展示:长x宽x2+长x高x2+宽x高x2
或者(长x宽+长x高+宽x高)x2 分别解释
教学例1。
出示例1:做一个微波炉的包装箱,至少要用多少平方米的硬纸板?(课件出示)
问题:要求至少要用多少平方米的硬纸板,实际上就是求这个长方体包装箱的什么?
生:实际上就是求这个长方体包装箱的表面积。
根据上面咱们总结出的公式来求一下表面积
方法一:0.7×0.5×2+0.7×0.4×2+0.5×0.4×2=1.66(平方米)
方法二:(0.7×0.5+0.7×0.4+0.5×0.4)×2=1.66(平方米)
(3)通过刚才的操作与例题,你觉得计算长方体的表面积需要哪些条件,又该如何计算呢?归纳总结
三、深化提高,综合应用
1、完成教材第25页练习六的习题。
先让学生独立完成,再组织交流。
2、完成教材第24页做一做。
(1)指导学生读题,理解题意,让学生发现本题中“没有底面”这条信息很重要。
(2)先让学生独立完成,再组织交流。
四、归纳知识,总结学法
师:同学们,时间过得真快,在这节课学习过程中,你有什么收获或深刻感受和老师、同学说说。
五年级数学上册第五单元教案3
教学内容 P19例1、做一做、练习五第1—2题
教学
目标
知识与技能:让学生结合具体情境认识行与列,初步理解数对的含义;能在具体情境中用数对表示物体的。
过程与方法:使学生经历从已有经验到用数对确定物体位置的探索过程,体验用数对确定位置的必要性和简洁性。
情感、态度与价值观:渗透“数形结合”的思想,发展学生的空间观念。体会生活中处处有数学,产生对数学的亲切感。
教学重点 经历用数对确定物体位置的探索过程,知道用数对表示位置的方法。
教学难点 灵活运用数对知识解决实际问题。
教学方法 直观演示法与自主探索、小组合作的方法。
教学准备 多媒体课件
教学过程设计(含各环节中的教师活动和学生活动以及设计意图)
教学过程 一、创设情境,激趣导入
课件出示主题图,播放动画。
怎样才能既准确又简明地表示张亮同学的位置呢?这节课我们就一起来进一步学习 “确定位置”。(板书:确定位置)
二、探索新知
1、课件出示例1的内容。
(1)学生读题,了解已知信息。
教师引导学生可以根据自己在教室里的位置来思考这个问题。
(2)问:已知张亮同学是第二列、第三行的同学,你能指出谁是张亮同学吗?
学生联系实际的基础上根据图中张亮所在的列数的行数来确定张亮的位置,教师给予肯定。
2、认识数对,学会用数对确定具体情境中的位置。
(1)提出问题(看来用第几列、第几行描述一个人的位置真好,让我们有了一个统一的说法。)
大家觉得用这种方法表示一个人的位置,简炼吗?
师:能不能把这种方法再简化一下?
(2)创造、交流
同学们可了不起,在这么短的时间内,创造出了这么多种不同的表示方法。
这一种是哪个小组创造的?说说你们是怎么想的?
师;不错,既然每个小组都不约而同地保留下了这两个数,说明——?这两个数很重要!
真好!那这里的2和3各表示什么意思呢?
生:……
说得太棒了,数学规则需要统一,想不想知道数学上统一使用的方法,请看先写4,接着打上逗号,然后写3,最后打上括号,因为它们是一个整体。大家知道吗?像这样,用列数和行数组成的一对数,叫做——数对。
书:(2,3)
(4)如果用(2,3)表示张亮同学的位置,你能表示王艳和赵强同学的位置吗?看一看有什么不同?
启发学生思考,引导学生用数对表示位置。
3、游戏中概括提升
我发现咱们班同学学得特别快,下面咱们玩个游戏好吗?
(1)师出生对
我说数对,请符合要求的同学快速地站起来。看谁反应最快!
(3,1)(3,2)(3,3)(3,4)(3,5)
奇怪,怎么就正好站起来这么一排呢?
(2)生出生对
如果让你来出数对,你能让一排同学站起来吗?谁来试试?
生:……
师:也不错!有没有谁能说出点不一样的?
生:(1,1)(2,1)(3,1)(4,1)(5,1)(6,1)
师:发现什么了?能说说为什么吗?
生:……
师:也就是说,数对中的第二个数相同,他们就都在同一行。
(3)师再出
不过,老师还有个本领:只说一个数对,就可能让一排同学都站起来,你们信不信?要不咱试试?
示(4,_)可能是哪些同学?
师:你的数对是?奇怪,我上面写(4,1)了吗?那你为什么站起来?
生:(第一个数是4,表示第4列,第二个数是求知数,所以第4列的每一个同学都有可能)能不能确定,到底是谁?如果_等于3呢,表示的一定是谁?其他同学坐下去,看来,要想确定某一个人的位置,只知道列数行不行?还得知道?(用数对表示位置一定要用到两个数)
师:(__)又可能是哪些同学?(全班同学都站起来了)。
师:全班同学都有可能吗?_、_表示两个相同的数,你的数对是(?,?),符合吗?不符合的同学请坐下。当_=1、2、3、4、5时,看来(__)能不能表示全班同学?只能表示什么?只能表示列数、行数相同同学的位置。
三、做一做,巩固确定位置的方法。
1、出示情景。组织学生观察情景,思考教师的提问。
2、引导学生利用在例题中学到的确定位置的方法来回答问题。
3、组织学生用一组数字来表示它们的位置。学生思考后可交流讨论,最后全班汇报。
四、反馈练习。
完成教材第19 页的做一做。
五、课堂小结。
通过今天的学习,你有哪些收获?
五年级数学上册第五单元教案4
教学内容:教材第19页的内容
教学目标:
知识与技能:让学生了解在生活情景中确定物体位置的多种方法,能在具体情境中学会用“第几排第几座”、“第几层第几号”、“第几组第几个”等方式描述物体在平面中的相对位置,或根据平面位置确定物体。
过程与方法:知道可以在平面上用两上数据确定物体的位置,在确定位置的过程中培养学生的空间观念渗透平面坐标最基本的知识。
情感态度价值观:体会生活中处处有数学,产生对数学的亲切感。
教学重难点:
重点:学会用“第几排第几座”、“第几层第几号”、“第几组第几个”等方式描述物体在平面中的相对位置,或根据平面位置确定物体,并解决一些生活中的实际问题。
难点:学根据“第几排第几座”、“第几层第几号”、“第几组第几个”等方式描述物体在平面中的相对位置。
教学方法:直观演示法与自主探索、小组合作的方法。
教学准备:多媒体、投影仪等有关内容图片。
教学过程:
一、创设情境,引出新知。
1、 出示多媒体课件或图片:一位教师到图书馆借书,询问图书管理员工具书所在位置,然后图书员告诉他图书所在位置。
2、 学生观看多媒体课件或图片,听教师讲解,初次接触位置这个概念。
3、 引入本课学习并板书课题。
4、 学生在教师的引导下回忆某物体的位置,确定它们的位置,联系具体生活场景和经验,进入到下面的学习中。
设计意图:通过具体的直观演示以及具体的情景联系,充分调动学生对学习的兴趣,为学习新知奠定基础。
二、例题展示:
1、投影出示例1的内容。
(1)学生读题,了解已知信息。
教师引导学生可以根据自己在教室里的位置来思考这个问题。
(2)问:已知张亮同学是第二列、第三行的同学,你能指出谁是张亮同学吗?
学生联系实际的基础上根据图中张亮所在的列数的行数来确定张亮的位置,教师给予肯定。
(3)如果用(2,3)表示张亮同学的位置,你能表示王艳和赵强同学的位置吗?看一看有什么不同?
启发学生思考,引导学生用数对表示位置。
2、引导学生用刚才的方法小结:先从前往后确定第几行,再从左往右确定第几列,这样就能用第几行第几列确定同学们的位置。
设计意图:通过具体的实例引导学生认识第几行和第几列的判断方法,经历应用数学知识分析问题和解决问题的过程。
三、做一做,巩固确定位置的方法。
1、出示情景。组织学生观察情景,思考教师的提问。
2、引导学生利用在例题中学到的确定位置的方法来回答问题。
3、组织学生用一组数字来表示它们的位置。学生思考后可交流讨论,最后全班汇报。
四、反馈练习。
完成教材第19 页的做一做。
五、课堂小结。
六、作业:选用课时作业。
板书设计:
位置
竖排叫列 横排叫行
确定第几列一般从左往右数,确定第几行一般从前往后数。
课后小记与反思:
第二课时 位置(二)
课型:讲授课
教学内容:教材第20页及相关教学内容
教学目标:
知识与技能:知道在生活中如何根据示意图找到位置。
过程与方法:理解可以用一组数来确定位置关系,通过确立一个坐标图形来找准方位。
情感态度价值观:体会生活中处处有数学,产生数学的亲切感,把位置关系的学习与生活场景紧密联系起来。
教学重难点:
重点:能够通过示意图找到物体的具体位置。
难点:理解用一对数来确定位置的方法,并把它用于实践中。
教学方法:直观演示法和自主探究与小组合作的学习方式。
教学准备:多媒体课件或实物等。
教学时间:
教学过程
一、联系生活,引入新课。以上内容源自小精灵儿童网站
1、谈话导入。
学生回顾在生活所见的示意图,回答教师问题,。
2、引入新课,板书课题。
设计意图:通过对前面知识的复习,以及具体的直观演示和具体的情景联系,充分调动学生对学习的兴趣,为学习新知奠定基础。
二、例题展示。
1、出示例2。
学生读题,明白示意图,初步了解题目中的每个位置是用一个坐标的形式来表示的,每一个游览区和一对数相对应。
2、学生可提问质疑,可小组讨论,可互相回答问题。全班交流。
交流时教师要引导学生认识示意图,知道它们是如何标示各区域所在位置的。
小结:横排和竖排所构成的区域就是整个动物园的范围。
每个小区域所对应的数值就是整个动物园这个大范围的一个坐标点。通过这些坐标点,我们就能够确定某个游览区的具体位置。
3、组织学生说说其他场馆的位置,同时教师板书。
4、引导学生进一步理解场馆位置与坐标中各点对应的关系。
5、练习:在图上标出这些场馆的位置。
6、小结:通过例题我们把一个区域的示意图用坐标的形式表示出来,通过对应的坐标位置就可以确定所要找的地方的位置。
三、做一做,巩固确定位置的知识。
出示练习,引导学生完成练习。
四、反馈练习。
五、课堂总结。
在练习中,要紧紧把握图形,从题目入手,寻找位置与坐标数值的对应关系,明确它们之间是一一对应的关系,可以互相判断对方。
六、作业:选用课时作业。
板书设计:
位置
第三课时 位置(练习课)
教学内容:人教版小学数学五年级教材P21——23练习五2、3、5、6、7、8题
教学目标:
1、通过练习,使学生进一步提高用数对表示、确定位置的能力。
2、通过练习,进一步提高学生抽象思维能力,发展学生的空间观念,体验数学与生活的联系。
教学重点:通过练习,使学生进一步提高用数对表示、确定位置的能力。
教学难点:发展学生的空间观念,体验数学与生活的联系。
教学过程:
一、 基础性练习
1、填一填,再回答
⑴、用数对表示平面图中的位置时,我们规定:竖排叫做( ),横排叫做( ),确定第几列一般从( )往( )数,确定第几行一般从( )往( )数。
⑵、○在第4列第5行,用数对表示是( , ); 用数对表示是(2,7),那么它在第( )列第( )行,(8,7)在图中表示第( )列第( )行的位置。 2、动物园的平面图。
①、动态生成方格图,渗透坐标思想
②、你能用数对表示出大门的位置吗?请生汇报,说理。
③、游戏:猜景点
任选你想去的一个景点,用数对表示它的位置。小组内同学看数对说地名,看看说得对吗?全班交流。 如果想去的景点是在( ,4),可能是哪里?
得出:一个数能准确说出一个地点的位置吗?数对中的两个数能帮助我们很快在平面图上找到某个具体的地点。
④鳄鱼潭在(2,4),请标出。图上(4,2)和(2,4)表示的位置相同吗?为什么? 得出:数对表示位置时不仅要用两个数,还要注意两个数的顺序。
⑤小强的位置在(3,1),他要去的地方位置在(6,5),你能沿着方格线画出他的行走路线吗? 过渡:数对能表示一个人的具体位置,平面图上一个地点,利用数对还能准确描述图形的具体位置。
二、巩固性练习:
书本第2、3、5、6、7、8题,学生先独立练习,老师再有选择、有重点地加以点评,指正(为节省课堂教学时间,这部分练习可以课前布置)。
三、发展性练习
1、移动图形
⑴、在格子图上画一个直角三角形ABC,并构建一个平面示意图,确定列和行,用数对表示这个直角三角形的三个顶点。
⑵、把三角形ABC向右平移5格再向上平移两格后的图形用A’、B’、C’标出对应的点,并用数对表示A’、B’、C’的位置。
⑶、把三角形ABC绕B点逆时针90°,得到的图形用A”、B”、C”标出对应的点,并用数对表示A”、B”、C”的位置。 2、五子棋
明明和小强下五子棋:
明明执黑子先下,小强执白子后下。 明明和小强的落子位置用数对表示是:
明明:1、(4,5) 2、(5,6) 3、(6,7) 4、(7,8) 5、(4,7) 6、(5,7)
小强:1、(5,5) 2、(6,6) 3、(3,4) 4、(8,9) 5、(4,4) 6、(7,7)
⑴、请你根据所给的信息,画出一个简单的棋盘,并在棋盘上画出黑子和白子。
⑵、你认为谁赢的可能性大?如果你是明明,你的下一步棋子准备放哪?请用数对表示。 3、涂色游戏
根据下面给出的数对给方格涂上相应的颜色,并说说涂出的图形是什么。
红色:(3,4),(4,5),(5,6),(6,7),(7,6),(8,5),(9,4),(4,4),(5,4),(6,4),(7,4),(8,4)。
蓝色:(4,1),(4,2),(4,3),(8,1),(8,2),(8,3)。 黄色:(8,6),(8,7)。
绿色:(7,10),(8,9),(8,11),(9,9),(9,11),(10,9),(10,11),(11,10)。
四、课堂总结:
用数对确定位置在生活中有着广泛的应用,同学们说说在哪些领域会用到这个知识?我们学好这个知识对于大家以后指导自己的生活,工作都有重要的作用。我们今天练习的这些内容?你觉得自己掌握的情况如何?有哪些地方还需要加强?
五年级数学上册第五单元教案5
教学内容:
教科书第94-96页的例1、例2,以及相应的“试一试”和“练一练”,练习十八第1、2题。
教学目标:
1、使学生联系分数的意义,初步掌握用分数表示具体情境中简单事件发生的可能性的方法,会用分数表示可能性的大小,进一步加深对可能性大小的认识。
2、使学生在学习用分数表示可能性大小的过程中,进一步体会数学知识间的内在联系,感受数学思考的严谨性与数学学习的趣味性。
教学重点:
理解并掌握用分数表示可能性的大小。
教学难点:
在认识事件发生的不确定现象中感受统计概率的数学思想。
教学过程:
一、创设情境,导入新课
师:老师把一个红色乒乓球和一个白色乒乓球放入黑色袋子里,让你摸一摸,它们的可能性相等吗?
生:相等。
师:如果放入两个红球和一个白球,可能性相等了吗?
生:不相等。
师:我们这节课来研究用分数来表示它们的可能性的大小。(板书课题:可能性的大小)
二、自主探索,合作交流
1、教学例1
谈话导入:同学们喜欢打乒乓球吗?如果让你来当裁判,你会用什么方法决定由谁先发球?
出示例1场景图,提问:裁判在做什么?(猜球。场景再现)
师:用猜左右的方法决定由谁先发球公平吗?为什么?
学生讨论后小结:乒乓球可能在左手,也可能在右手,猜对或猜错的可能性是相等的。
指出:用猜左右的方法决定由谁先发球时,每个运动员猜对的可能性都可以用1/2来表示。
师:你是怎样理解这里的1
/
2?
(评析:联系学生的生活实际,在游戏活动中引导学生探索事件发生的可能性,从“猜左右争夺发球权”的活动展开,既有利于激发学生参与学习活动的兴趣,又能激活学生原有的知识经验,使学生围绕这个问题展开思考和交流。)
2、同步练习
拿出装有一个红球和一个白球的袋子,问:从中任意摸出一个球,摸到白球的可能性是几分之几?
生:1
/
2
师:如果口袋里再放入一个红球,任意摸一个,摸到白球的可能性又是几分之几?
生:1
/
3
师:袋子里都只有一个白球,摸到白球的可能性怎么会不同呢?
生:第一次口袋里只有两个球,第二次口袋里有三个球。
追问:如果再往袋里放入一个白球,任意摸一个,摸到的白球的可能性又是几分之几?如果要使摸到白球的可能性是1
/
5,口袋里该怎样放球?
小组讨论,学生汇报:放5个球,其中白球1个。
(评析:通过学生熟悉的摸球活动,引导学生认识到:有几个球,摸到其中一个球的可能性就是几分之一,帮助学生进一步明确表示可能性大小的思考方法。)
3、教学例2
出示例2中的实物图,让学生说说这6张牌各是什么牌,帮助学生区分“红桃”与“黑桃”。
师:把这些牌一下反扣在桌上,从中任意摸一张,摸到红桃A的可能性是几分之几?
讨论后明确:一共有6张牌,红桃A有1张,摸到红桃A的可能性是1
/
6。
一共有6张牌,摸到每张牌的可能性都是1
/
6。
师:你还想提什么问题?
小组讨论交流汇报。
生1:从中任意摸一张,摸到“2”的可能性是几分之几?
生2:摸到方块2的可能性是1
/
6,摸到草花2的可能性是1
/
6,摸到“2”的可能性是1
/
3。
生3:一共有6张牌,“2”有两张,摸到“2”的可能性是2
/
6,也就是1
/
3。
生1:从中任意摸一张,摸到“红桃”的可能性是几分之几?
生2:这6张牌中,红桃有3张,摸到红桃的可能性是3
/
6,也就是1
/
2。
对比练习:红桃A、红桃2、红桃3、黑桃A、黑桃2五张,从中任意摸一张,摸到“红桃”的可能性是几分之几?
请学生自己提问题,自己说可能性。
汇报1:摸到A的可能性是几分之几?
汇报2;摸到红色牌的可能性是几分之几?
汇报3:摸到黑桃3的可能性是几分之几?
(评析:通过讨论使学生明确:从6张牌中任意摸到一张,每一张牌被摸到的可能性都是1/6,从而为解答下面的问题奠定认识基础。教学时,鼓励学生从多个角度进行思考,以促使学生更加透彻地把握问题的实质,丰富学生对基本思考方法的体验。)
4、同步练习
①学生口答第(1)题中的几个问题
②学生讨论:如果指针转动80次,可能有多少次停在红色区域?
指出:由于停在红色区域的可性是1
/
8,所以指针转动80次,可能停在红色区域的次数是80次的1
/
8,也就是10次。
③追问:如果把转盘上的指针转80次,停在红色区域的次数一定是
10次吗?
生:可能是10次,也可能多于或少于10次。
(评析:通过练一练,让学生先用分数表示指针转动后,停在每种颜色区域的可能性,再根据可能性推算指针转动80次,可能停在各种区域的次数。进一步加深对用分数表示的可能性大小的认识。)
三、综合练习,实践运用
1、做练习十八第一题
先让学生根据题意连一连,再指名说说思考的过程。
追问:任意摸一个球,摸到红球的可能性分别是多少?
2、做练习十八第二题
①学生读题后,引导学生列表整理题中的条件。
红色正方体6个面上的数:1、2、3、4、5、6;
绿色正方体6个面上的数:1、1、2、2、3、3;
蓝色正方体6个面上的数:1、2、2、3、3、3。
②组织比较:正方体都是6个面,为什么抛红色正方体,落下后1、2、3朝上的可能性都是1/6,而抛绿色正方体,落下后1、2、3朝上的可能性都是1/3?
③学生完成第(2)小题后,组织比较:抛蓝色正方体,落下后1、2、3朝上的可能性为什么不一样?
3、摸球比赛
师:红球4个,黄球3个,如果摸到红球算老师赢,摸到黄球算你们赢,你们愿意吗?
生:不愿意。
师:为什么?
生:摸到的红球可能性是4
/
7,摸到黄球的可能性是3
/
7,比赛不公平。
(评析:通过练习,让学生判断简单事件发生的可能性,使学生进一步积累用分数表示事件发生的可能性的经验,加深对可能性大小的认识。通过计算可能性的大小判断游戏规则是否公平,让学生用所学知识解决身边的实际问题,有利于学生在解决问题的过程中进一步掌握用分数表示可能性大小的方法,发展数学应用意识。)
总评:在游戏活动中引导学生探索事件发生的可能性,先从“猜左右争夺发球权”的游戏活动展开,既有利于激发学生参与学习活动的兴趣,又能激活学生原有的知识经验,让学生在对可能性定性描述的基础上,有意义地接受“猜对或猜错的可能性都是1
/
2”。然后借助摸牌游戏情境,让学生收集数据,并借助已有的生活经验,自主探索事件发生的可能性是几分之几。并通过练习,进一步体会数学知识间的内在联系,应用学习过可能性的知识解释一些相关的日常生活现象,提出并解决一些简单的实际问题,使学生的数学应用意识有所增强。
数学教案相关文章:
★ 小学教案模板
★ 小学教案模板