教育巴巴 > 小学教案 > 数学教案 > 五年级 >

五年级数学教案大全上册

时间: 新华 五年级

教案可以帮助教师有计划地安排教学内容和方法,确保课堂上教学活动的有序进行,避免出现混乱和无效性。怎么写出优秀的五年级数学教案大全上册?这里给大家分享五年级数学教案大全上册,方便大家学习。

五年级数学教案大全上册篇1

教学目标

1、让学生简单了解数的产生过程,对人类发展进程中所出现的计算工具有一个初步的了解,简单了解一些计算工具计数的方法,接受数学事实的教育。

2、认识计算器面板上的按键名称和功能,学会用计算器进行整数、小数的四则运算,探索简单的规律。

3、通过对计算器的运用,体验它的有用性,培养学生的辨证思维能力。

教学内容

同学们,大家都去过广润发吧?它每天都有很多顾客,特别是到了节假日,那更是人山人海。当顾客推着满满一车物品去付款时,营业员总是能在很短的时间内告诉他应该付多少钱,为什么营业员会算得那么快呢,你知道吗?

今天这节课我们就来一起学习用“计算器计算”。

1、 认识计算器

你知道在我们日常生活中还有哪些地方用到了计算器吗?

你了解计算器吗?今天假如你是一位计算器的推销员,你打算怎样向大家介绍你手中的这款计算器的构造?(同桌之间相互说一说后再全班交流)

让学生了解计算器的最常用的一些键,熟悉加减乘除等运算和运算顺序。

2、用计算器计算

大家已经认识了计算器,你会操作他吗?现在咱们就用计算器来算一些题目,请把计算器准备好。

3、教学例4

要求李芸一共用了多少元应怎样做,先把算式列出来。

你会在计算器上按出买铅笔的钱数吗?同桌交流按键的方法。

你会用计算器算出结果吗?核对结果。

同桌之间说说是怎样用计算器计算的。

4、完成“试一试”题目

你怎样求应找回多少元?

可不可以把刚才的计算结果用起来?

试着求出结果。

用计算器计算方便了我们的计算,当然也方便我们检验了,你会检验吗?怎样判断你的计算是正确的呢?

5、巩固练习

通过计算,我们发现,用计算器计算时只要从左往右依次按键就可以了。现在我们要来比一比谁算的最快,请准备好。

完成“练一练”的第1、2题

提醒学生看清数目和运算符号,认真按键进行计算,对正确率较高的同学给予鼓励。

6、完成练习九的第8题

先示范计算出“小明开学缴费”后的余额,使学生明确计算每次收支后余额的方法。再让学生分别算出其余各栏的余额。

合计支出数怎样算,合计结余数呢?最终余额是多少?与刚才的计算结果一样吗?

1、我们已经能用计算器进行计算了,那么计算器还有没有其他的作用呢,下面我们就来一起探索。

学生用计算器计算在计算器位数不够的情况下学生小组讨论发现计算的规律,再集体交流。

2、自主探索:

1122÷34=

111222÷334=

11112222÷3334=

再出示:111111222222÷333334=

111…122…2÷333…34=

2004 1002

最后我们来一次比赛,分两组:一组用计算器,一组用笔算,愿意用计算器的请举手。

完成练习九的第7题

今天这节课我们学习了用计算器计算,你有什么体会?你觉得今天的学习对你有用吗,能不能说说?

教后记

通过对计算器的运用,体验它的有用性,培养学生的辨证思维能力。

五年级数学教案大全上册篇2

教学内容分析:

简易方程的教学,是在学生学习了用字母表示数以后教学的,在解方程式,学生可以根据等式的性质进行教学,也可以根据四种运算中各部分之间的关系进行教学。

教学目标

1、使学生进一步理解用字母表示数的优点。会用字母表示常见的数量关系,会根据字母所取的值,求含有字母式子的值。

2、进一步理解方程的意义,会解简易方程。

3、会列方程解应用题。

教学重点

用字母表示常见的数量关系,根据字母所取的值,求含有字母式子的值,解简易方程和列方程解应用题。

教学过程

一、揭示课题

今天我们复习的内容是有关简易方程的知识,通过复习要进一步理解用字母表示数的优点,会用字母表示常见的数量关系,进一步理解方程的意义,会解方程,会列方程解应用题。

二、复习用字母表示数量关系,公式,运算定律

1、出示表:用字母表示运算定律。

名称用字母表示

加法交换律a+b=b+a

加法结合律(a+b)+c=a+(b+c)

乘法交换律ab=ba

乘法结合律(a×b)×c=a×(b×c)

乘法分配律(a+b)×c=ac+bc

2、请学生说平面图形面积计算公式和长方形、正方形周长公式。

3、用字母还可以表示数量关系,a表示单价,b表示数量,c表示总价,说出分别求总价、单价及数量的字母公式。

4、练习:期末复习第16题。

5、求含有字母式子的值。做期末复习第17题。

(1)原来每月烧的煤用30c表示;现在每月烧的煤用30×(x-15)表示。

(2)学生计算现在每月烧煤的千克数。

三、复习方程的意义和解方程

1、什么是方程?什么是方程的解和解方程?方程和等式关系是怎样的?

2、练习:做期末复习第18题。

学生练习。讲解第(3)题,在方程3x=y中y=21,先把y=21代人原方程成为3x=21再解方程。

3、做期末复习第19题。

请学生说一说解方程的方法。

4、做期末复习第20题。

学生列方程并解方程。

四、复习列方程解应用题

1、(1)列方程解应用题的特征是什么?解题时关键是找什么?

(2)请学生说一说列方程解应用题的一般步骤。

2、做期末复习第21—23题。

第21题:

学生说数量关系式,列方程并解答,根据已列方程写出另外两个不同的方程。

第22题:

师画线段图表示题目的条件和问题,学生列方程解答。

第23题:

学生说数量关系式、列方程解答。

五、全课总结

这节课复习了什么内容。

六、布置作业

五年级数学教案大全上册篇3

教材分析

一、主要教学内容

(一)数与代数

1、第一单元“小数除法”

本单元学生已掌握了整数混合运算顺序及运算律、整数乘除法、小数加减法、小数乘法的计算方法,并能利用这些知识解决生活中的实际问题,除数是整数的小数除法是学习小数除法的基础,它是根据整数除法迁移过来的,利用商不变的规律可将其转化为整数除法,体现了转化的思想。通过这部分内容的学习,学生需要掌握小数小除法的计算方法,同时增进对相关运算律的理解,提高运用四则运算解决简单实际问题的能力,包括用“四舍五入”法求积、商的近似值,了解除数大于1(或小于1、接近1)时,商和被除数的关系。学生要能用估算判断计算结果的正确性,并能举例说明估算在现实生活和数学学习的重要性。

2、第三单元“倍数与因数”

本单元是在学生学过整数的认识、整数的四则计算等知识的基础上学习的,学习的主要内容有:认识自然数,倍数与找倍数,2、5、3倍数的特征,因数与找因数;质数与合数,奇数与偶数等知识。这些知识的学习是以后学习公倍数与公因数、约分、通分、分数四则计算等知识的重要基础。本单元的具体学习内容安排了六个情境活动:在“数的世界”活动中,主要是认识倍数和因数;在“探索活动(一)——2、5的倍数的特征”中,学生将经历探索2、5倍数特征的过程,理解2、5倍数的特征,知道奇数、偶数的含义;在“探索活动(二)——3的倍数的特征”中,学生将经历探索3的倍数的特征的过程,

理解3的倍数的特征;在“找因数”活动中,利用直观的拼图游戏,让学生体会、掌握找因数的直观方法;在“找质数”活动中,引导学生经历用“筛法”制作质数表的过程,理解质数和合数的意义,并在活动在过程中,让学生了解一些数学史,丰富对数学发展的认识,感受数学文化的魅力;在“数的奇偶性”活动中,尝试运用“列表”、“画示意图”等解法问题策略发现规律,运用数的奇偶性解决生活中一些简单问题。

通过本单元的学习,学生将经历探索数的有关特征的活动,认识自然数,认识倍数和因数,能在100以内的自然数中找出10以内某个自然数的所有倍数,能找出100以内某个自然数的所有因数以及知道质数、合数;将经历2、3、5的倍数特征的探索过程,知道2、3、5的倍数的特征,知道奇数和偶数;能根据解决问题的需要,收集有用的信息,进行归纳、类比与猜测,发展初步合情推理的能力;在探索数的特征的过程中,体会观察、分析归纳或猜想验证等探索方法,在数学活动中体验数学问题的探索性和挑战性。

3、第四单元“分数的意义”

在学习本单元内容前,学生已初步理解了分数的意义,能认、读、写简单的分数,会计算简单的同分母分数加减法,以及能初步运用分数表示一些事物、解决一些简单的实际问题。本单元在此基础上引导学生进一步理解分数的意义,学习分数的再认识、分数与除法的关系、真分数、假分数、分数大小变化规律、公约数、约分、公倍数、通分、分数的大小比较等知识。这些知识的学习是进一步学习分数四则计算、运用分数知识解决实际问题的基础,是分数教学的重点。本单元的具体学习内容安排了九个活动情境:在“分数的再认识”活动中,通过

具体的情境,进一步理解分数的意义,体会“整体”与“部分”的关系,了解一个分数对应的“整体”不同,则所表示的具体数量也不同;在“分饼”与“分数与除法”两个活动中,学生将知道分数的分类标准,并能掌握带分数与假分数的相互转化的方法;在“找规律”的活动中,经历探索分数大小不变规律的过程,理解分数的基本性质,并能根据分数的基本性质把一个分数化成指定分母(或分子)而大小不变的分数;在“找最大公因数”与“约分”两个活动中,学生将认识公因数与最大公因数、并能运用这些知识进行正确地约分,也为后续理解、掌握通分的方法打下了基础;在“去少年宫”与“分数的大小”两个活动中,学生将认识公倍数与最小公倍数,并能运用这一知识,会正确地通分与比较分数的大小。

通过本单元的学习,学生将进一步理解分数的意义,能正确用分数描述图形或简单的生活现象;认识真分数、假分数与带分数,理解分数与除法的关系,会进行分数的大小比较;能找出10以内两个自然数的公倍数和最小公倍数,能找出两个自然数的公因数和最大公因数,会正确进行约分和通分;初步了解分数在实际生活中的应用,能运用分数知识解决一些简单的实际问题。

(二)空间与图形

1、第二单元“轴对称和平移”

学生在第一学段已初步感知生活中的对称、平移和旋转现象,初步认识了轴对称图形。本单元教科书编写的基本特点主要体现在一下几个方面:1.重视结合已有知识和折纸、画图等经验,进一步学习。

五年级数学教案大全上册篇4

教学内容:

最小公倍数

教学目标:

1.使学生理解最小公倍数的意义,初步学会求两个数的最小公倍数。

2.培养学生的观察能力、分析能力和归纳概括能力。

3.培养学生良好的学习习惯。

学习目标:

1、理解最小公倍数的意义

2、初步学会求两个数的最小公倍数。

学习任务:

任务一 理解最小公倍数的意义

任务二 求两个数的最小公倍数

教学过程:

一、激情导课

1、师:同学们,看今天我们要学习什么?(最小公倍数)

看到这个题目,你会想到我们以前学过的什么知识?(倍数)

2、师:(出示课件)谁会求这俩个数的倍数?有了这个知识做铺垫,相信我们这节课一定会学的很轻松。

3、(出示目标)理解最小公倍数的意义,初步学会求两个数的最小公倍数。请同学们默读一遍,并牢牢的记住它。

二、民主导学

任务一

一、任务呈现

师:过几天,我们五年级的同学将外出旅游,高兴吗?小兰也想和爸爸妈妈一起去游玩,可从7月1日起,小兰的妈妈每4天休息一天,爸爸每6天休息一天,他们打算等爸妈全部休息时,全家一块儿去。那么在这一个月里,他们可选那些日子去呢?你会帮他们把这些日子找出来吗?

要求:先独立思考,不会的小组商量。

提示:每4天休息一天就是工作3天休息一天,每6天休息一天就是工作5天休息一天

二、自主学习

教师巡视学习情况

三、展示交流

1、师:他们可选那几日外出?(12、24)

你是怎样选出来的?根据回答板书;

妈妈的休息日:4 8 12 16 20 24 28 ---- 4的倍数

爸爸的休息日:6 12 18 24 30 -----6的倍数。

共同的休息日:12 24 -----4和6的公倍数

最近的一天:12------4和6的最小公倍数

还可以用集合图来表示,

2、仔细观察两组数据有什么特征?

3、再次强调 4 的公倍数就是妈妈的休息日

6 的公倍数就是爸爸的休息日

4 和6的公倍数就是爸爸和妈妈的共同休息日

4、最近是哪一天? 12

12也是这公倍数中最小的一个,叫做最小公倍数。

5、集合图还可以这样表示 出示课件

问:和前面的图有什么不同?中间的部分表示什么?(重合的、公共的)

你会填吗?把刚才的数据填在这个表里,中间填?两旁呢?

这样我们可以一眼看出4 和6的公倍数是12、24.

6、谁能用一句话说说什么是公倍数?什么是最小公倍数?

7、89页做一做

二、那如何求最小公倍数呢?

任务二

求两个数的最小公倍数

一、任务呈现

1、求6和8的最小公倍数

2、想一想

1.你还能想出几种求法?

2.公倍数有多少个?你能找出的公倍数吗?

3.两个数的公倍数和最小公倍数之间有什么关系?

二、自主学习

三、展示交流

1、把不同求法板书

2、交流以上三个问题

(三)检测导结

1、目标检测

求下列每组数的最小公倍数(要求5分钟)

2和7   4和8

3和5   6和15

2、结果反馈

一次正确5分,自己改正4分,帮助改正3分,

3、反思总结 谈谈收获和不足

五年级数学教案大全上册篇5

教学目标

1.使学生掌握求相遇时间应用题的结构特点,并能正确解答求相遇时间的应用题.

2.提高学生分析问题,解决问题的能力.

3.培养学生大胆尝试,勇于探索的精神.

教学重点

1.找到与求路程应用题的内在联系.

2.正确分析解答求相遇时间的应用题.

教学难点

掌握求相遇时间应用题的解题思路.

教学过程

一、复习引入

(一)出示复习题

小东和小英同时从两地出发,相对走来.小东每分走50米,小英每分走40米.经过3分钟两人相遇.两地相距多远?

1.画图,列式解答.

2.订正答案

3.小组讨论:试着改编一道求相遇时间应用题.

二、探究新知

例4.两地相距270米.小东和小英同时从两地出发,相对走来.小东每分走50米,小英每分走40米,经过几分两人相遇?

1.讨论:复习题的线段图该怎样改一改.并试着画一画.

2.联系复习题的解法,尝试解答

3.订正思路

想法一:两人相遇时,所走的路程是270米.几分走270米,就是几分相遇.

270(50+40).

想法二:根据复习题速度和相遇时间=路程,依据乘法的因积关系可得:

相遇时间=路程速度和.

三、反馈调节

两人同时从相距6400米的两地相向而行.一个人骑摩托车每分行600米,另一人骑自行车每分行200米,经过几分两人相遇?

1.学生独立分析解答.

2.订正答案.

3.质疑:对于求相遇时间应用题还有什么问题?

4.教师提问

(1)要求相遇时间题目中需告诉我们哪些条件?

(2)例4与复习题之间有什么联系?又有什么区别?

四、巩固练习

(一)从北京到沈阳的铁路长738千米.两列火车从两地同时相对开出,北京开出的火车,平均每小时行59千米;沈阳开出的火车,平均每小时行64千米.两车开出后几小时相遇?

(二)两艘军舰同时从相距948千米的两个港口对开.一艘军舰每小时行38千米.另一艘军舰每小时行41千米.经过几小时两艘军舰可以相遇?

教师提问:怎样验证结果是否正确?

(三)两个工程队合开一条670米的隧道,同时各从一端开凿.第一队每天开12.6米,

第二队每天开14.2米.这个隧道要用多少天才能打通?打通时两队各开凿多少米?

(四)长沙到广州的铁路长726千米.一列货车从长沙开往广州,每小时行69千米.这

列货车开出后开往广州,每小时行69千米.这列货车开出后1小时,一列客车从广州出发开往长沙,每小时行77千米.再过几小时两车相遇?

五、课后小结

我们今天所学的相遇问题与以前学习的行程问题有什么主要联系和区别?通过学习你有什么体会?

五年级数学教案大全上册篇6

教学目标:

1、能力目标:能根据解决问题的需要,探究有关的数学信息,发展初步的分数乘法的能力。

2、知识目标:学习分数乘以分数的计算方法,学生能够熟练准确的计算出一个分数乘以另一个分数的结果。

3、情感目标:使学生感受到分数乘法与生活的密切联系,培养学习数学的良好兴趣。

教学重难点:

学生能够熟练的计算出分数乘以分数的结果。

教学方法:

师生共同归纳和推理

教学准备:

教学参考书、教科书

教学过程:

一、复习导入

教师出示教学板书,请学生计算下列分数乘法运算题。

3/11×3

9/16×12

21×5/14

教师:来回巡视学生的做题情况,并提问学生说说自己如何计算的?

学生寻找完毕,纷纷举手准备回答问题。

教师提问学生回答问题。(整数乘以分数,整数乘以分子,分母不变。注意两种约分方式。)

二、讲授新课

教师出示课本例题:一张长方形的纸条,第一次剪去它的1/2,第二次剪去剩余部分的1/2。此时,剩下的部分占这张纸条的几分之几?如果第三次再剪去剩余部分的1/2,那么剩下的部分占这张纸条的几分之几?

教师让学生思考这个例题,并对学生进行提问。

1/2×1/2?分析第一次剪去它的1/2,第二次再剪去剩下的1/2,那就是1/2的1/2。也就是1/2×1/2

教师让学生从图中看出是1/4,让学生从1/2×1/2=1/4中思考,分数乘以分数的运算规则,让学生同桌之间相互讨论。

教师提问学生说说分数乘以分数的运算法则。并对学生的说法给以鼓励。

教师和全班学生共同总结出分数乘以分数的运算法则:分数乘以分数,分子乘以分子作为分子,分母乘以分母作为分母。

验证法则:让学生折纸验证3/4×1/4?,并让学生分析为什么?

课堂讨论:让学生能够根据课本7页中的插图,说一说,红色部分占斜线部分的几分之几?占整张纸的几分之几?让学生进一步理解整体和部分的关系;初步理解求分数的几分之几是多少?

三、巩固练习

做课本8页试一试,

1/4×2/3;

3/5×2/9;

7/8×5/14

让学生运用分数乘以分数的法则来进行计算。注意能约分的先约分,如:7/8×14/15中的7和14先约分。

四、课堂小结

同学们,这一节课你学到了哪些知识?(提问学生回答)

板书设计:

1/2×1/2=1/4;

1/2×1/2=1×1/2×2=1/4

分数乘以分数的运算法则:分子相乘,分母相乘,能约分的要约分。

五年级数学教案大全上册篇7

教学内容:

教科书第18页例4和做一做

教学目标:

1、会归纳总结除数是小数的小数除法的计算方法,能比较熟练地计算除数是整数的小数除法;

2、能根据乘除法之间的关系进行验算,提高计算的正确率;

3、养成良好的计算、验算习惯。

教学重点:

掌握小数除以整数的计算方法,你能正确计算

教学难点:

特殊情况的小数除以整数的算法

教学过程:

一、复习引入

1、口算

2。4÷24。8÷69。09÷9

8。24÷86÷51÷5

2、填空,并说出为什么?

(复习乘除法之间的关系,为下面学习验算做好准备)

3、列竖式计算(生板演)

(1)7。44÷4(2)7。44÷8

(3)102÷24(4)4。551÷5

四道逐渐变难

二、探究新知

1、在评价学生的计算结果中帮助学生学会归纳和总结。

师:通过刚才的解题,你能说出小数除以整数是怎么除的吗?

学情预设:学生有的会把步骤在说一遍,有的会讲出前面“被除数的整数部分不够除”和“除到被除数的小数末尾还有余数”两种特殊情况的小数除以整数的算法,教师一一给与肯定。

师:做小数除以整数还有什么要提醒大家的?

四人小组讨论并归纳

学情预设:生根据小数乘法经验说出转化乘整数除法去除;商的小数点要和被除数的小数点对齐;哪一位不够商1就商0,然后继续除。如果除到被除数的末尾仍然有余数,要添0后再除。

课件出示补充。

2、在暴露计算错误的过程中引导学生学会验算。

(1)师:为了保证我们的计算正确,怎么办?——验算

验算是一种很好的学习方法和习惯,怎样验算黑板上面的小数除法呢?

学情预设:生根据整数除法经验能说出用乘法验算除法,或估算一下,或用被除数除以商等。

师:四人小组,一人选一道进行验算,算完在组内说说你是怎么想的?

(2)门诊台

课件出示。

小结:用估算能知道计算有没有错;用乘法或再除一遍的方法能保证计算正确

三、巩固练习

1、小马虎也做了两道题,请同学们看看他做对了吗?如果不对应该怎么订正?

37。8÷6=637。4÷5=1。4……4

2、计算并验算

43。5÷2918。9÷27

1。35÷15207÷45

3、书第20页:7、8题

四、课堂小结

说说小数除以整数的计算法则,有什么要提醒大家的?

五年级数学教案大全上册篇8

教学目标

1.通过收集图案,小组交流,感受图案的美,并为自身以后创作图案提供借鉴。

2.通过欣赏图案,发展同学的审美意识和空间观念。

3.自身经历创作实践的整个过程,感受创作的乐趣,进一步培养同学的审美情趣。

重点难点:

1.进一步利用对称、平移、旋转等方法绘制精美的图案。

2.加深感受图形的内在美,培养同学的审美情趣。

教学准备:

课件、方格纸、正方形白板纸、手工纸三张和剪刀等。

教学过程:

一、展览导入

课前让同学收集图案,以小组为单位进行交流。

考虑:这些图案是怎样设计的,它有什么特点?

指名介绍本组中最美的图案,并结合考虑说一说它的特点。

二、学习新课

(一)尝试发明:

让同学做第8页第1、2题。

1、鼓励同学用学过的图形设计图案,对不同的同学提出不同的要求。

2、交流时,教师对有创意、绘图美观的同学给予褒扬和激励。

(二)设计图案:

做第10页“实践活动”7题。

1、提出三个步骤:

(1)先选择一个喜欢的图形;

(2)再确定你选用的对称、平移和旋转的方法;

(3)动手绘制图案。

2、分别利用对称、平移和旋转创作一个图案后,全班交流。

三、巩固练习

(一)反馈练习:

1、制作“雪花”:

取一张正方形纸,按书上所示的方法对折和剪裁。可以经过多次练习,直到会剪一朵美丽的“雪花”。

2.作品展示。

3、独立观察并尝试做第9页第5题。

四、全课总结

全班交流各自的作品,选出好的作品互相评价,全班展览。

五年级数学教案大全上册篇9

教学内容:教材P2~3例1、例2及练习一第1、2、3题。

教学目标:

知识与技能:使学生理解并掌握小数乘以整数的计算方法及算理。

过程与方法:经历将小数乘整数转化为整数乘整数的过程,使学生认识到转化的方法是学习新知识的工具。

情感、态度与价值观:感受小数乘法在生活中的广泛应用。

教学重点:理解并掌握小数乘整数的算理,学会转化。

教学难点:能够运用算理进行小数乘整数的计算。

教学方法:迁移类推,引导发现,自主探索,合作交流。

教学准备:多媒体。

教学过程

一、情境导入

1.谈话:同学们都喜欢哪些运动呢?

(生回答自己喜欢的运动……)

2.导入:是啊,多参加户外运动,有利于身体健康。老师也经常参加户外运动,放风筝就是我的最爱。下课咱们一起去放风筝好吗?

3.提问:但放风筝之前要先去买风筝,所以咱们就先去买几只风筝吧!(展示教材第2页例l情境图)从图中你知道了哪些信息?

引导学生观察并思考:图中小明他们想买3个元的风筝需要多少钱?你会列式吗?

指学生回答:×3,教师板书:×3。

4.探索:观察这一道算式,它与我们以前学过的乘法算式有什么不同?

生观察后回答:这道算式的因数有小数。

5.揭题:以前我们学习的乘法都是整数乘整数,今天的算式中却出现了小数,这就是今天我们要研究的小数乘整数。(板书课题:小数乘整数)

二、互动新授

1.初步探究竖式计算的方法。

(1)引导学生准确算出一共需要多少钱?学生独立计算,并在小组内交流自己的想法。(师走到学生中,了解学生参与讨论的情况。)

(2)让学生说说自己的想法。

指名汇报,教师根据学生叙述板书,学生可能想出下面几种不同的方法:

方法1:连加。展示:++=(元)

师:你是怎么想的?

生:×3就表示3个相加,所以可以用乘法计算。(师板书意义)

方法2:化成元、角、分计算,先算整元,再算整角,最后相加。3元×3=9元,5角×3=1元5角,9元+1元5角=10元5角,即×3=(元)。

方法3:把元看作35角,则35角×3=105角=元。

(3)追问:刚才同学们开动脑筋想出了这么多方法,真了不起。如果要用竖式计算,你会算吗?请同学们想一想,并与同桌讨论:如何列竖式计算×37

引导:出示(边说边演示):

强调:我们可以把元转化成35角,用35角乘3得105角,再把105角转化成元。注意在列竖式时因数的末尾要对齐。

2.自主探究,进一步理解算理,掌握计算方法。

(1)教师出示算式:×5。

师:同学们看不是钱数了,没有元、角、分这样的单位了,还能不能计算出结果呢?请同学们独立思考,然后在小组内交流计算方法。

(2)学生汇报演示。

可能有两种方法:加法和乘法。根据学生的汇报,展示这两种方法。

(3)比较:(见板书设计)

引导:请同学们比较一下这两种方法,你喜欢哪一种呢,为什么?

生:用乘法比较简便。

(4)追问:仔细观察乘法算式,谁给大家解释一下,你是怎样把乘数转化成整数的?

生:先把小数点向右移动2位转化成72×5=360,得出结果后再把积的小数点向左移动两位就是。

质疑:既然把所得积的小数点向左移动两位,那这个积就应该是一个两位小数,为什么现在只有一位呢?

生:小数的末尾添上或去掉0,小数的大小不变,所以积末尾的0可以直接去掉。

(5)注意:同学们在计算小数乘整数时,想到了用转化的方法把小数乘法转化成整数乘法计算。那么,谁能和大家说说小数乘整数应该怎样计算,计算时应注意什么呢?

指导学生归纳出:计算小数乘整数的乘法,要先把小数看作整数来乘,乘完以后,看因数扩大了多少倍,再把乘出的积缩小相同的倍数。当积的末尾有“O”时,应先点上小数点,再把“0”去掉。

师:(出示教材第2页情境图)我们通过解决买风筝的问题,认识并学会了小数乘整数的计算方法。我们看图中还有几种不同的风筝,如果买3个其他形状的,需要多少钱呢?能不能很快地算出来?

学生独立计算,汇报交流。

师:同学们顺利地买完了风筝,那就让我们就一起把风筝放飞吧!

三、巩固拓展

1.教材第3页做一做第1题

想一想:小数乘整数与整数乘整数有什么不同?

2.教材第3页做一做第2题

同桌之间相互谈谈是怎样点小数点的。

3.指名板演教材第3页做一做第3题

4.不用计算,你能直接说出下面算式的结果吗?

148×23=3404

×23=()×23=()×23=()()×()=

四、课堂小结。同学们,这节课你们都学会了哪些知识?(学生自由发表想法)

作业:教材第4页练习练习一第1、2、3题。

五年级数学教案大全上册篇10

一、教材内容:

人教版小学数学五年级下册44页

二、学情分析

五年级学生已经有了一定的空间想象力、独立思考能力和小组合作交流的能力,学生的动手能力较强,喜欢自己通过动手、动脑去大胆探索问题,可以在活动中发现问题,总结规律。所以在学生已经认识了长方体和正方体的特征后,安排“探索图形”这个综合与实践活动,让学生通过观察实物,小组合作探究大正方体中各种涂色问题,并总结出规律,进一步培养学生的空间想象力和概括推理能力。

三、教学目标

1、借助正方体涂色问题,通过实际操作、演示、想象等活动发现小正方体涂色情况的位置特征和规律。

2、在探索规律的过程中,经历从特殊到一般的归纳过程,获得一些研究数学问题的方法、及分类、归纳、推理、模型等数学思想和经验。

3、在解决问题的过程中,感受数学的有趣,激发主动探索、勇于实践的精神和实事求是的科学态度。

教学重点:借助正方体涂色问题,通过实际操作、演示、想象等活动发现小正方体涂色情况的位置特征和规律。

教学难点:在探索规律的过程中,经历从特殊到一般的归纳过程,获得一些研究数学问题的方法、及分类、归纳、推理、模型等数学思想和经验。

四、教学准备

魔方、正方体教具(教师)、正方体教具(学生)、学生小组探究卡

五、教学过程

一、复习引入

(一)、同学们玩过魔方吗?它是一个什么几何形体?(正方体),正方体有什么特征呢?

学生:有8个顶点、12条长度相等的棱、6个大小相等的面。

教师随机板书正方体的特征。

【设计意图:通过学生熟悉的魔方引入正方体,不仅复习了正方体的特征,为新课的学习做好良好铺垫,也使学生感受到数学来源于生活。】

(二)、出示①②③组图,它们分别是由多少块小正方体组成的吗?

生:图①2×2×2=8(块)

图②3×3×3=27(块)

图③4×4×4=64(块)

师:在它们的表面涂上颜色,那么这些小正方体都会被涂上颜色吗?

生:不是,有的会被涂上颜色,有的不会被涂上颜色。

师:涂色的面数有几种情况?

学生观察分类:3面涂色、两面涂色、一面涂色、没有涂色。

教师随机板书:3面两面一面没有涂色

师:今天我们就一起来探究正方体表面涂色的问题——探究图形

教师板书课题。

二、探究新知

(一)探究三面涂色的问题

师:三面涂色的小正方体分别有多少块呢?

生观察回答:图①有8块、图②有8块、图③有8块。

师:怎么都是8块?分别在哪里?

生:都在大正方体的8个顶点上。

师:那么棱长上有5个、6个或7个小正方体的图形呢?三面涂色的小正方体有多少块?

生:也是8块。

师:这跟什么有关系?

生:跟正方体的顶点有关系,因为有8个顶点,顶点上的小正方体是三面涂色的。

教师随机板书:顶点

(二)探究两面涂色的问题

师:两面涂色的小正方体分别又有多少块呢?是否也存在一定的规律呢?请同学们利用学具四人小组进行探究。

小组合作提示:

1、四人合作,利用学具探究两面涂色的小正方体有多少块?

2、试着将发现的结果用列式的方法表示在小组探究卡的表格中

小组探究

小组汇报

生:一面有4块,6面一共有12块。

师:你是怎么知道的?为什么除以2呢?如果是正方体块数非常多的话,用这种方法还方便吗?还有其他的方法吗?

生:一条棱上去掉三面涂色的2块剩下的一块就是两面涂色的,而正方体有12条棱,一共就有1×12=12块.

师:③号图形两面涂色的有多少块呢?你发现两面涂色的小正方体在哪里?

生:在棱上。一条棱上去掉三面涂色的2块剩下的两块就是两面涂色的,而正方体有12条棱,一共就有2×12=24块.

师:那棱长是5块、6块的呢?怎样列式计算?

生:(5-2)×12=36块(6-2)×12=48块

师:用字母n表示棱长上的小正方体的块数,怎样表示出两面涂色的小正方体块数?

生:(n-2)×12

师板书:在棱上(n-2)×12

(三)探究一面涂色的问题

师:一面涂色的小正方体有多少块呢?试着借助刚才的经验进行探究并填表。

小组合作探究

小组汇报(使用希沃软件同屏互传,让孩子边展示列式边解释方法)

生:②号图形一面涂色的小正方体在每个面上,一面有1个一面涂色的,6个面一共就有6块。③号一面有4个一面涂色的,6个面一共就有24块。

师:你是怎么知道一面有1块、4块一面涂色的呢?

生:数的

师:如果正方体的块数非常多的时候呢?你觉得这种方法怎么样?

生:有局限性

师:是的,不具有一般化,并且还需要一定的计算前提。那还有什么更好的办法吗?

生:②号图形一条棱上去掉三面涂色的剩下的一块是一面涂色的这个正方形的棱长数,而这个小正方形的棱长数是(3-2)得到的,6个面就有(3-2)×(3-2)×6=6块。

生:③号图形一条棱上去掉三面涂色的剩下的两块是一面涂色的这个正方形的棱长数,而这个小正方形的棱长数是(4-2)得到的,6个面就有(4-2)×(4-2)×6=24块。

师:看来你们发现了一定的规律,棱长是5块、6块的图形呢怎么计算一面涂色的小正方体块数?

生:(5-2)×(5-2)×6=54块

(6-2)×(6-2)×6=96块

师:用字母怎么表示?

生:(n-2)×(n-2)×6=(n-2)2×6

(四)探究没有涂色的问题

师:没有涂色的小正方体有多少块呢?怎么计算?

生:可以用小正方体的总块数减去三面涂色、两面涂色以及一面涂色的。

师:这也确实是个办法。如果我只想知道没有涂色的块数是不是还需要算出其他的情况呢?是不是有些麻烦?没有涂色的小正方体在哪里呢?

生:在里面

师:有什么办法知道呢?

生:拆开看一看

师用教具给学生演示拆开的过程,观察里面没有涂色的小正方体块数

师:现在你知道有多少块没有涂色了吗?

生:②号图形有一块没有涂色

③号图形有8块没有涂色的

师:可以用算式计算出来吗?结合刚才拆的过程我们再看一看动画演示过程看看你能不能用列式的方法计算出没有涂色的块数。

组织学生观看动画过程。

生:②号图形每条棱上有3块,去掉两块三面涂色的剩下的一块就是中间正方体的棱长数,因此中间没有涂色的小正方体块数(3-2)×(3-2)×(3-2)=1块。

生:③号图形每条棱上有4块,去掉两块三面涂色的剩下的两块就是中间正方体的棱长数,因此中间没有涂色的小正方体块数(4-2)×(4-2)×(4-2)=8块。

师:真棒!你能试试棱长是5、6块的吗?

生:(5-2)×(5-2)×(5-2)=27块

(6-2)×(6-2)×(6-2)=64块

师:用字母怎么表示?

生:(n-2)×(n-2)×(n-2)=(n-2)3

三、知识应用

出示棱长由1000块小正方体拼成的大正方体,请问三面、两面、一面、没有涂色的小正方体分别有多少块?

学生计算汇报

四、课堂小结

通过这节课的探究,你能说说你用什么方法学会了本节课的知识?

五、版书设计

探索图形

顶点上棱上面上中心

正方体的特征:8个顶点12条棱6个面

三面两面一面没有涂色

8(n-2)×12(n-2)2×6(n-2)3

五年级数学教案大全上册篇11

教学内容

质数和合数

教材第14页的内容及练习四第1~3题。

教学目标

1.理解质数和合数的概念,并能判断一个数是质数还是合数,会把自然数按因数的个数进行分类。

2.通过自主探究、合作交流的方法,理解质数和合数的意义,经历概念的形成过程。

3.培养学生自主探索、独立思考、合作交流的能力,充分展示数学的魅力。

重点难点

重点:初步学会准确判断一个数是质数还是合数。

难点:区分奇数、质数、偶数、合数。

教具学具

投影仪。

教学过程

一、创设情境,激趣导入

师:“六一”快到了,老师给大家送来了礼物!(出示百宝箱)大家想要吗?可是这上面有锁,而且是一个密码锁,打不开,怎么办?

师:密码是一个三位数,它既是一个偶数,又是5的倍数;最高位上的数是9的最大因数;十位上的数是最小的质数。你能打开密码锁吗?

学生质疑:什么是质数。教师引入本节课内容,板书:质数和合数。

二、探究体验,经历过程

1.认识质数与合数。

师:找因数--找出1到20的各个数的因数,看一看它们的因数的个数有什么特点?

学生分组进行,找出之后进行分类。

生:老师,我发现这些数的因数有的只有1个,有的有2个,有的有3个,还有的有4个或更多。

师:很好,我们可以把它们分类,大家把分类结果填在表中。

投影展示学生的分类结果。

【设计意图:在学生独立思考的基础上,找出1~20的因数后总结出特点,为下文概念的出示做准备,使学生亲身经历概念的形成过程,印象深刻】

师:一个数,如果只有1和它本身两个因数,这样的数叫做质数。如2、3、5、7都是质数。一个数,除了1和它本身还有别的因数,这样的数叫做合数。如4、6、15、49都是合数。1既不是质数也不是合数。

师:再举出几个质数和合数的例子,举得完吗?说明了什么?(质数和合数都有无数个)

想一想:最小的质数(合数)是几?最大的呢?

师:所以按照因数个数的多少,自然数又可以分为哪几类呢?

课件出示:可以把非0自然数分为质数和合数以及1,共三类。

2.制作质数表。

投影出示例1。

师:怎样找出100以内的质数呢?

生1:可以把每个数都验证一下,看哪些是质数。

生2:先把2的倍数划去,但2除外,划掉的这些数都不是质数。然后划掉3的倍数,但3不划掉……

【设计意图:通过教师的引导,学生自主建构知识,完成100以内的质数表,使学生形成一个知识网络,进一步培养了学生的数感】

三、课末总结,梳理提升

这节课我们学习了质数和合数的概念,知道了1既不是质数也不是合数。在利用所学知识进行判断时,我们要抓住质数与合数的本质特点,从因数的个数入手进行判断。在对整数进行分类时,要明确分类标准,不能把质数和合数与奇数和偶数混淆。

板书设计

教学反思

1.学生是数学学习的主人,是数学课堂上主动求知、主动探索的主体。教师是数学学习的组织者、引导者和合作者。课堂上,我尽一切所能为学生创设可观察、可探索、可发现的问题情境,让学生以科学探究的方法学习数学,促进每一位学生的发展。

2.学生是知识建构过程的主体。自主探究要让学生根据自己的生活经验或已有的知识背景去探索知识,从某种意义上说,自主探究的目的不单纯在于数学知识的掌握,而在于数学方法的掌握和情感体验的获得,通过自己探索获得“再创造”的体验。

五年级数学教案大全上册篇12

一、复习

1、3.6×0.47.25×0.8板演

2、把240缩小10、100、1000、10000是()

同步口答追问指出:移动小数点位数不够添0补足。

3、评议追问算法随即揭题

二、新课

1、例30.36×0.24

试算集体评议比一比一样对吗?追问:为什么积的十分位上是0?

你能用交换因数位置的方法验算吗?

结果怎样?说明什么?

2、例4小明体重35.5千克,爸爸体重是小明的1.8倍,爸爸体重多少千克?

集体读怎样列式?为什么用乘法?35.5×1.8表示什么意思?

估计积比35.5大还是小?为什么练习简评

3、香蕉买多少元?

每千克3.6元

师引出第一条规律,生说规律2、3。

一个大于0的`数乘,积这个数

应用规律比较大小

3.2×0.8○3.2

0.56×1○0.56

0.63×1.1○0.63

0.9×2.7○2.7

三、练习

练一练1

练一练2

四、收获

五、作业

五年级数学教案大全上册篇13

教材分析:

该内容是在学生已经学习了“约数和倍数的意义”、“质数和合数、分解质因数”、“公约数”等的基础上进行教学的,既是对前面知识的综合运用,同时又是学生学习“通分”所必不可少的知识基础。因而是本单元的教学重点,是本册教材的核心内容。本课的教学,对于学生的后续学习和发展,具有举足轻重的作用。借鉴前面的学习方法学习后面的内容是本课设计中很重要的一个教学特色,这样设计不仅使教学变得轻松,而且能使学生在学习知识的同时掌握一些学习方法,这些学习策略和方法的掌握,对于今后的学习是很有帮助的。

学情分析:

五年级学生的生活经验和知识背景更为丰富,动手欲较强,学生认识数的概念时更愿意自主参与,自己发现。再者,学生个人的解题能力有限,而小组合作则能更好地激发他们的数学思维,通过交流获得数学信息。

教学目标:

(体现多维目标;体现学生思维能力培养)

1、让学生通过具体的操作和交流活动,认识公倍数和最小公倍数,会用列举法求两个数的最小公倍数。

2、让学生经历探索和发现数学知识的过程,积累数学活动的经验,培养学生自主探索合作交流的能力。

3、渗透集合思想,培养学生的抽象概括能力

教学重点:

公倍数与最小公倍数的概念建立。

教学难点:

运用“公倍数与最小公倍数”解决生活实际问题

教法学法:

为了实现教学目标,达到《标准》中的要求,也为了更好的解决教学重、难点,我将本节课设计成寓教于乐的形式,将教学内容融入一环环的学生自主探索发现的过程中,引导学生动手、动脑、动口。

教学过程:

媒体运用

任务导学

明确任务

师:课前我们来做个报数游戏,看谁的反应最快。请两大组的同学参加。

师:请报到3的倍数的同学起立,报到4的倍数的同学起立。你们发现了什么?他们为什么要起立两次?(因为他们报到的号数既是3的倍数又是4的倍数)是吗?咱们一起来验证一下。(师板书:12、24)

师:像这些数既是3的倍数,又是4的倍数,我们就把这些数叫做3和4的公倍数。(板书:公倍数)今天这节课我们一起来研究公倍数。

一、课堂探究,自主学习

1、出示例1

师:同学们,仔细读要求,你们认为解决这个问题要注意什么?

生独立思考,领会题意和要求。

课件出示

合作

探究

2、合作交流,动手操作

我们每一对同桌都准备了一张方格纸和一些长3厘米、宽2厘米的长方形,下面就用这些长方形来代替瓷砖在方格纸上来摆一摆、画一画或直接算一算。

3、汇报交流

师板书:2的倍数:2、4、6、8、10、12、14……

3的倍数:3、6、9、12、15、18……

2和3的公倍数:6、12、24……

二、交流展示

1、明确意义

师提出问题:为什么不能铺成边长是4厘米或9厘米的正方形?除了能铺成边长是6厘米的正方形之外,还可以铺成边长是多少厘米的正方形?最小是多少厘米?你发现能铺成的正方形的边长有什么特点?

(设计意图:这几个问题连环递进,通过第一问使学生理解4只是2的倍数,9只是3的倍数,不论是边长4厘米还是9厘米均不符合题意,从而使学生深刻理解"公"字的含义;通过第二、三问使学生发现能铺成的正方形的边长必须是2和3的公倍数,而只要符合这个条件的正方形是有无数个的,从而渗透了数形结合与极限思想。)

师:通过刚才的报数和铺正方形的过程,现在谁能用自己的话说说什么是公倍数和最小公倍数?在韦恩图上怎么表示?

2、找最小公倍数

师:是不是只有2和3才有公倍数呢?其你也举个例子里找一找他们的公倍数,有一个要求:看谁能在规定的时间里找到的公倍数最多,用的方法最巧。

汇报交流

师:请找到最多的同学说一说,你有什么好方法介绍给大家。

3、发现特殊关系的两个数的最小公倍数的特点

师让学生举例,然后将学生所举的例子分成了3类。启发学生:我是根据什么标准来分的?你所举的例子属于哪一类?咱们再来看一看,他们的最小公倍数有什么特点?(让举例的学生汇报最小公倍数)

得出规律:两个数是互质关系的,它们的最小公倍数就是他们的乘积;

两个数是倍数关系的,它们的最小公倍数就是较大的那个数。

如果以后让你找两个数的最小公倍数,你会怎么做?

三、反馈拓展

1、拓展提升

13和2()1000和25()

18和6()8和9()

1和12()9和15()

2、师:运用公倍数的知识,可以解决许多生活中的实际问题。一天周老师和一位乐清的同学在温州参加完同学会之后,第二天要赶回来上班,从温州新南站我们了解到以下一些信息

师:为了能同时出发,你认为周老师该选择哪些时间出发?

3、求三个数的公倍数

四、课堂总结

这节课我们学习了什么?你有什么收获?

五、评价检测

练习十七2、3、4题

五年级数学教案大全上册篇14

教学目标

1、掌握整除、约数、倍数的概念.

2、知道约数和倍数以整除为前提及约数和倍数相互依存的关系.

教学重点

1、建立整除、约数、倍数的概念.

2、理解约数、倍数相互依存的关系.

3、应用概念正确作出判断.

教学难点

理解约数、倍数相互依存的关系.

教学步骤

一、铺垫孕伏(课件演示:数的整除下载)

1、口算

6÷515÷323÷7

1.2÷0.324÷231÷3

2、观察算式和结果并将算式分类.

除尽

除不尽

6÷5=1.215÷3=15

1.2÷0.3=424÷2=12

23÷7=3......2

31÷3=10......1

3、引导学生回忆:研究整数除法时,一个数除以另一个不为零的数,商是整数而没有余数,我们就说第一个数能被第二个数整除.

4、寻找具有整除关系的算式.

板书:15÷3=515能被3整除

5、分类除尽

除不尽

不能整除

整除

6÷5=1.2

1.2÷0.3=4

15÷3=15

24÷2=12

23÷7=3......2

31÷3=10......1

二、探究新知

(一)进一步理解”整除“的意义.

1、整除所需的条件.

(1)分析:24能被2整除,15能被3整除;

23不能被7整除,31不能被3整除;(商有余数)

6不能被5整除;(商是小数)

1.2不能被0.3整除;(被除数和除数都是小数)

(2)引导学生明确:第一个数能被第二个数整除必须满足三个条件:

a、被除数和除数(0除外)都是整数;

b、商是整数;

c、商后没有余数.

板书:整数整数整数(没有余数)

15÷3=5

2、用字母表示相除的两个数,理解整除的意义.

(1)讨论:如果用字母a和b表示两个数相除,那么必须满足几个条件才能说a能被b整除?

(板书:a÷b)

学生明确:a和b都是整数,除得的商正好是整数而没有余数,我们就说a能被b整除.

(板书:a能被b整除)

(2)继续讨论:在什么情况下才能说a能被b整除?(板书:b≠0)

学生明确:整数a除以整数b(b≠0),除得的商是整数而没有余数,我们就说a能被b整除(也可以说b能整除a).

3、反馈练习.

(1)下面的数,哪一组的第一个数能被第二个数整除?

29和336和121.2和0.4

(2)判断下面的说法是否正确,并说明理由.

a.36能被12整除.()

b.19能被3整除.()

c.3.2能被0.4整除.()

d.0能被5整除.()

e.29能整除29.()

4、”整除“与”除尽“的联系和区别.

讨论:综合以上所学知识讨论,”整除“和”除尽“有什么联系?又有什么区别?

(举例说明)

(二)约数、倍数的意义

1、类推约数、倍数的意义.

(1)教师讲解:15能被3整除,我们就说15是3的倍数,3是15的约数.

(2)学生口述:

24能被2整除,我们就说,24是2的倍数,2是24的约数.

10能被5整除,我们就说,10是5的倍数,5是10的约数.

a能被b整除,我们就说a是b的倍数,b是a的约数.

(3)讨论:如果用字母a和b表示两个整数,在什么情况下才可以说a是b的倍数,b是a的约数?(在数a能被数b整除的条件下)

(4)小结:如果数a能被数b(b≠0)整除,a就叫做b的倍数,b就叫做a的约数(或a的因数).

2、进一步理解约数、倍数的意义.

(1)整除是约数、倍数的前提.学生明确:约数和倍数必须以整除为前提,不能整除的两个数就没有的数和倍数的关系.

(2)约数和倍数相互依存的关系.

学生明确:约数和倍数是一对相互依存的概念,不能单独存在.

(3)反馈练习:

A、下面各组数中,有约数和倍数关系的有哪些?

16和2140和2045和15

33和64和2472和8

B、判断下面说法是否正确.

a、8是2的倍数,2是8的约数.()

b、6是倍数,3是约数.()

c、30是5的倍数.()

d、4是历的约数.()

e、5是约数.()

3、教师说明:以后在研究约数和倍数时,我们所说的数一般不包括零.

4、教学例2:12的约数有哪几个?

(1)引导学生合作学习,讨论分析.

(2)汇报、板书:

12的约数有:1、2、3、4、6、12

(3)练习:15的约数有哪几个?

(4)学生明确:

一个数的约数是有限的.其中最小的约数是1,的约数是它本身.

5、教学例3:2的倍数有哪些?

(1)引导学生合作学习,讨论、分析.

(2)汇报、板书:

2的倍数有:2、4、6、8、10......

(3)练习:2的倍数有哪些?

(4)学生明确:

一个数的倍数的个数是无限的,其中最小的倍数是它本身.

三、全课小结

这节课,我们在进一步研究整除的基础上又学到了什么?通过学习你知道了什么?

(板书课题:约数和倍数的意义)

四、随堂练习

1、下面的说法对吗?说出理由.

(1)因为36÷9=4,所以36是倍数,9是约数.

(2)57是3的倍数.

(3)1是1、2、3、4、5,...的约数.

2、下面的数,哪些是60的约数,哪些是6的倍数?

3412162460

教师说明:一个数可以是另一个数的约数,也可以是某个数的倍数.

3、下面的说法对吗?为什么?

(1)1.8能被0.2除尽.()1.8能被0.2整除.()

1.8是0.2的倍数.()1.8是0.2的9倍.()

(2)若a÷b=10,那么:

a一定是b的倍数.()a能被b整除.()

b可能是a的约数.()a能被b除尽.()

五、布置作业

1、先写出下面每个数的约数,再写出下面每个数的倍数(按照从小到大的顺序各写5个)

101336

2、在下面的圈里填上适当的数.

六、板书设计

约数和倍数的意义

探究活动

五年级数学教案大全上册篇15

【教学内容】:教材P114第4题及练习二十五第1题。

【教学目标】:

知识与技能:使学生能够准确地、熟练地用数对表示位置。

过程与方法:经历用数对表示位置的过程,掌握将数对应用于生活中的方法。

情感、态度与价值观:激发学生的学习兴趣,感受数学在日常生活中的应用。

【教学重、难点】

重点:用数对确定位置。

难点:培养学生灵活运用知识的能力。

【教学方法】:组织练习,质疑引导。练习体验,小组交流。

【教学准备】:多媒体。

【教学过程】

一、练习导入

1.谈话:为了更有利于同学们的学习,老师想调整一下同学们的座位。下面是座位示意图:

已知(1,4)表示小亮的位置。

⑴小明、小丽和小红的位置用数对分别可以表示为(,),(,),(,)。

⑵老师想把小刚排在(5,3)这个位置上,请你在图中标出来。

⑶从小明的位置向左数2列,再向后数1行就是小强的位置,小强的位置是(,)。

2.下面是一幅街区平面图,请看图回答问题。

五爱城所在的位置可以用(2,7)表示,它在火车站以东200m,再往北700m处。

⑴像上面那样描述一下其他建筑物的位置。

⑵小刚家在火车站以东600m,再往北400m处小红家在火车站以东900m,再往北200m处。在图中标出这两名同学家的`位置。

⑶星期六,小刚的活动路线是(6,4)→(2,7)→(4,3)→(5,7)→(7,6)→(9,4)→(11,1)→(11,8)→(6,4)。与一说,他这一天先后去了哪些地方。

二、回顾整理

1.行和列的意义:竖排叫列,横排叫行。

2.数对可以表示物体的位置,也可以确定物体的位置。

3.数对表示位置的方法:先表示列,再表示行。先用括号把代表列和行的数字或字母括起来,再用逗号隔开。如:(7,9)表示第7列第9行。

4.两个数对,前一个数相同,说明它们所表示物体的位置在同一列上。如:(2,4)和(2,7)都在第2列上。

5.两个数对,后一个数相同,说明它们所表示物体的位置在同一行上。如:(3,6)和(1,6)都在第6行上。

6.物体向左、右平移,行数不变,列数减去或加上平移的格数。物体向上、下平移,列数不变,行数加上或减去平移的格数。

三、巩固拓展

1.运用平移的方法加深用数对确定物体的位置。

按要求完成题目。(答案:数对略)

(1)中点A的位置可用数对(1,1)表示,那么平行四边形其他各顶点的位置分别怎样表示?

(2)写出平行四边形向上和向右平移的的图形,写出平移后的各顶点的位置。

学生尝试解答。教师小结:一个图形向上或向下平移后,各顶点的位置的列数没变,行数发生变化;向左或向右平移后,各顶点的位置的行数没变,列数发生变化。

2.教材第114页第4题。教师:我们都下过五子棋,都知道五子棋的规则。请观察题中的情境图,你能用数对来准确地表示出图上的棋子的具体位置吗?

学生观察图片,独立思考,同桌交流,然后指名汇报。

四、课后小结

位置可以由数对来确定,要注意数对的规范写法,逗号前面表示列,逗号后面表示行。

五、作业:教材第115页练习二十五第1题。

【板书设计】

位置复习课

竖排叫列,横排叫行。先表示列,再表示行。

物体向左、右平移,行数不变,列数减去或加上平移的格数。

物体向上、下平移,列数不变,行数加上或减去平移的格数。

五年级数学教案大全上册篇16

教学目标:

1.使学生在具体情境中认识列、行的含义,知道确定第几列、第几行的规则,初步理解数对的含义,会用数对表示具体情境中物体的位置。

2.使学生经历由具体的座位抽象成用列、行表示的平面图的过程,提高抽象思维能力,发展空间观念。

3.使学生体验数学与生活的密切联系,进一步增强用数学的眼光观察生活的意识。

教学过程:

一、情境引入

1、谈话:我们每个学期都要召开家长会,如果是你爸爸来参加家长会了,你用什么方法告诉他你在教室里的位置呢?

2、指名学生汇报,预设回答:(①我坐在第一组第二张桌子;②我坐在教室中间的位置;③我坐在第五行靠墙的位置)教师对学生的回答一一点评

指出:要确定自己的位置,一个条件是不够的,至少需要两个条件。

3、谈话:今天我就要学习一种简洁、新颖的方法来确定位置,想知道是什么方法吗?

二、教学新课

1、教学例1

(1)出示例题图,提问:这是某个班级的座位图,从图中你看出了什么?

学生回答后继续追问:谁能说说小军的位置?

预设回答:(小军坐在第4竖排第三个;小军坐在第三横排的第4个)

指导学生数的时候是从哪向哪数。

提问:如果我们不知道小军的位置,听了刚才同学的发言,能顺利地找到小军的位置吗?

谈话:这些方法都是正确的,但是你觉得用这样的方法描述小军的位置有什么不足之处吗?

预设回答(不够清楚,比较麻烦)

(2)用数对表示位置。

出示抽象图,谈话:我们把刚才例题图转化为抽象图,你还能找到小军的位置吗?

第5行 ○ ○ ○ ○ ○ ○

第4行 ○ ○ ○ ○ ○ ○

第3行 ○ ○ ○ ○ ○ ○

第2行 ○ ○ ○ ○ ○ ○

第1行 ○ ○ ○ ○ ○ ○

第 第 第 第 第 第

1 2 3 4 5 6

列 列 列 列 列 列

谈话:实际上,在确定位置时,竖排叫列,确定第几列一般从左往右数;

横排叫行,确定第几行一半从前往后数(指图板书)。

小军位置是第几列第几行?(从左向右数第4列,从前向后数第3行)

像这样的位置我们可以用一个数对来表示(4,3)

让学生说说对(4,3)的理解

小结:(4,3)表示第4列,第3行,这样的数对包含两个数,第一个数表示第几列,第二个数表示第几行,两个数之间用逗号隔开,外面加上小括号。

(3)用数对表示位置。

课件出示问题:在抽象图中找出第2列第4行的位置,用数对表示是什么?

指名学生回答,让其他学生点评

继续出示问题:( 6,5 )在上图中表示第几列第几行的位置。

指名学生回答,让其他学生点评

回到例1教学用图,谈话:小军还有几个好朋友,你能用数对表示出他们的位置吗?

指名学生回答,并让他们说出表示什么

2、情境教学

(1)谈话:我们刚才学习了用数对来表示位置,那么家长会之前你能这个方法告诉你家长的位置吗?我们规定从讲台开始,从前向后分别为第一行、第二行……;从教室的门开始,老师的方向从左向右分别为第一列、第二列……。请大家每个人都想想自己的位置怎么用数对表示。

(2)同桌互相交流,说说自己位置表示的数对

(3)指名学生说说自己的位置和表示的数对,然后点评

(4)活动:出示数对,请相应的同学起立 (1,4) (4,3) (2,2) (5,1) (7,5) (9,6)

点评:为什么

2.完成“练一练”。

(1)学生在书上完成1.2题。

你能找到第2列第4行的位置吗?有数对怎样表示?

(2)(5,5)表示什么呢?是图上的哪个圈?

两个“5”表示的意思一样吗?

三、巩固练习

1.完成练习三第1题。

教室里的座位共有几列几行呢?第1列第1行是哪个同学的座位?用数对怎样表示你能说说自己的座位在第几列第几行吗?用数对怎样表示?

在小组中互相说说,并互相指其他座位说数对。

2.完成练习三第2题。

在实际生活中,也经常用数对确定位置。

你能悦纳嘎数对表示这四块瓷砖的位置吗?

追问:第3列的两块瓷砖有什么共同特点吗?

第4行的两块瓷砖用数对表示位置时,写出的两个数对有什么相同的地方?

同一列的两块瓷砖,数对中的第一个数相同;

同一行的瓷砖,数对中的第二个数相同。

3.完成第3题。

(1)独立完成用数对表示每一块花砖的位置。

(2)在小组中交流花砖位置的排列有什么规律?

(3)汇报交流结果。

四、课堂总结

通过今天的学习,你有什么收获?你认为学习用数对确定位置的方法对你以后有什么指导作用呢?

板书设计:

用数对确定位置

竖排叫列,横排叫行。

数对中的第一个数表示第几列,第二个数表示第几行;

两个数之间用逗号隔开,两个数的外面用小括号括起来。

五年级数学教案大全上册篇17

教学目标:

1、通过学生给班里或学校图书角的图书编上书号这一实践活动,使学生进一步认识到数字编码在生活中的作用。

2、让学生体会用字母也可以进行编码,进一步探索编码的方法,经历用字母和数字一起进行编码的过程。

3、使学生在数学活动中养成与人合作的良好习惯,初步学会表达和交流解决问题的过程和结果。

教学重难点:

通过观察、比较、猜测来探索用字母和数字一起进行编码的简单方法

教学具准备:

课前到图书馆进行实地调查,在图书馆借阅图书,怎样方便快捷地查找图书?

教学过程:

一激趣引入:

同学们,课前到图书馆去调查了吗?图书馆那么多图书,怎样方便快捷地查找图书?(用字母和数字给图书编码),对了!图书编号、车子牌号都是用字母和数字一起进行编码的,今天我们就来学一学。

二、新知学习:

1、生交流课前各自调查的收获。

2、在学生汇报的基础上,教师对图书的检索号进行简单的介绍:

图书的检索号一般包括分内号和书次号,分内号是按照《中国图书馆分类法》的标准对图书进行分类,用字母来表示图书的种类,中文图书共分为22大类,分别用A、B、C……Z字母表示,字母后的数字表示进一步细分。一般来说,数的位数标志类名的级别,多一位数码表示细分一层。书次号则表示同一类图书的序号,这里也可以考虑作者、出版日期等。

3、提出问题:我们教室图书角里也有很多书,为了方便我们查书,我们应该做些什么?(给图书编号,整理出图书角的图书目录)

4、分组为图书角的图书编排号码,并整理出目录。

①、讨论并确定好图书的书号要包含的信息:图书的类别、作者、捐书人等。

②、讨论每个信息如何用字母和数字进行编排。比如用字母表示类别,用A表示童话故事书,还可以用序号代表捐书人的信息。

③、设计好方案后,全班同学对每个小组汇报的方案进行评价。

④、挑选出大家最满意的方案,按照这个方案,再分工完成图书角的目录登记表。

三、巩固练习:

1、书P118第2题是让学生体会汽车车牌号中的编码,除了数字还有汉字和字母的应用,用各省的简称表示省份,用字母表示地市。

2、书P118第3题向学生介绍图书的“身份证”——国际标准书号。

3、独立完成书P119第4题。

四、全课小结:

同学们,今天我们学习了什么?你有什么收获?在用字母和数字一起进行编码的时候要注意些什么?在生活中你还在哪里见到过编码?举例说一说。

五年级数学教案大全上册篇18

一、创设情境,提出问题

谈话:我们来进行一个小小的拍球比赛,下面我们请甲队的__(3人),和乙队的__(4人)到前面来,每人拿一个球。注意:比赛的规则是在规定的时间里,哪个队拍球的总个数最多,哪个队就获胜,听懂了吗?(听懂了)

师控制时间(5秒),根据拍球的个数板书,如:

甲队:6+7+8=21(个)

乙队:10+4+3+6=24(个)

结束后要求学生把球轻轻的放在这里,慢慢的走回座位。

师:下面两个队以最快的速度把你们这个队拍球的总数求出来。根据学生回答老师将上面的板书补完整。

师:我们来看看,在规定的时间里,甲队拍了21个,乙队拍了24个,哪个队赢了?(或问我们能说明乙队赢了吗?)

生发现不行!

师:你为什么说不行?

生:我们是3个人拍的,他们是4个人拍的。(你什么意思啊?)就是这样不公平。

师:甲队的队员听了他这么一说也都觉得不公平了,是吗?在人数不等的情况下,比较总数就不公平了,可在我们生活中就会遇到这样的情况,比如:刚刚我们进行了期中考试,我们是怎么比较三个班的成绩的呢?(比较平均数),我们这里就可以比较平均每人拍了多少个?

二、解决问题,探求新知

1、初步感知平均数产生的需要

生1:分别用21÷3=

24÷4=

分别求出等于多少

师:比较平均每人拍了多少个?先来帮甲队算一算,为什么“÷3”?再来帮乙队算一算,为什么“÷4”?

师:我们以乙队为例,这“6个”是表示什么?(可能有学生正好拍了6个)问有没有不同意见?(平均每人拍了6个)

2、理解平均数的意义

师:1号你明明拍了10个怎么变成6个了,多的哪儿去了(多的补给拍的少的人了)那么拍的少的2号拍了4个怎么变成6个了(拍的多的给了我几个,就慢慢增多了,)

师:多的补给了少的,多的就慢慢(少了),少的就慢慢(多了),最后他们4个人就慢慢变得相等了。这个6就是4个人拍的平均数。(板书:平均数)

问:这个平均数是怎么算出来的?(先加再除)

师:我们再来看看,多的10个给了少的,少的就慢慢增多,多到什么程度了?

生:每个人的相等。

师:那么这个6就是同学说的它是10、4、3、6这一组数的平均数,这个平均数就很好的反映了南边这组的整体水平。甲队和乙队,甲队平均水平7个,乙队平均水平6个,哪一个队的整体水平高些呢?学生直接说甲队。

小结:提问,刚才我们比较总数的时候,我们好多同学都有意见觉得比较总数不公平,那么当人数不相等的时候我们比较什么才公平呢?(平均数)

3、沟通平均数与生活的联系

师:同学们,平均数当我们需要它的时候来了,在我们生活中学习中,有很多地方都用到平均数。(学生举例子)

三、估计平均数的策略

1、出示五一期间南通儿童乐园的游客统计图

谈话:同学们五一期间出去旅游了吗?去了哪儿?

(1)估一估

问:看到这张统计图,说说你读懂了什么信息?还没有发言的同学说说看。

生:1号1100人,2号来了1300人,3号1000人,4号900人,5号700人。

师:那么你还想了解点什么吗?(平均每天来了多少人?)出示问题:这五天平均每天来了多少人?

要求:不许计算,只能估一估。(生估计1000、1200、只要在700与1300之间就行)

如果有学生估计500、600、2000等,让学生讨论:可能是500、600、2000吗?为什么?

小结:最多的要给少的,多的就少了,平均数不可能比最多的还要多。少的会变多,平均数也不可能比最少的还要少。也就是平均数既要比谁少又要比谁多啊?

(2)算一算

师:好,每个同学再估计一个数把它藏在心里。要看估计的准不准就可以算一算,接下来就请同学们在自己的作业本上独自的认真的算一算,有不同方法的呆会儿来给我们介绍。

汇报:都是1000,问你是怎么算的?把你的方法介绍给我们。

简单的说:把这几天的总人数求出来,再除以5。也就是先……再……。还有没有不同的方法,一生用移多补少的方法介绍,也得到了1000,这叫移多补少。(板书移多补少)

(3)揭示估计方法

师:咦,刚才你第二次估计的数与1000接近的人举手。老师刚才也偷偷的估计了一下,老师估计的是2000,你们说可能吗?为什么呀?给我说说看!

生:平均数要比最多的少,比最少的要多。我们估计要有根有据。

师:从统计表上看,从2号开始来的人数越来越少,如果你是南通儿童乐园的管理人,你有什么招能吸引游客?(降低价格、提高环境)是个不错的招,下课后王老师会在网上把我们三3班同学的建议发给南通儿童乐园的管理人,好不好?

3、出示本班期中考试4名同学的数学成绩

谈话:前天我们做了张试卷,这是4个同学的成绩。

问:的和最少的分别是多少分?他们的平均成绩肯定要比的怎么样?比最少的怎么样?

问:你想用什么方法算出他们的平均成绩?

分别介绍两种求平均数的方法。(90分)

4、分别出示三幅图片

谈话:水是生命之源,我国水资源相当丰富,但分布不均匀。

(1)我国严重的缺水地区

介绍:这是我国严重的缺水地区,他们一户人家平均每月用水量30千克,用它吃饭洗衣服洗菜。

(2)出示小芳家用水统计图

师:这是老师调查的小芳家用水统计图,第一季度用水16吨、第二季度用水24吨、第三季度35吨、第四季度21吨。你知道平均每月用水多少吨吗?

可能有学生会选1和2。安排选1的和选2的个一名代表到前面来。要求选2的向选1的同学提提问题?选2的问:题目要求的是什么?那么一年有几个月?那么你为什么还选1?问第三个问题时对方可能不回答了。

师:这个问题关键的地方要看求的平均每月用水多少吨?而1、3分别求的是什么?动笔算一算他家平均每月用水多少吨?(16+24+35+21)÷4=24(吨)

(3)小芳家平均每月用水约24吨

再同时出示(1)(3)两种画面,此时此刻你最想说的是什么?节约用水从我们自身做起。?

8.巩固练习

74842