教育巴巴 > 小学教案 > 数学教案 > 五年级 >

五年级数学教案案例

时间: 新华 五年级

好的教案应该采用多种教学方法和手段,如讲解、实验、讨论等,以激发学生的学习兴趣和提高教学效果。好的五年级数学教案案例是怎样的?这里给大家提供五年级数学教案案例,供大家参考。

五年级数学教案案例篇1

教学目标

1、让学生通过找次品的操作活动和分析、归纳的理性思考,发现解决这类问题的最佳策略-把待测物品平均分3组。

2、以“找次品”活动为载体,让学生通过观察、猜测、试验、推理等方式感受解决问题策略的多样性及运用优化的方法解决问题的有效性。

3、让学生体会用缩小范围逐步逼近的方法来解决问题的数学思想,培养学生思考问题的严密性和口头语言表达的逻辑性。

学情分析

解决问题的策略研究学生已经不是第一次接触,此前学习过的“沏茶”、“田忌赛马”、“打电话”等都属于这一范畴,在这几节课的学习中,对简单的优化思想方法、通过画图的方式发现事物隐含的规律等都有所渗透,学生已经具有一定的逻辑推理能力和综合运用所学知识解决问题的能力。本节课学生的探究活动中要用到天平,在以往学习等式的性质时,学生对天平的结构、用法以及平衡与不平衡所反映的信息都已经有了很好的掌握。新课程实施以来,小组合作交流、自主探究的学习方式已为广大学生所接受,成为学生比较喜爱的主要学习方式,学生已具备一定的合作能力,在小组学习中学生能够较好地分工、合作、交流,较好地完成探究任务。

重点难点

教学重点:

发现解决这类问题的最佳策略。

教学难点:

理解并认可最佳策略的有效性。

教学过程

活动1【导入】创设情境、激发兴趣

1、看视频,谈感受。

播放美国“挑战者”号航天飞机失事的视频。看后你从中了解到什么信息?你有什么感受?

2、发现次品。

生活中经常会有一些产品与合格产品不一样。有的是外观瑕疵,有的是成分不过关,还有的是产品的质量与正常的不同……我们把这些不合格的产品称为“次品”。(板书:次品。)你身边有哪些次品?和同学交流。

今天我们要找的次品的就是外观一样,质量不同,或轻一些、重一些的次品。(板书:找)

活动2【讲授】初步感知、寻找方法

1、出示例题。

有81瓶木糖醇,其中有一瓶少了10片,可以用什么办法把它找出来呢?

数一数,掂一掂,摇一摇等方法,选择最优化的方法,用天平。

2、天平的原理。

如果两端重量相等,天平就平衡;如果不相等,重的一端下沉,轻的一端上扬。

3、华罗庚的数学思想。

让学生自由猜测称的次数。

师:同学们猜的结果不一样,可能是数量太大了。数学中有种方法叫做“化繁为简”,这正和华罗庚思想不谋而合,让我们从数量较小的来研究吧!

活动3【活动】自主探究、方法多样

1.研究2瓶

师:如果利用天平来测量,至少需要几次可以找出次品呢?板书做好记录:2次(1,1)

2.讨论3瓶的问题

如果利用天平来测量,至少要称多少次才能保证找出来呢?生叙述称球的过程。板书记录:3(1,1,1)

注重天平一共有3个空间可以利用,这样节省次数。生将探究结果填入导学案中。

3.研究4-8瓶的问题

如果利用天平来测量,至少要称2次才能保证找到次品的可以是几瓶?

学生以小组为单位,运用手中的小圆片动手操作,并记录在导学案中。

课件出示小组活动要求。

(1)把待测物品分成了几份?每份几个?

(2)如果天平平衡,次品在哪里?如果天平不平衡,次品又在哪里?

4.重点汇报8瓶的设计方案。

(1)师引导学生:比较3、4种分法,并展开讨论:想想为什么方法3的次数是最少的?你觉得它会和什么有关系呢?

(2)师小结:所以我们在找物品的次品时,把待测的物品平均分成3份是最好的。板书:把待测物品分3份。

(3)师:比较1、2、3种分法,讨论为什么同样分3份,为什么第3种方法只用了2次哪?

(4)师小结:所以我们在找物品中的次品时,只要把物品平均分成3份,如果不能平均分成3份,就尽量平均分成3份。每份之间的差尽可能少。板书:每份之间的差尽可能少。

5.研究9瓶

学生根据总结的方法直接说出次数,小组验证。

活动4【练习】拓展提高,优化方案

1.运用掌握的方法找方法:12瓶、15瓶、24瓶需要几次能找到次品?

2.举一反三:从26瓶木糖醇中,找到一个次品,至少称几次一定能找出次品?在导学案上完成。

3.发散思维:有2187瓶矿泉水,其中2186瓶质量相同,另有1瓶是盐水,比其他的水略重一些。至少称几次能保证找出这瓶盐水?

五年级数学教案案例篇2

教材简析

这部分内容是在学生充分理解了四则运算的意义和会用字母表示数的基础上进行学习的。教学重难点是结合具体情境理解等式和方程的意义和用方程表示简单的等量关系。

本信息窗展示的是国家一级保护动物白鳍豚、大熊猫、东北虎的图片以及相关文字说明。其主要信息有白鳍豚数量的变化情况;野生和人工养殖的大熊猫数量的关系;20__年与20__年人工繁育东北虎数量的比较。根据上述信息,引导学生提出相应问题,进而研究方程的意义。

教学目标

1、结合具体情境理解方程的意义,会用方程表示简单的等量关系。

2、借助天平让学生亲自参与操作和实验,在经历天平由平衡不平衡平衡的动态过程中,加深对方程及等式意义的理解。

3、使学生在学习数学知识的同时,体会数学与生活的密切联系,唤起学生保护珍稀动物的意识。

教学过程

一、创设情境激趣导入

谈话:同学们,你们喜欢小动物吗?今天老师带来了国家一级保护动物的几幅图片。(课件出示信息窗1的三幅动物图片)

我们应该保护这些濒临灭绝的珍稀动物。今天这节课,就以这三种动物为话题,来研究其中的数学问题。

【设计意图】通过介绍国家一级保护动物白鳍豚、大熊猫、东北虎的数量变化情况的情境引入课题,学生比较感兴趣,乐于探究,激发了学生的研究兴趣。

二、合作探究获取新知

1、找出白鳍豚这组资料的等量关系,用字母表示。

(1)提问:我们先来看白鳍豚的这组资料,你获得了哪些信息?

白鳍豚是国家一级保护动物,濒临灭绝。1980年约有400只,比20__年多300只。

(2)根据情境图所提供的信息你能提出什么问题?引导学生提出:根据1980年约有400只,比20__年多300只这句话写出等量关系式。

(3)先自己写一写,再与小组内的同学交流。

20__年只数+300只=1980年只数

1980年只数-20__年只数=300只

1980年只数-300只=20__年只数

(4)教师板书20__年只数+300只=1980年只数这个等量关系式,并提问:你能用含有字母的式子表示这个等量关系吗?先自己想一想,再把你的想法在小组里交流。

学生汇报:如用a表示20__年的白鳍豚只数,上面的等式就可写成a+300=400。

(5)教师小结:刚才大家用了不同的字母来表示未知数。其实一般情况下,我们用字母x来表示未知数。上面的等式就可写成x+300=400(板书)。

【设计意图】由于直接让学生用含有字母的等式表示出白鳍豚20__年只数和1980只数之间的关系,对于学生来说有一定的难度,因此把这个问题进行细化,减少坡度,学生容易理解掌握。

2、借助天平理解等式的意义。

根据x+300=400:等号左边求得是哪一年的只数?(1980年的只数)等号右边是哪一年的只数?(1980年的只数)

像上面这样表示左右两边相等的等式有哪些特点呢?下面,我们借助天平来研究一下。(出示天平)

(1)提问:你对天平有哪些了解?(如果学生对天平的用途、构造及使用方法不了解,教师可以做简单的介绍。)

(2)天平的左盘放了一个正方体,右盘是100克的砝码。放正方体的一头重。

提问:你发现了什么?你能想办法让天平平衡吗?

右盘加上50克的砝码,天平平衡了。

(3)天平左盘放入10克砝码,右盘放入20克砝码。

提问:观察天平平衡了吗?如何使它平衡?(左边再加上10克的砝码就平衡了。)

提问:根据天平平衡的道理,你能用一个等式表示这个天平左右两边的关系吗?

10+10=20(板书)

(4)天平左盘放入一个20克砝码和一个小正方体,右盘放入50克砝码。

谈话:小正方体的重量我们不知道,可以用X克来表示。用一个等式表示天平左右两边的关系,可以怎样写。

20+x=50(板书)

(5)出示两台平衡的天平:一台左盘放两个50克砝码,右盘放一个100克砝码。另一台左盘放4个x克的小方块,右盘放一个200克砝码。

要求:用等式表示出天平左右两边的关系。

50+50=1004x=200(板书)

(6)谈话:通过前面的实验,我们知道天平平衡的现象可以用等式来表示。像前面我们研究的x+300=400借助天平就容易理解了。

【设计意图】此处这样设计旨在让学生借助天平的平衡原理,引导学生通过动手操作和实验,在经历天平由平衡不平衡平衡的动态过程中,初步体验和感受方程的含义。

3、找出大熊猫这组资料的等量关系,再写出含有未知数x的等式。

(1)提问:继续看大熊猫的资料,你获得了哪些信息?

20__年,我国野生大熊猫约有1600只,是人工养殖大熊猫数量的10倍。

(2)你能用含有字母x的等式表示出大熊猫20__年人工养殖的只数与野生的只数的关系吗?

师生总结:

您现在正在阅读的青岛版小学数学五年级上册《方程的意义》教学设计文章内容由收集!本站将为您提供更多的精品教学资源!青岛版小学数学五年级上册《方程的意义》教学设计人工养殖的只数10=野生的只数

10x=1600

如果用x表示人工养殖大熊猫的只数,那么x10=1600

(3)学生打开教科书57页,结合图示进一步理解以上等量关系。

【设计意图】通过用含有字母x的等式表示情境中数量间的相等关系,引导学生进一步体会方程的意义。

4、找出东北虎这组资料的等量关系,再写出含有未知数x的等式。

(1)提问:继续看东北虎的资料,你获得了哪些信息?

预计到20__年,全国最大的东北虎繁育基地的东北虎数量将达到1000多只,比20__年的3倍还多100只。

(2)提问:根据以上信息你能提出什么问题?

引导学生提出:先用文字表示出东北虎20__年的只数与20__年只数的等量关系,再用含有X的等式表示,最后画一画,在天平上表示出这个等式。

(3)先自己写一写,再与小组同学交流。

学生汇报:

20__年的只数3+100=20__年的只数

列式为:3X+100=1000(板书)

画图为:天平的左盘是3个X和一个100,右盘是1000。

提问:这里的X表示什么?(x表示20__年的只数。)

【设计意图】有了前面合作学习的基础,第三幅情景图的学习完全可以放手让学生自己研究,符合学生的认知学习规律。

5、揭示方程的意义。

(1)提问:刚才我们研究出这么多的等式,像x+300=40010+10=2020+x=5050+50=1004x=20010x=16003X+100=1000,你能给它们分分类吗?

引导学生分成两类:含有字母的是一类,不含字母的是一类。

我们把含有未知数的这类等式叫做方程。(板书)

(2)组织学生讨论:X+5是不是方程?2+3=5是不是方程?说明理由。

(3)组织学生交流:判断是不是方程,你觉得必须符合什么条件?

方程必须含有未知数,还必须是等式。

【设计意图】通过分类比较、归纳总结,让学生发现方程的本质特征,进而提高学生比较、分析、判断、归纳的学习能力。

三、巩固练习加强应用

1、出示自主练习1下面哪些式子是方程?让学生说说判断的依据是什么。

2、出示自主练习2,看图列方程。

学生独立完成,说说自己是怎样想的。

3、出示自主练习3,填一填。

学生独立完成。

【设计意图】练习题的设计是有层次性的,第1题判断哪些式子是方程,考察了学生对方程意义的理解;第2题重点使学生明确要根据天平平衡时左边质量=右边质量的关系列出方程;第3题则结合具体的情景,让学生写出等量关系式并列出方程,进一步加深了学生对方程意义的理解。

四、回顾反思总结提升

谈谈这节课你有哪些收获?

总结:这节课我们以国家保护动物为话题,认识了方程,方程可以为我们的解决问题带来很多方便。

总设计意图:

本节课的设计充分关注了学生已有的知识经验,结合具体的问题情境,引导学生通过操作、实验、分析、比较,归纳出了方程的意义。教学中教师没有将等式、方程的概念强加给学生,而是充分尊重学生原有知识水平,结合具体情境,引导学生分析数量间的相等关系,再用含有未知数X的等式表示出等量关系,并用天平平衡原理来解释各数量之间的相等关系,使学生理解等式及方程的意义,尊重了学生年龄特点和认知水平。

教学中为学生创设了多次问题情境,引导学生独立思考和小组合作研究。如用含有字母的式子表示出白鳍豚20__年和1980年数量关系式,用含有x的等式表示熊猫、东北虎的数量变化情况等。

总之,本节课从学生认知规律和知识结构的实际出发,让他们通过有目的的交流、讨论,主动构建自己的认知结构,一方面调动了学生的学习热情,另一方面使学生借助集体思维,加深对方程意义的认识,激发了学生的探究欲望,培养了学生的学习兴趣。

五年级数学教案案例篇3

一、复习

1、3.6×0.47.25×0.8板演

2、把240缩小10、100、1000、10000是()

同步口答追问指出:移动小数点位数不够添0补足。

3、评议追问算法随即揭题

二、新课

1、例30.36×0.24

试算集体评议比一比一样对吗?追问:为什么积的十分位上是0?

你能用交换因数位置的方法验算吗?

结果怎样?说明什么?

2、例4小明体重35.5千克,爸爸体重是小明的1.8倍,爸爸体重多少千克?

集体读怎样列式?为什么用乘法?35.5×1.8表示什么意思?

估计积比35.5大还是小?为什么练习简评

3、香蕉买多少元?

每千克3.6元

师引出第一条规律,生说规律2、3。

一个大于0的`数乘,积这个数

应用规律比较大小

3.2×0.8○3.2

0.56×1○0.56

0.63×1.1○0.63

0.9×2.7○2.7

三、练习

练一练1

练一练2

四、收获

五、作业

五年级数学教案案例篇4

l 教学目标:

1、在操作、探究活动中,逐步理解一个整体,建立单位“1”的概念,理解分数的意义。

2、在学习过程中,培养学生的思维能力和应用意识。

3、体会数学与生活的密切联系,进一步增强学好数学的信心。

l 教学重点:

理解单位“1”和分数的意义。

l 教学难点:

理解单位“1”和分数的意义。

l 教学准备:

教具准备:自制教学课件

学具准备:小棒、练习纸

l 设计意图:

《小学数学新课程标准》指出:数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。在课前通过与学生的谈话引出分数后,短短的一句“关于分数,你已经知道了什么”唤起学生已有的知识经验,找到了新知与旧知的链接点,接着又借助媒体教学手段向学生介绍分数的由来,适时渗透了数学文化思想。使学生的思维开始了“起跑”。

作为学生学习的组织者、引导者与合作者,我力求引在核心处,拨在关键处,让学生自主探究、补充概括,借助于课堂这个思维“运动场”,不着痕迹地引导学生理解分数的真正含义。从引导学生“起跑”到“加速”,最后“冲刺”,水道渠成,促使每个学生获得成功的体验。

l 教学过程:

一、谈话导入

1、通过师生之间的谈话引出分数。

2、关于分数,你已经知道了什么?

3、 提出要求:

师:从刚才的表现可以看出__班的同学们都很棒。呆会儿合作时,先听清楚老师的要求再动口说一说、动手做一做,可以吗?

二、分数的产生

1、板书课题

师:课前我们一起聊到了分数,今天这节课我们继续来认识分数。

师:你知道古人是怎样表示分数的吗?让我们一起来看一看。

三、理解分数的意义

1.理解一个整体

(1)、找出各种材料的1/4。

师:今天老师带来了一些材料,你能分别找到它们的四分之一吗?

师:那就请同学们开动脑筋,分一分、涂一涂,找出它们的1/4。

然后同桌之间说一说,你是如何找到它们的1/4的。听明白了吗?

(2)、汇报交流

教师进行规范:

生:我把正方形平均分成4份,这样的一份就是这个正方形的1/4。

生:我是把这条线段平均分成4份,这样的一份就是这条线段的1/4。

突出整体:

师:这里的1/4是如何得到的呢?

生:我把4个苹果平均分成4份,这样的一份就是这个整体的1/4。

师:这是他的想法,还有不同想法吗?

生:把4个苹果看作一个整体,平均分成4份,这样的一份就是这个整体的1/4 。

师:说得不错。只要把这4个苹果看作一个整体,平均分成4份,这样的一份就是这个整体的1/4。

进行知识迁移:

生:我是把8个三角形看作一个整体,平均分成4份,这样的一份就是这个整体的1/4。

(3)小结:

提问:刚才我们在不同的材料里找到了四分之一,找的过程中有什么相同的或不同的地方。

不同点:材料不同。

跟进:但我们都把这些材料看成了一个整体,这个整体可以是一个物体也可以是多个物体。

相同点:都是把这个整体平均分成4份,表示了这样的一份,得到了这个整体的四分之一。

2、理解单位“1”。

(1)深化理解一个整体

学生自主创作:

师:现在,老师为同学们准备了一些小棒。同桌合作,任选一些小棒,分一分、找一找他们的1/4。开始吧。

交流汇报:

师:你用几根小棒表示1/4?你把几根小棒看作一个整体?你能说说这个1/4的含义吗?(多说几个)

师:一根可以用四分之一表示、两根也可以用四分之一表示、三根、四根都可以用四分之一表示。也就是说把什么平均分成4份,每份就可以用1/4进行表示呢?——一个整体

学生说4根小棒、8根小棒,师:4根小棒、8根小棒都可以看作一个整体

(2)揭示单位“1”。

师:说的真好。在数学中,通常把一个整体叫做单位“1”。把单位“1”平均分成4份,这样的一份可以用1/4来表示。(板书单位1)

师:刚才我们通过动手画一画、分一分等方法,深入理解了四分之一的含义。下面我们一起做一个猜数游戏,准备好了吗?

师:如果一个菠萝用三分之一表示,他是把什么看作单位1呢?——果然如此。

师:如果2个橘子用五分之一来表示,她的单位1,又是多少呢?你是怎样想的?

师:同学们真是了不起!已经能很快地找到单位1了。

3.理解分子、分母的含义

(1)、找其他分数

师:刚才我们把4个苹果、8个三角形分别看作单位1,平均分成4份,找到了1/4。现在请你继续观察,还能发现其他的分数吗?

那就请同学们动手涂一涂,用阴影表示出这个分数,并把这个分数写在下方,再和你的同桌说一说这个分数的含义。

(2)、汇报交流

师:谁愿意和大家交流一下你所找到的分数?

生:把4个苹果看作单位1,平均分成4份,这样的2份就是2/4。

(3)比较:

师:在刚才同学们动手涂一涂,写一写的时候,老师发现,有些同学找到了,这几个分数。(课件使用说明:点击课件出现:

师:观察这些分数,你发现了什么?

生:分母都是4

师:为什么分母都是4呢?

生:因为都是平均分成了4份

师:把什么平均分成4份?——单位“1”。

师:要是单位“1”平均分成5份,分母是几呢?——5。平均分成6份——分母就是——6。

师:分母其实就是表示——平均分的份数

师:同学们的观察力可不一般呐。还有什么发现吗?

生:分子各不相同,都差1

师:分母为什么会不一样呢?

生:取的份数不同

师:平均分成4份,取这样的一份就是1,两份就是——2,三份就是——3

师:分子其实就是表示——取的份数

师:同学们不仅观察能力强,分析、概括能力也很出色。

4. 揭示分数的意义。

(1)逐步理解分数的意义

师:我们通过动手分一分,涂一涂等方法已经认识了很多的分数。

现在老师再写一个分数5/9,你能说说它的含义吗?

生:把单位“1”平均分成9份,这样的的5份,就是单位1的5/9。

师:已经会用单位1来说了,真好。谁也愿意来试一试呢?

生:把单位“1”平均分成9份,这样的的5份,就是单位1的5/9。

师:说的真好。如果不是平均分成9份,板书5/( ),那么它的含义是什么呢?

生:把单位“1”平均分成很多份,取这样的5份,就是5/( )。

师:很多份可以是几份?——2份,3份……

师:我们可以用一个词来表示(板书:若干份)

师:如果取的份数也不是5份了,板书( )/( ),那么这个分数的含义是什么呢??

生:把单位“1”平均分成若干份,取这样的若干份,就是( )/( )

师:可以取这样的一份,也可以取这样的……几份。

小结:像同学们所理解的,把单位“1”平均分成若干份,这样的一份或几份都可以用分数来表示。(板书)这就是我们今天所学的分数的意义。我们一起来读一读。

(2)理解分数单位

师:分数和整数一样,也有计数单位。像这样表示其中一份的数我们叫做分数单位。

1/4,2/4,3/4,4/4的分数单位就是——1/4

师:5/9的分数单位?

生:1/9

师:5/99

生:1/99

师:( )/1000

生:1/1000

师:老师都还没说分子呢,你怎么就知道分数单位了?

生:分数单位就是表示一份的数

师:也就是说一个分数的分母是几,这个分数的分数单位就是——几分之一

师:那3/4里有几个这样的分数单位呢?5/9里有几个这样的分数单位呢?

5.总结:今天这节课,我们一起合作学习了什么?你有什么收获?

四、练习巩固。

师:看来同学们的收获还真不少。请同学们在括号里填上适当的分数。

1.填一填

(1)说说3/5的意义

(2)同意吗?

(3)3/8的分数单位是多少?有几个这样的分数单位。

2、点击生活

哪位同学愿意来读一读,并说说其中分数的意义。

(1)、我校五年级学生约占全校学生的1/6

(2)、长江约3/5的水体受到不同程度的污染

师:还有几分之几的水体没受污染呢?

师:受污染水体多还是没受污染的水体多?——怎么想的?

师:有什么想说的?——要保护环境

师:看来同学们很有环保意识。那你希望,长江受污染的水体占长江水体的几分之几呢?

师:大家都有美好的希望,那就让我们拿出实际行动,共同来保护环境。

(3)、姚明的头部高度约占他身高的1/8

师:我们的身体中还蕴藏着很多分数,有兴趣的同学课后可以去查一查资料。

五、总结全课、质疑问难

师:这节课我们学习了什么?你有什么收获?还有什么问题?

五年级数学教案案例篇5

教学目标

1.使学生掌握求相遇时间应用题的结构特点,并能正确解答求相遇时间的应用题.

2.提高学生分析问题,解决问题的能力.

3.培养学生大胆尝试,勇于探索的精神.

教学重点

1.找到与求路程应用题的内在联系.

2.正确分析解答求相遇时间的应用题.

教学难点

掌握求相遇时间应用题的解题思路.

教学过程

一、复习引入

(一)出示复习题

小东和小英同时从两地出发,相对走来.小东每分走50米,小英每分走40米.经过3分钟两人相遇.两地相距多远?

1.画图,列式解答.

2.订正答案

3.小组讨论:试着改编一道求相遇时间应用题.

二、探究新知

例4.两地相距270米.小东和小英同时从两地出发,相对走来.小东每分走50米,小英每分走40米,经过几分两人相遇?

1.讨论:复习题的线段图该怎样改一改.并试着画一画.

2.联系复习题的解法,尝试解答

3.订正思路

想法一:两人相遇时,所走的路程是270米.几分走270米,就是几分相遇.

270(50+40).

想法二:根据复习题速度和相遇时间=路程,依据乘法的因积关系可得:

相遇时间=路程速度和.

三、反馈调节

两人同时从相距6400米的两地相向而行.一个人骑摩托车每分行600米,另一人骑自行车每分行200米,经过几分两人相遇?

1.学生独立分析解答.

2.订正答案.

3.质疑:对于求相遇时间应用题还有什么问题?

4.教师提问

(1)要求相遇时间题目中需告诉我们哪些条件?

(2)例4与复习题之间有什么联系?又有什么区别?

四、巩固练习

(一)从北京到沈阳的铁路长738千米.两列火车从两地同时相对开出,北京开出的火车,平均每小时行59千米;沈阳开出的火车,平均每小时行64千米.两车开出后几小时相遇?

(二)两艘军舰同时从相距948千米的两个港口对开.一艘军舰每小时行38千米.另一艘军舰每小时行41千米.经过几小时两艘军舰可以相遇?

教师提问:怎样验证结果是否正确?

(三)两个工程队合开一条670米的隧道,同时各从一端开凿.第一队每天开12.6米,

第二队每天开14.2米.这个隧道要用多少天才能打通?打通时两队各开凿多少米?

(四)长沙到广州的铁路长726千米.一列货车从长沙开往广州,每小时行69千米.这

列货车开出后开往广州,每小时行69千米.这列货车开出后1小时,一列客车从广州出发开往长沙,每小时行77千米.再过几小时两车相遇?

五、课后小结

我们今天所学的相遇问题与以前学习的行程问题有什么主要联系和区别?通过学习你有什么体会?

五年级数学教案案例篇6

教学目标:

1.掌握长方体和正方体的特征,认识它们之间的关系。

2.培养学生动手操作、观察、抽象概括的能力和初步的空间观念。

3.渗透事物是相互联系,发展变化的辩证唯物主义观点。

教学重点:

1.长方体和正方体的特征;

2.立体图形的识图。

教学难点:

1.长方体和正方体的特征;

2.立体图形的识图。

教具准备:

教具:长方体框架、长方体、正方体、圆柱、圆台、长方台等;投影片;动画。学具:长方体和正方体纸盒。

教学设计:

一、复习准备

1.请同学们自己画一个已经学习过的平面图形;再请每位同学用手摸一摸画出的图形;老师明确:这些图形都在一个平面上,叫做平面图形。

2.教师摆出长方体、正方体、圆柱、圆台、长方台、墨水瓶盒等。教师提问:这些物体的各部分都在一个面上吗?(不是)教师明确:这些物体的各部分不在一个面上,它们都是立体图形。

3.引入:今天这节课我们要进一步认识长方体有什么特征。

教师板书:长方体的认识

二、学习新课

(一)长方体的特征

1.请同学取出自己准备的长方体。教师提问:请用手摸一摸长方体是由什么围成的?请用手摸一摸两个面相交处有什么?请摸一模三条棱相交处有什么?

教师板书:面、棱、顶点

2.参考讨论提纲来研究长方体的特征。

【演示动画“长方体的特征”】

讨论提纲:

①长方体有几个面?面的位置和大小有什么关系?

②长方体有多少条棱?棱的位置、长短有什么关系?

③长方体有多少个顶点?

教师板书:长方体:

面:6个,长方形(也可能有两个相对的面是正方形),相对的面完全相同。

棱:12条,相对的4条棱长度相等。

顶点:8个。

教师:请完整地说一说长方体的特征。

3.比较立体图形与平面图形的区别。

老师提问:长方体是立体图形,画在纸上如何与平面图形区别呢?请观察,你能看到几个面?哪几个面?你能看见几条棱?哪几条棱?

教师介绍长方体的画法:看不见的棱画在图纸上用虚线表示,最后面画出的是长方形,其它的面画出的是平行四边形。

4.出示长方体框架观察。

教师提问:框架上的12条棱可以分几组?怎样分?相交于一个顶点的三条棱长度相等吗?

教师明确:相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。

(二)正方体特征

1.【演示动画“正方体的特征”】

教师提问:看一看新得到的长方体与原来长方体比较有什么变化?(长、宽、高变为相等,六个面都变成了正方形,长方体变为正方体)

2.对照长方体的特征学生自己研究正方体的特征。学生讨论、归纳后,

教师板书:正方体:

面:6个完全相同的正方形。

棱:12条棱长度都相等。

顶:8个。

3.学生讨论比较长方体和正方体的特征。

相同点:面、棱、顶点的数量上都相同;

不同点:在面的形状、面积、棱的长度方面不相同。

教师提问:看一看长方体的特征正方体是否都有?试说一说长方体和正方体的关系。

(正方体是特殊的长方体)

五年级数学教案案例篇7

课型:

新授

教学内容:

教材P5~6例3、例4及练习二第1、9题。

教学目标:

知识与技能:

理解并掌握小数乘小数的计算方法,会正确进行笔算,并且会运用该知识解决一些实际问题。

过程与方法:

在小组讨论中探究、发现、感悟小数乘小数的计算法则,提高计算能力。

情感、态度与价值观:

渗透转化的数学思想,感受数学知识间的内在联系,培养科学、严谨的学习态度。

教学重点:

在理解小数乘法和小数意义的基础上掌握计算方法。

教学难点:

让学生自主探究小数乘法的计算方法并正确地进行笔算。

教学方法:

观察、分析、比较。

教学准备:

多媒体。

教学过程:

一、复习引入

1.口算。0.7×59×0.81.2×60.23×314×31.4×3

口算后提问:从14×3和1.4×3的口算中,你有什么发现?

2.列竖式计算。26×71.36×1230.8×25

学生独立完成,指名板演,订正时让学生说一说计算的过程。

3.引入新课。我们已经掌握了小数乘整数的计算方法,那么小数乘小数又该怎样计算呢?这节课我们来探究这个问题。(板书课题:小数乘小数)

二、自主探究

1.创设情境,引入问题。出示教材第5页例3的主题情境图。

师:观察图片,说说你发现了什么?(学校有一个长2.4米、宽0.8米的宣传栏。现在学校要给它刷油漆,一共需要多少千克油漆?)

师:给宣传栏刷油漆,一共需要多少千克油漆?该怎样计算呢?

全班交流,然后说出解决问题的方法。

师:我们该如何解决问题呢?

生:要算出一共需要多少千克油漆,需要先求出宣传栏的面积。

师:那么怎样求宣传栏的面积呢?如何列式呢?生:2.4×0.8

师:这个式子中,两个因数都是小数,该如何计算呢?

生1可以用竖式计算:×0.8

生2:也可以把它们可作整数来计算(下左)。

师:那么如何求一共需要多少油漆呢?

生:算式是1.92×0.9,可以仿照上面同样的方法计算。(上右)

所以一共需要1.728千克油漆。

师:同学们能说说我们在列竖式计算小数乘法时,要注意什么吗?

学生小组交流讨论,老师加以总结。

小结:所有小数右边的数一律对齐,其他小数位从右往左依次对齐。

师:看一看算式的两个因数中一共有几位小数?积呢?

生:两个因数中一共有2位小数,积也有2位小数。

2.探究小数乘法的计算方法。完成P6例4上面的填空。

(l)组织学生尝试完成教材第5页的“做一做”。

(2)学生独立计算后,指名板演并汇报自己是怎样计算的,然后集体订正。

(3)教学例4。0.56×0.04

师:这个算式中的两个因数都是两位小数,通过列竖式计算,我们能发现一个问题,即这个算式中,乘得的积的小数位数不够,那么如何点小数点呢?

学生讨论,教师板书。

师:乘得的积的小数位数不够时,要在前面用0补足,再点小数点。

师:观察黑板上各题,小组讨论。(出示讨论提纲。)

讨论提纲:①小数乘小数,我们首先怎样想?

(把两个因数的小数点去掉,转化为整数乘法。)

②怎样得到正确的积?(因数扩大到它的几倍,积就缩小到它的几分之一。)

③积的小数位数和两个因数的小数位数有什么关系?能举例说明吗?

(教师以竖式中的因数的小数位数和积的小数位数为例,说明因数中一共有几位小数,积就有几位小数,积的小数位数不够时,要在前面用O补足。)

3.根据上面的分析,想想小数乘法是怎样计算的?

学生讨论后,教师组织学生交流,回答上面的问题,归纳出计算小数乘小数应该注意哪些问题。

生:小数乘小数,先按整数乘法计算,再看因数中一共有几位小数,就从积的右边起数出几位,点上小数点。当积的小数位数不够时,要在前面用0补足,再点小数点。

教师引导学生讨论、归纳,进一步得出“1看、2算、3数、4点”。

三、巩固练习

1.不计算,说一说下列各题的积有几位小数。

2.3×0.40.08×0.97.3×0.06

9.1×0.030.25×0.2345.9×3.5

提问:怎样判断积有几位小数?

2.用竖式计算。(教材第6页“做一做”的第1题)

提问:你是怎样计算0.29×0.07的?

3.完成教材第6页“做一做”的第2题。先由学生独立完成,然后集体订正。

师:分别比较积和第一个因数的大小,你能发现什么?小组交流讨论,教师总结。

师:一个数(0除外)乘大于1的数,积比原来的数大。

一个数(O除外)乘小于1的数,积比原来的数小。

四、课堂小结

师:请同学们想一想,我们今天学到了哪些知识?你有什么收获?在计算小数乘法时应注意什么?(学生发言,说说自己的收获,并回答问题,教师予以点评。)

作业:教材第8~10页练习二第1、9题。

板书设计:

小数乘小数

2.4×0.8=1.920.56×0.04=0.0224

1看、2算、3数、4点

五年级数学教案案例篇8

【教学内容】

教科书第58页综合应用:设计长方体的包装方案。

【教学目标】

1、通过设计长方体的包装方案让学生认识到在体积相同的情况下,表面积与它的长、宽、高的相差程度有关的道理。

2、通过数学活动,运用所学知识,获得解决简单实际问题的经验、方法以及成功的体验。

3、培养学生的创新意识、策略意识、实践能力和空间观念。

【教学重点】

让学生体验到,在体积相等的情况下,要使表面积较小,长、宽、高应越接近的道理。

【教具学具】

为每组学生准备8个规格为16×8×4(单位:cm)的长方体纸学具盒,包装纸,直尺,透明胶,剪刀等。

【教学过程】

一、课前引入

师:观察自己桌上的学具盒,你发现这些学具盒有什么特点?

生:形状都是长方体,每个盒子的规格都是16×8×4(单位:cm),每组都有8个。

师:如果我们要将这8个长方体盒子包装成1盒,怎样包装更省包装纸呢?今天我们就运用所学知识解决这个问题。(板书课题)

二、设想与摆放

1、设想与摆放

设想:

(1)要将这些长方体的盒子包装起来,在包装的过程中要考虑哪些问题呢?

(2)要达到节省包装纸的目的,应该考虑哪些问题?学生思考后发表意见:要想节约包装纸,学具盒中间不能留空隙,表面要平整;摆法不同,所用的纸的大小不同;接头处尽量不要浪费等等。

(3)明确长方体盒子的摆法不同是造成包装纸用量大小的主要原因。

2、记录与计算

(1)你认为造成所需包装纸大小不同的主要原因是什么?所需包装纸的面积=所摆的长方体的表面积+接头部分用纸量(按2dm2计算)

生:摆成的大长方体的表面积越大,所用的包装纸越多,反之就少。

(2)究竟哪种摆法会更节约包装纸呢?

师:你们可以先将几个盒子摆一摆,量出所摆的长方体的长、宽、高,计算出摆成的不同长方体的表面积,从而算出所用包装纸的面积,并将数据和计算过程记录下来。

(3)小组合作:记录3种不同摆法下的包装纸用量,并选择一种用纸最少的方案。

为什么这种方案的用纸量会最少?在全班进行交流。

三、交流与比较

比一比谁的方案用纸少,并分析出用纸量不同的原因。

重点思考并讨论:

为什么同样是将8个学具盒打捆包装,表面积的大小会不相同?影响表面积大小的主要原因是什么?将分析的原因记录下来。

四、发现与思考

通过本次包装设计,你有什么发现?

1、物体重合的面积越大,表面积就越小,包装用的纸也就越少。

2、同样的体积下,长方体的表面积与它的长、宽、高的长度有关,长、宽、高的长度越接近,表面积就越小,当长、宽、高相等时,它的表面积最小。

五、知识拓展

师:解决用料省的问题在生活中有什么意义?联系实际谈自己的想法。

师:现在老师这里有20本数学书,想想看,怎样摆表面积最小?为什么?

六、课堂小结

这节课我们学习了什么?你有什么收获?说一说。

五年级数学教案案例篇9

教学要求

(1)通过观察和动手操作等教学活动,使学生初步学会收集原始数据和分类整理的方法。

(2)通过有说服力的数据使学生受到爱国主义教育。

教学重点收集数据的方法。

教学用具

(1)用投影制作出教材的复习题

(2)学生每人准备一枚一元的硬币。

教学过程

一、创设情境

我们已学过收集静止的数据,如:第1页的复习题(投影显示)。

1、点一名学生上来完成下面的统计表和条形统计图,其余的学生做在书上。

2、统计一下我们班同学寒假里读课外书的数量情况。

以前我们学习的是收集静止事物的数据,如复习题,但有的时候要收集的数据往往不是静止的,要随着时间的变化逐个收集和积累,这时就要采用另外的方法来收集和积累数据。今天我们进一步学习:

(板书课题)数据的收集和整理

二、探索研究

1、探索收集数据的方法。

放:例1中的路口在10分种内各种机动车通过的录像,让学生看。

(1)小组合作,探索研究

①各种车辆的出现有没有规律?

②在这种情况下,怎样才能准确无误地记下各种车辆通过的数据?

③小组讨论:用什么方法记录数据?

④汇报展示,统一方法。

(2)学生实际操作。

每人拿出一张纸写出各种车辆名称,然后听老师报通过的车辆,并画“正”字记载。

讲:你们纸上收集的数据是原始数据。为了清楚地表示10分种内各种机动车通过路口的辆数和总辆数,需要把这些数据加以整理,制成统计表或条形统计图。

2、数据的整理。

(1)统计表。

想:这个统计表该怎样制?要分几栏?

(2)条形统计图。

投影显示教材第2页空白的条形统计图。

想:①图中的每格代表几?

②每种车的辆数如何用竖条表示出来?

③如果收集的数目较大怎样办?

做:让学生翻开书第2页,将条形统计图补充完整。

三、实践操作

1.让学生拿出准备好的硬币,按照刚学的数据的收集和整理的方法进行,并填好书上的统计表。

2.课堂作业。

做练习一的第1题。做练习一的第3题。

四、课外实践

收集本班同学家庭人口数的数据,并按照所学的整理数据的方法进行整理。

课后反思:学生是学习的主体,依照他们积累的经验解决问题,是新课程观的具体体现。是我们每一位教师都应该深入研究的课题。

课题二:数据的收集和整理

教学要求①使学生认识分组整理和编制统计表的意义;②初步学会分组整理原始数据的方法;③学会填写简单的统计表。

教学重点分组整理原始数据的方法。

教学用具放大例2的两张统计表。

教学过程

一、创设情境

1.我们复习一下已学过的简单数据整理和一些统计表的知识。

2.下面是某班数学兴趣小组中女同学测量身高的统计表。

姓名:

平均:

身高:(厘米)

独立之后思考回答问题:

①如何求出这组女同学的平均身高?

②这组女同学的身高有什么特点?

③最高的女同学比最矮的女同学高多少厘米?

④如果这张表上的女同学很多,又不能清楚地看出她们身高的分布状况,怎么办?这节课我们学习把原始数据按照数量的大小划分成几组,再制成统计表。

二、探索研究

1.分组整理原始数据的方法。

(1)教师出示记录单,学生独立思考

①谁最高?身高多少?

②谁最矮?身高多少?

③身高大多在什么范围?(很难看出,要分组整理一下)

(2)小组讨论:

怎样分组整理?说说你的设想。

(3)分组整理的具体做法(对照着做):

①找出原始数据的范围(学生找出记录单中原始数据的范围)。130~154厘米。

②把数据的范围划分成几组并按照一定的顺序排列制成表。(按5厘米一组可分为五组,再分成“身高”和“人数”两栏制好表并出示例2的统计表)

③统计各组中的数目,填写统计表(用画正字的方法收集数据并让学生填好统计表)。

(4)看书回答问题:

①看教材第3页,回答下面的三个问题。

②看教材第4页,“想一想”该怎么办?(说明记录单上的原始数据的重要性,不能随便丢掉)

三、课堂实践

1.调查本班学号1~32的学生的体重,并将调查结果按分组的方法进行整理。

2.课堂作业

做练习一的第4、5题。

课后反思:

收集信息、整理信息是现代化社会对人的最基本要求,是每一个人必备的技能之一。而让学生感受体验到收集和整理数据的意义,是激发学生学习内驱内的最好方法。

五年级数学教案案例篇10

一、教学目的

1.通过学生的自主发现掌握长方体的特征,会辨认长方体。

2.培养学生动手操作的能力,观察能力和抽象、概括能力。

3.精心组织学生活动,激发学生学数学的兴趣,体现数学充满着探索与创新,感受数学的严谨性以及数学结论的确定性。

二、教学重点

掌握长方体的`特征。

三、教学难点

建立立体图形的空间观念。

四、教具准备

教具:长方体框架、长方体、正方体、圆柱、圆台、长方台等;投影片;电脑动画软件。

学具:长方体和正方体的纸盒。

五、教学过程

1.分类、操作、引出新知

(1)教师出示一幅图:你能将它们根据一定标准分类吗?

(2)师生共同概括:像粉笔盒等长方体和正方体,和排球、土豆等都占据一定空间把它们称为立体图形。

请同学们说说在日常生活中哪些物体的形状是长方体。

(板书:长方体的认识)

长方体我们从哪些方面来认识呢?

(3)拿出一块橡皮,横切一刀,露出一个面,让学生触摸,并说说感觉,教师明确这部分叫面。再切一刀,再让学生触摸两面相交的线,说出感觉,明确这在立体图形中叫做棱。什么叫棱?

将橡皮的一个面扣放在桌面上,与两个面垂直再切一刀,触摸三条棱相交的点,说出感受,明确它叫顶点。什么叫顶点?

(4)找实物指出它的长、宽、高。

今天,我们就从面、棱、顶点三个方面来学习长方体的认识。

2.实践操作,探究新知

(1)认识长方体的特征。

那么长方体的特征是什么?请同学们自己数一数、量一量、比——比后,完成表格。

(提示:放手让学生运用各种感官和学习用具独立探究、自主发现面、棱、顶点的知识。)

(2)教师巡回指导,指导要点如下:

①数面、棱、顶点时,如何数比较科学。

②采用多种学习方法。

(提示:如测量、计算、比较及用身体某个部分去接触面、棱、顶点等。)

③独立填写“我的发现”一表。

棱长

顶点

(学生在学习时,采用动手实践,自主探索,多种学习方法,既学到了知识又培养了能力。)

汇报:师生共同归纳。

(除了各部分的数量外,还要引导学生认识。)

a.按棱的长度可分为3组,每组内4条棱平等且长度相等;

b.相交于一个顶点的棱有3条,长度不一定相等;

c.相交于一个顶点的3条棱的长度分别叫长方体的长、宽、高;

d.长方体的形状、大小是由长方体的长、宽、高决定的;

e.面的特殊情况。

完成做一做,反馈订正。

小结。

五、课堂练习

拿一个火柴盒量一量,它的长、宽、高各是多少?然后说一说每个面的长和宽是多少?计算棱长总和。

实践与应用

(1)一个长方体的棱长总和是96厘米,已知长是8厘米,高是7厘米,宽是多少厘米?

(2)用一根168厘米的铁丝,焊接成一个长方体教具,长20厘米,宽12厘米,它的高是多少厘米?

(3)用一根长100厘米的铁丝,做成一个长·9厘米,宽6厘米,高4厘米的长方体后,还剩多少厘米?

五年级数学教案案例篇11

教材类型:

苏教版所属学科:数学

教学目标:

1.使学生在现实情境中初步认识负数,了解负数的作用,感受运用负数的需要和方便。

2.使学生知道正数和负数的读法和写法,知道0既不是正数,又不是负数。正数都大于0,负数都小于0。

3.使学生体验数学和生活的密切联系,激发学生学习数学的兴趣,培养学生应用数学的能力。

4.增长学生的自然知识,产生热爱自然,享受自然的情感。

教学重点:

初步认识正数和负数以及读法和写法。

教学难点:

理解0既不是正数,也不是负数。

教学具准备:

温度计、练习纸、卡片等。

教学过程:

(一)游戏导入,感受生活中的相反现象。(放在课前)

1.游戏:我们来玩个游戏轻松一下,游戏叫做《我反我反我反反反》。游戏规则:老师说一句话,请你说出与它相反意思的话。

①向上看(向下看)②向前走200米(向后走200米)③电梯上升15层(下降15层)。

下面我们来难度大些的,看谁反应最快。

①我在银行存入了500元(取出了500元)。

②知识竞赛中,五(1)班得了20分(扣了20分)。

③10月份,学校小卖部赚了500元。(亏了500元)。

④零上10摄式度(零下10摄式度)。

2.谈话:李老师的一位朋友喜欢旅游,11月下旬,他又打算去几个旅游城市走一走。我呢,特意帮他留意了一下这几个地方在未来某天的最低气温,以便做好出门前衣物的准备。下面就请大家一起和我走进天气预报。(天气预报片头)

(二)教学例1

1.认识温度计,理解用正负数来表示零上和零下的温度。

⑴(课件出示地图:点击南京出示温度计和南京的图片)首先来看一下南京的气温。这里有个温度计。

那我们先来认识温度计,请大家仔细观察:这样的一小格表示多少摄式度呢?5小格呢?10小格呢?

问:好,现在你能看出南京是多少摄式度吗?

学生交流:是0℃。

师:你是怎么知道的?(那里有个0,表示0摄式度)。

没错。(结合图说)这是零刻度线,表示0℃。(教师板书0)。

谁来温度计上表示出0℃。

⑵我们再来看上海的气温。(课件:点击上海出现温度计和上海的图片)

上海的最低气温是多少摄式度呢?(学生回答4摄式度后,教师板书4)在温度计上拨一拨。问:拨的时候是怎样想的呢?(在零刻度线以上四格)

指出:上海的气温比0℃要高,是零上4摄式度。(教师结合图,突出上海的气温在零刻度线以上)。

⑶接着让我们一起来了解首都北京的最低气温。(课件点击北京的图片和温度计)

北京又是多少摄式度呢?

与南京的0℃比起来,又怎样了呢?(比南京的0℃要低)

你能用一个手势来表示它和0℃的关系吗?(对,北京的气温比0度低,是零下4摄式度)

你能在温度计上拨出来吗?

⑷现在我们已经知道了这三个地方的最低气温。仔细观察上海和北京的最低气温,它们一样吗?(不一样,一个在0℃以上,一个在0℃以下)。

对,上海的气温比0℃高,是零上4摄式度,我们可以记作+4℃,读作正四摄式度,写的时候先写一个正号(指出是正号不是加号,意义和读法都不同了)再写一个4(板书),大家跟我一起来比划一下。+4也可以直接写成4,把正号省略了。所以同学们所说的4℃也就是+4℃。(板书)

北京的气温比0℃低,是零下4摄式度。我们可以用-4℃来表示零下4摄式度(板书-4)。跟老师一起来读一下。写的时候可以先写一个负号(指出是负号不是减号)再写一个4就可以了,同桌互相比划一下。

⑸小结:通过刚才对三个城市的温度的了解,我们知道,记录温度时,以0℃为界线,用象+4或4这些数可以来表示零上温度,用-4这样的数可以表示零下温度。

2.试一试:学生看温度计,写出各地的温度。并读一读。(写在卡片上)

师:我们再来了解一下其他几个城市的最低气温,注意观察温度计,把这些温度记录在卡片上,并读一读。准备好了吗?

香港:(19℃或+19℃)。写好了请举起你们的卡片。提问:你是怎么想到用+19℃来表示的?这位同学是用19℃来表示的?行吗?为什么?(对,正号可以省略不写)。

哈尔滨:(-10℃)。老师写了10℃后举起来:“和老师的记录一样的请举牌。为什么没人和我的一样啊?(对,零下10摄式度,我们用-10℃来表示,10摄式度是表示零上10摄式度的)。

西宁:你们记录好了,同桌互相校对一下再来交流。问:为什么这样用这个数来表示?

⒊我们再来听一段中央台的天气预报,将你听到城市的最低和最高温度记录下来。

播放中央台播音员播报的天气预报(天津呼和浩特乌鲁木齐银川)

指名一位学生上前交流。师:你们觉得他记录怎样?这位同学的前面的正号没写,可以吗?老师把-1的负号去掉,你们同意吗?

谁能在温度计上拨出11℃?谁来拨-1℃?

小结:通过刚才的学习,我们得出:以零摄式度为界线,零上温度用正几或直接用几来表示,零下温度用负几来表示。

(三)自主学习珠峰、吐鲁番盆地的海拔表达方法,进一步认识正数和负数。

五年级数学教案案例篇12

教学内容:

教材第27~28页的内容及练习。

教学目标:

1.借助实际操作和图形语言,理解一个数除以分数的意义和基本算理。

2.掌握一个数除以分数的计算方法,并能正确计算。

3.培养学生解决简单实际问题的能力。

教学重难点:

1.掌握一个数除以分数的计算方法,并能正确计算。

2.整数除以分数的计算法则推导过程。

教学过程:

一、创设情景 激趣揭题

1.猜一猜:有4个苹果,每人得到2个,1个,1/2个,你知道这三 次分别是几个人分苹果吗?

2.引入并板书课题:分数除法(二)

设计意图:设疑激趣。 明确目标。

二、扶放结合 探究新知

1.分一分,引导感知一个数除以分数的意义。

2.画一画:引导完成27页的画一画,理解分数除以分数的计算方法。

3.引导完成28页的填一填,想一想,你发现了什么?

4.引导归纳计算方法。

设计意图: 理解一个数除以分数的意义。 总结归纳计算法则。

三、反馈矫正

出示P28的试一试。

1.统一分数除法的计算法则。

2.指导完成P28练一练的1~4题。

四、小结评价 布置预习

1.引导小结:通过这节课的学习,你有什么收获?

2.布置预习: P29 分数除法(三)

板书设计: 分数除法(二)

4÷1/2=4×2=8 ;4÷1/4=4×4=16

一个数除以分数的意义与整数除法的意义相同。 一个数除以分数,等于乘这个分数的倒数。

五年级数学教案案例篇13

教学内容:课程标准实验教科书第九册P72-73页例4、“试一试”、“练一练”,练习十三1-3题

教学目标:

1、在具体情景中探索并初步掌握除数是整数的小数除法的计算方法,会用竖式进行计算。

2、在探索计算方法的过程中,进一步体会数学知识之间的内在联系,培养比较、分析和归纳等思维能力,以及类比、迁移的学习能力,感受数学探索活动的乐趣。

教学过程:

一、引入课题。

1、同学们,在买东西时顾客经常讨价还价,下面是一个关于还价的真实的事情:

商贩在卖苹果,一个人问:“老板,多少钱一斤?”

“一块五一斤”

“太贵了,这样吧,5块钱3斤卖不卖?”

听到这里,你有什么想法?类似这样的购物问题,既可以用小数乘法解决问题,也可以用小数除法解决问题,这节课我们就来学习小数除法。

二、教学例题。

1、创设情境:

一位女士说:“我买4盒牛奶。”

营业员说:“一共6.8元。”

师:看了刚才的镜头,你了解了哪些信息?王老师只有2元,买一瓶牛奶够吗?

引导理解6.8÷4就是用总价除以数量求单价的方法。

2、估算单价。

你是怎么算出是1元多一些的呢?

买3块月饼共用8.7元,平均每块月饼几元多一些?

买5条同样的牙膏共用52.5元,每条牙膏几元多一些?

这两个问题,你能估算出它的结果吗?

3、独立探索。

看来2元是够的,还要找钱,要知道找多少钱,必须先算出什么?

你能自己想办法算出6.8÷4的商吗?学生试算。

可能会有以下几种情况:

(1)把6.8元改写成68角去计算,用68÷4,结果是17角,就是1.7元。

(2)把6.8看成68去计算,被除数扩大10倍,再把商17缩小10倍。应用了商的变化规律。

(3)

(4)

教师重点引导学生比较第3种情况和第4种情况,让学生体会小数除以整数可以按照整数除法的计算法则去除。

4、验算结果。

结果都是1.7元,确信吗?

引导学生利用单价乘数量等于总价进行验算。

5、理解算理。

你能利用计数单位帮助你思考、计算5.847÷3吗?竖式计算5.847÷3。

学生可能会有以下情况:

(1)对第1种情况,请同学利用计数单位讲解小数除以整数的算理。

(2)对第2种情况,指出竖式中的错误,并对两种竖式进行比较。

(3)说一说除数是整数的小数除法的怎样计算?

按照整数除法的法则去除,商

的小数点要和被除数的小数点对齐,每次除得的余数都要和被除数下一位的数合起来继续往下除。

三、课堂练习。

1、巩固练习。

(1)计算下列各题。

9.42÷694.2÷687.64÷7876.4÷7

(2)改错(竖式略)。

94.2÷33.34÷2

(3)根据5823÷3=1941,口算下列各题。

58.23÷3=5.823÷3=582.3÷3=

2、解决问题。

(1)在20_年的雅典奥运会上,我国射击运动员杜丽最后5枪打出52.5环的成绩勇夺该项目的奥运金牌,平均每枪打多少环?

(2)两种规格的牙膏的售价情况如下:如果买3支小牙膏,售价是8.7元,如果买4支小牙膏,售价是10.8元。购买哪种牙膏比较合算?

五年级数学教案案例篇14

教学目标:

1.知道公共生活需要良好秩序来维护,初步形成规则意识。

2.明确构建有序和谐的公共生活人人有责,积极参与公共生活。

3.学会从不同角度观察社会现象,尝试用合法、合理的方式解决生活问题。

教学重点:帮助学生认识到公共生活需要良好的秩序来维护,树立共生活需要秩序的观念。

教学难点:让学生从个人、社会、国家的角度综合思考如何共建有序生活。

教学准备:课件

教学过程

一、谈话导入

同学们,公共场所是我们大家共同生活、学习、工作的地方,需要有良好的秩序来维护。街道上的行人和车辆顺畅通行,需要公共交通秩序;公国里人们愉快地游玩,需要公共卫生秩序……良好的公共秩序是人们安居乐业的保障,是社会稳定和进步的基础。今天,我们一起学习第5课《建立良好的公共秩序》。

二、说一说

1、你到过哪些公共场所?你知道这些公共场所的秩序吗?

2、议议、做做:同学们常去公共场所,请你照例子用有关的规则提醒大家,明确有关公共场所应遵守的公共秩序。

a.上车时;b.到影剧院;c.到游乐场;d.在商店

3、同学们说得很好,有了规则的约束,我们的生活可以更加和谐有序。

4、除了这些规则外,生活中也有很多规则,上节课老师已经让同学们去观察生活,收集我们身边的规则了,谁愿意把自己收集的规则与大家分享一下。

5、学生分享自己收集到的身边的规则。

6、教师引导:听了同学们的发言,你有什么感受?没有规则,我们连走路都不安全,看来规则是非常重要的。

三、认识公共标志

1、(出示课件)你在哪些公共场所见过这样的标志?(出示:请安静、请依次排队、请勿吸烟…)

2、当你看到这些标志时你是怎样做的?

小结:公共标志的设置一方面有利于维护良好的公共秩序,利于保护人们的生命财产安全。另一方面,更多关注社会生活中的公共标志,在理解公共标志设置意义的基础上,形成有序参与公共生活的态度情感。

四、深化认识

1.出示图:

(图画内容:小明等几位同学在一个车站停车场里打闹,小刚劝他别这样做,他不听,正在这时,一辆客车从车站开出,另一辆正要进站,小明他们不让道,在两辆客车间追打,司机来了个急刹车,才避免了重大事故的发生。)

问:

①几个小学生干了一件什么事?他们扰乱了哪里的秩序,结果怎样?

②哪位同学的行为是好的?他做了什么事?

师小结:不遵守公共秩序害处大。

2.下面这些说法正确吗?请用事例说明理由。

①有的同学说:“如果不要公共秩序;大家随随便便,自由自在,想干什么就干什么,不是更好吗?

②一个人不遵守公共秩序没有关系。

师小结:遵守公共秩序是必要的,每个人都必须自觉遵守,秩序是自由的第一条件。遵守公共秩序可以使公共场所里被服务者心情舒畅,服务者满意,公共场所井然有序,展示我们自己的文明程度。

五、守规才有序

1、教师引导:俗话说:“不以规矩,不能成方圆。”社会的发展,文明的进步离不开规则,无处不在的规则约束了社会每个成员的行为,维护了社会的正常秩序。

2、说一说,我们在不同的公共场所应该怎么办?

师再问:当你见到不守公共秩序的行为该怎样办?(启发学生答出:要阻止、批评等)

教师小结:同学们,通过刚才的讨论,我们明白了只有大家共同遵守规则,才能创造和谐文明的社会环境,正如学者莱蒙特所说的:“世界上的一切都必须按照一定的规矩秩序各就各位。”

六、课堂总结

师:通过今天对《建立良好的公共秩序》这一课的学习,我们懂得了什么?

在生回答的基础上师进一步谈话:生活中有许多看起来是微不足道的事情,实际上都同社会的主产、生活乃至每个社会成员的工作、学习、生活密不可分,如果一个社会的公共秩序受到了破坏,这个社会的正常生产和生活也就受到极大的影响,社会风气就会颓败,反之如果一个社会的每个成员都学法、懂法、守法、护法,拥有一个良好的公共秩序,那么社会就会有条有理,井然有序,因此建立一个良好的社会公共秩序,是我们大家的迫切希望,希望同学们从我做起,从现在做起,认真遵守公共秩序吧!

五年级数学教案案例篇15

教学目标:

1、结合具体的情景,自主探索两位数乘两位数的乘法算法。

2. 学会进行两位数乘两位数的乘法计算,并能解决一些简单的实际问题。

教学重点:1、两位数乘两位数的估算。

2、探索并掌握两位数乘两位数(不进位)的乘法计算。

教学难点:掌握两位数乘两位数(不进位)的乘法并能熟练计算。

教学理念:组织学生讨论、交流,使学生体验学习中通过合作交流带来的方便和快乐。

教学准备:课件。

学生准备:预习课前知识。

教学过程:

一、实践调查

课前让学生在汇景新城作实地调查,调查本小区住户情况

二、课内交流

1、让同学们根据调查所得的数学信息编一道数学应用题。

2、根据所编的题目独立列式

3、探讨和交流如何解决问题。

(1)尝试通过估算结果解决问题。

A、分组讨论不同的计算过程

B、师:根据以上的结果你能判断“这栋楼能住150户吗?”

(2)讨论算法

三、习题巩固:

1、试一试

11×43 24×12 44×21

2、练一练:

第1、2题

3、第3题,学生独立思考,理解题意,再进行计算

四、综合应用:

陈老师班上有42名同学,她为同学们购置书包和文具,一个书包24元,一个文具11元,买书包和文具各花了多少钱?一共花了多少钱?

五、课堂总结:今天我们学习了什么知识?你学会了什么?

六、板书设计:

五年级数学教案案例篇16

教学目标:

1.知识技能:经历探索分数基本性质的过程,理解分数的基本性质,能运用分数的基本性质,把一个分数化成指定分母或分子而大小不变的分数。

2.思考与问题解决:经历观察讨论,操作等学习活动,能对分数的基本性质作出简要的,合理的说明,培养学生的观察,比较,归纳,总结概括的能力。

3.情感态度:经历观察,操作和讨论等数学学习活动,使学生进一步体验数学学习的乐趣,鼓励学生敢于发现问题,培养学生勇于解决问题的学习品质。

教学重点:

探索,发现和掌握分数的基本性质,并能运用分数的基本性质解决问题。

教学难点:

自主探索,归纳概括分数的基本性质。

教具学具准备:

多媒体课件,正方形纸,彩笔。

教学设计:

一、创设情境,导入新课:

1.课件分别出示两张不同的孙悟空的照片。师:学们仔细看看这两张照片,你有什么发现?(指名回答)。

2.教师引导交流:孙悟空本人没有改变,只不过是外表的打扮装饰发生了改变。

3.学生初步感知了什么变了而什么却没有变的概念。

4.教师导入新课:今天我们就来探讨什么变了而什么没有变的有关内容。教师板书课题:分数的基本性质设计意图:利用学生感兴趣的图片来吸引学生的注意力和观察能力,为下一步学习营造一个轻松活跃的氛围。

二、探究新知。

(一):师:1.在我们在学习这个新的内容之前,我们首先来复习一下除法与分数的关系。学生回答教师板书:被除数=课件出示:120÷30=(120×2)÷(30×2)=(120÷10)÷(30÷10)=

2.同学们说说这几道相等吗?(指名回答)。

3.教师引导说出商不变的性质,课件出示商不变的性质的定义。

设计意图:通过复习商不变的性质,为下一步更容易的学习分数的基本性质打下基础。

(二)、教学新知。

1.师:请同学们拿出课前准备好的正方形纸,把手中的纸平均折成4份,其中把3份图上你喜欢的颜色。

2.学生操作,教师巡视并特别提醒学生注意“平均分”。

3.展示学生的作业。

4.师:现在请同学们把正方形纸平均分成8份,16份,分好之后你有什么发现?(指名回答)。

5.教师归纳总结,并课件出示:设计意图:同一张纸能平均分成不同的份数,拓展学生的思维能力。

6.引导学生观察:

观察它们的分子和分母是怎样变,学生观察,思考,交流后,教师集体指导观察,并板书:

教师归纳总结后,学生完成课本66页的填空题,完成后集体回答。

设计意图:学生通过动手操作发现一些表象,但这些表象还须上升为科学理论,这就需要学生能透过表象识别表现后蕴藏的规律,这才能知其然且知其所以然,便于以后举一反三,解决同类相关问题。

7.课件出示:(通知互相讨论)

(1)相比较,看看分子分母有什么变化?

(2)在这个变化中,你们发现了什么规律。

8.教师引导学生说出:分数的分子和分母同时乘或除以相同的数(0除外)分数大小不变。这就是分数的基本性质。(教师特别强调“同时”“同一个数”)。

9.教师提出疑问:为什么要0除外呢?学生回答,教师归纳:因为0和任何数相乘都得0,而分数的分母是不能为0的。

10.同学们,现在你们来看看分数的基本性质和你们以前学习过得商不变性质有什么不同呢?(课件出示两性质作对比)

师:分数的基本性质和商不变性质的规律是一致的。

三、巩固强化,拓展应用。

(1)课件出示:(集体回答)。

(2)指出下列分数是否相等。(指名回答)。

(3)把和化成分母是10而分数大小不变的分数。(指名到台上板演)。

(4)课件出示小故事。

有位老爷爷把一块地分给三个儿子。老大分到了这块地的,老二分到了这块地的。老三分到了这块的。老大、老二觉得自己很吃亏,于是三人就大吵起来。刚好阿凡提路过,问清争吵的原因后,哈哈的笑了起来,给他们讲了几句话,三兄弟就停止了争吵。

你知道,阿凡提为什么会笑吗?他对三兄弟讲了哪些话?(让学生课后去思考)

设计意图:多样的练习可以让学生及时巩固所学知识,有调动了学习的积极性。

四、回顾总结,梳理新知。

同学们,你们对分数又有了哪些新的了解呢?板书设计:分数的基本性质数的分子和分母同时乘或除以相同的数(0除外)分数大小不变。这就是分数的基本性质。

教学反思:

1.创设情境,激发学生兴趣。出示孙悟空的照片激发学生的兴趣,吸引学生的注意力。

2.手脑并用,在操作中深入感知分数。请同学们用一张正方形纸片,动手折一折,通过三次的对折,每次找出一个和相等的分数,比较涂色部分大小有没有变化?(没有)。那么得到了什么结论?教师引导学生观察分子,分母的变化,经历总结得出:分数的分子和分母同时乘或除以相同的数(0除外)分数大小不变。学生对此进行巩固后,再引导学生说出:0除外。学生在动手实践的过程中动脑思考,很快地突破了重难点,取得很好的效果。

3.巩固练习,围绕中心。在设计练习的过程中,采取多种形式呈现,使学生加深对分数基本性质的理解,激发了学生学习的兴趣,使每个学生都能理解所学知识,学有所获,并进一步学习约分和通分打下了良好的基础。

五年级数学教案案例篇17

教学目标:

(1)知识与技能目标:在具体情境中认识自然数和整数,联系乘法认识倍数和因数。在100以内找到某个自然数的所有倍数。

(2)过程与方法目标:在找数学信息,分类,解决问题等活动中。培养学生有条理的思考,提高解决问题的能力和自学能力。

(3)情感态度目标:感受数学与生活的密切联系,激发学习数学的兴趣。

教学重点:

认识自然数和整数,倍数和因数,能按要求找出一个数的倍数。

教学难点:

自主探索并总结找一个数的倍数的方法。

教学准备:

教学课件

教学教法:

我将采用“情境激趣、诱导探究、分组合作式”教学法。

教学学法:

自主探索与合作交流的方法。

教学过程:

一、结合情境认识自然数和整数

本节课开始,我利用情境图,让学生找出图中的数字,并将找到的数进行分类。然后指导学生自主阅读课本,通过观察、比较等思维活动认识自然数和整数。

(1)。让学生说说从图中可以找到哪些数。(自然数、负数、小数)

(2)。让学生结合“半个西瓜”说分数

(3)。引导学生把这些数分一分,再揭示自然数、整数等概念。

(4)。揭示课题

二、小组合作,结合乘法算式认识倍数和因数

数学教学,要紧密联系学生的生活,创设有助于学生自主学习、合作交流的情境,本环节我设计小组自学活动,通过同伴交流逐步形成自学能力,体验到自主学习的快乐。通过学习的迁移,自己写一个乘法算式说说谁是谁的倍数,谁是谁的因数。

(1)。教师利用“5×4=20”说明倍数与因数的含义,再举一些例子,让学生根据算式说说倍数与因数。

(2)。让学生自己举一些例子来说一说,在说的过程中体会倍数与因数的相互依存关系。

(3)。利用乘法算式说明倍数与因数含义的基础上,再出示一个除法算式,如“18÷6=3”启发学生思考:根据整数除法算式能不能确定两个数之间倍数和因数的关系。教学中要向学生说明:在研究倍数与因数时,范围限制为非零的自然数。

最后,我抓住学生乘法算式中生成的资源。比如:4×5=20,2×2=4,对比质疑,为什么4一会是一个数的倍数,一会又成了一个数的因数了呢?学生通过反思进一步拓展,让知识得到深化。

三、自主探索找一个数的倍数的方法

本环节我设计的问题有

(1)“找一找”下面哪些数是7的倍数?与同学交流你的看法。

2,7,14,17,25,77

(2)你还能找到7的其他倍数吗?

(3)写出100以内所有的7的倍数。

学生通过解决这些问题,有条理的思考,然后发现找一个数的倍数的方法。(估计大多数学生可能用乘法)

再练习写出100以内所有的6的倍数。

四、游戏激趣,巩固应用

学生经过一节课的探索和学习有些疲倦了。练习一共有3道题。第2题我设计了一个“给数字找家”的游戏重新在课堂中掀起____。每个小组一套卡片,在小组内操作。其中一组上黑板演示。把4的倍数贴在一个圈里,6的倍数贴在一个圈里。学生对其中的12和48一筹莫展。老师重新画集合圈,在两个圈中间出现共同的部分,直观的渗透集合思想。同时为学公倍数打下基础。

五、回顾反思,自我评价。

给学生时间回顾总结这节课的收获,让学生养成回顾反思的习惯。同时能正确评价自己,完善自我。

板书设计:

数的世界

像0,1,2,3,4,5,6,...这样的数是自然数。

像-3,-2,-10,1,2,3,4,5,6,...这样的数是整数。

倍数和因数是相互依存。

找一个数倍数的方法,从它的1倍开始找起,最小的倍数是它本身,没有的倍数。

五年级数学教案案例篇18

教学目标

1、通过练习,使学生巩固对异分母分数加减法的理解,进一步提高计算能力,进一步增强数感。

2、通过练习练习,使学生能用分数加减法解决一些实际问题,进一步提高解决问题的能力,发展数学应用意识。

3、使学生在学习活动中进一步感受数学学习过程的探索性,获得成功的乐趣和体验。

重点

难点重点:巩固对异分母分数加减法的理解,进一步提高计算能力

难点:综合运用知识解决问题

教学准备

挂图

教学环节过程

基本练习

通过分子都为1且分母最大公因数只有1的异分母分数加减法的对比练习,巩固对异分母分数加,减计方法的理解,并启发学生发现一些计算规律,从而进一步提高计算异分母分数加减法的能力。

1、板书课题:异分母分数加减法

2、指导完成练习十四第5题。

(1)学生完成后展示学生作业,交流计算结果。

(2)指导探索规律

教师提问:这组题中的分数有什么共同特点?分母的最大公因数是1的两个数通分时的公分母有什么特征?每道题得数的分子与原来两个分数的分母又有什么关系?

教师指出:分母的最大公因数是1,分子都是1的分数相加,得数的分母是两个分母的积,分子是两个分子的和;分母的最大公因数是1,分子都是1的分数相减,得数的分母是两个分母的积,分子是两个分子的差。

(3)请学生举出几个类似的可以用这样的规律计算的算式。

学生独立完成左边两组题的计算。

学生进行观察,并在小组中说说自己的发现,再在全班进行汇报交流。

学生明确规律后根据规律直接写出右边两组题的结果。

学生举例,互相交流。

综合练习

课堂总结

板书设计通过第6,7题的练习提高学生估计及对计算结果的把握能力,进一步增强数感。

通过练习,提高学生综合运用数学知识解决实际问题的.能力。

通过观察实物图进行估计,再利用估计的数据解决相关问题,培养学生收集信息,选择信息去解决问题的能力。

通过课堂总结帮助学生对本节课要掌握的知识进行梳理。

1、完成练习十四第6题。

学生判断后教师组织汇报交流,让学生说说自己的想法。

教师帮助学生进行归纳:分数是否接近1/2,看分子是否接近分母的一半;分数是否接近0,看分子是否接近0;分数是否接近1看分子与分母是否很接近。

2、完成第7题。

教师组织汇报交流,追问:你是怎么想的?

让学生通过计算来验证自己的估算是否正确。

3、指导完成练习十四第8题。

(1)理解题意,明确两个量杯中各有多少毫升水。

(2)指导方法:400毫升和800毫升应该等于多少升呢?你是怎样想的?

4、指导完成练习十四第9题。

(1)理解题意。

(2)指导方法:估计一下每种蔬菜摆放的面积大约各占货架的几分之几?你是怎样想的?

(3)让学生独立完成(2)(3)题的计算,教师组织交流结果。

通过练习,你有什么收获?在解决问题时要注意什么?

作业:完成补充习题第41页

异分母分数加减法

1/2+1/3=(2+3)/(2x3)

1/2-1/3=(3-2)/(2x3)

接近0:1/10,2/25

接近1/2:4/7,9/20,7/15

接近1:8/9,11/13

学生在小组中进行判断,说说自己的想法。

学生在小组中先估计,然后汇报交流自己的想法。

学生独立完成计算,并与估算结果比较估算是否正确。

学生观察图片,先得出两个量杯中分别有2/5升,4/5升,再独立完成(1)(2)问题的解答。

学生在小组中进行讨论交流,指名上台指图说说自己的想法。

学生独立完成(2)(3)题的计算,并进行汇报。

学生自由发言。在分数大小比较的练习中可以渗透类似的题目,让学生用运用估算的方法比较大小,提高学生综合运用知识的能力。

74964