教育巴巴 > 小学教案 > 数学教案 > 五年级 >

小学五年级数学课程教案

时间: 沐钦 五年级

小学五年级数学课程教案怎么写?数学家们都试图在这一天发现素数序列的一些秩序,我们有理由相信这是一个谜,人类的心灵永远无法渗入。下面是小编为大家带来的小学五年级数学课程教案七篇,希望大家能够喜欢!

小学五年级数学课程教案

小学五年级数学课程教案【篇1】

教学内容:义务教育课程标准实验教科书北师大版数学五年级上册第14-15页。

教学目标:

1、使学生尝试运用“列表”、“画示意图”等方法发现规律,运用数的奇偶性解决生活中的一些简单问题。

2、让学生经历探索加法运算中数的奇偶性变化的过程,发现数的奇偶性的变化规律。

3、在活动中培养等毛生的观察、推理和归纳能力。

4、学生通过自主探索发现规律,感受数学内在的魅力,培养学生学习数学的兴趣。

教学重点:探索数的奇偶性变化规律。

教具学具准备:数字卡片,盒子,奖品。

教学过程:

复习引入新课。(通过引导学生回忆、提问或列举等形式,复习奇、偶数的意义。)

活动1:数的奇偶性在生活中的应用。

(一)激趣导入。

清早,笑笑第一个走进了教室,像往常一样把门打开后就去开灯,结果灯未亮,于是,他自言自语地说了声“停电了”就走到座位上坐下。不一会儿,同学们陆陆续续来到了教室,看到教室里光线有些暗,都下意识地伸手去按电灯开关,却都像笑笑一样无奈地走回自己的座位。你知道第11个同学按过开关后,“开关”是打开的还是关闭了?

(二)自主探究,发现规律。

1、学生独立思考后进行汇报交流。

方法:用文字列举出开、关的情况

开、关;开、关;开、关;开、关;开、关;开、关……

让学生数数,直观地发现第11个人按过开关后,开关是打开的。

2、增加人次,深入探究。

如果是第47个同学或第60个同学进去,用列举的方法判断“开关”的开、关情况还方便吗?你还能想出什么好方法?

3、第二次汇报交流。

投影下表:

用列表的方法启发学生总结规律并作答:当人数是1、3、5、7……的时候,开关处于开启状态,而当人数是2、4、6、8……的时候,开关处于关闭状态。即,进来的是奇数个同学时,开关被打开;进来的是偶数个同学时,开关被关闭。因为47是奇数,开关被打开;108是偶数,开关被关闭。

(三)巩固应用。

1、看书学习并解决小船的靠岸问题。

2、解决杯子上下翻转,杯口的朝向问题。

3、举例说说数的奇偶性还能解决哪些生活问题?

(四)活动小结。

当一个事物只有两种(运动或变化)状态时,运动奇数次后,状态与初始状态相反,运动偶数次时,状态与初始状态相同。

活动2:探索奇、偶数相加的规律。

(一)有奖游戏。

1、出示分别装有奇数卡片和偶数卡片的两个盒子。宣布游戏规则:从自己喜欢的盒子里任意抽取两张卡片,如果卡片上两个数的和为奇数,你就可以领取一份奖品。

2、游戏开始。部分学生按规则抽取卡片,并将卡片上两个数相加的算式及得数写在黑板上。上来的同学无一人获奖。

3、引发思考。

师:是你们运气不好,还是其中隐藏着什么秘密?想一想:如果继续抽下去,你们有获奖的可能吗?

4、发现规律。

学生观察黑板上的算式,很快发现其中的“秘密”:两个奇数相加和是偶数;两个偶数相加和也是偶数。如此抽取卡片,永远无法获奖。

5、举例验证。

6、修改游戏规则。

(1)师:现在同学们已经发现了不能获奖的原因了,那么,你能不能修改游戏规则,保证你们能够获奖呢?

(新规则:在两个盒子里各抽出一张卡片,两张卡片上数的和是奇数可获奖。)

(2)请学生按修改后的规则试抽几次,并发奖以资鼓励。

(3)举例验证:奇数+偶数=奇数

(二)总结奇、偶数相加的规律。

奇数+奇数=偶数、偶数+偶数=偶数、奇数+偶数=奇数。

(三)应用规律解决问题。

1、不计算,判断下列算式的结果是奇数还是偶数。

10389+2004 11387+131 268+1024

2、把5颗糖(全部)分给两个小朋友,能否使每个小朋友都分到偶数颗糖?奇数颗呢?结果是什么?

全课小结:说说这节课有什么收获?

小学五年级数学课程教案【篇2】

教学内容:教材第14~15页。

教学目标:

1、在实践活动中认识奇数和偶数 ,了解奇偶性的规律。

2、探索并掌握数的奇偶性,并能应用数的奇偶性分析和解释生活中一些简单问题。

3、通过本次活动,让学生经历猜想、实验、验证的过程,结合学习内容,对学生进行思想教育,使学生体会到生活中处处有数学,增强学好数学的信心和应用数学的意识。

教学重点:探索并理解数的奇偶性

教学难点:能应用数的奇偶性分析和解释生活中一些简单问题

教学过程:

一、游戏导入,感受奇偶性

1、游戏:换座位

首先将全班39个学生分成6组,人数分别为4、5、6、7、8、9。我们大家来做个换位置的游戏:要求是只能在本组内交换,而且每人只能与任意一个人交换一次座位。

(游戏后学生发现4人、6人、8人一组的均能按要求换座位,而5人、7人、9人一组的却有一人无法跟别人换座位)

2、讨论:为什么会出现这种情况呢?

学生能很直观的找出原因,并说清这是由于4、6、8恰好是双数,都是2的倍数;而5、7、9是单数,不是2的倍数。

(此时学生议论纷纷,正是引出偶数、奇数的时机)

3、小结:交换位置时两两交换,有的小组刚好都能换位置,像4、6、8、10……是2的倍数,这样的数就叫做偶数;而有的小组有人不能与别人换位置,像5、7、9……不是2的倍数,这样的数就叫做奇数。

学生相互举例说说怎样的数是奇数,怎样的数是偶数。

二、猜想验证,认识奇偶性

活动1

(1)出示题目和情景图:小船最初在南岸,从南岸驶向北岸,再从北岸驶向南岸,不断往返。

(2)提出问题:小船摆渡11次后,船在南岸还是北岸?为什么?

(3)探究活动

学生可能会运用数的方法得出结果,不一定正确。

师:小船摆渡100次后,船在南岸还是北岸?你会怎样做?能保证正确吗?

引导学生运用策略:①列表法;②画示意图法。

三、实践操作、应用奇偶性

我们已经知道了奇偶数的一些特性,现在要用这些特性解决我们身边经常发生的问题。

1、试一试

(1)一个杯子,杯口朝上放在桌上,翻动一次,杯口朝下。翻动两次,杯口朝上……翻动10次呢?翻动19次?105次?请尝试说明理由。

学生动手操作,发现规律:奇数次朝下,偶数次朝上。

师:把杯子换成硬币,你能提出类似的问题吗?

(2)有3个杯子,全部杯口朝上放在桌上,每次翻动其中的两只杯子,能否经过若干次翻转,使得3个杯子全部杯口朝下?

你手上只有一个杯子怎么办?(学生:小组合作)

学生开始动手操作。

反馈:有一小部分学生说能,但是上台展示,要么违反规则,要么无法进行下去。

引导感受:如果我们分析一下每次翻转后杯口朝上的杯子数的奇偶性,就会发现问题的所在。

学生动手操作,尝试发现

交流:一开始杯口朝上的杯子是3只,是奇数;第一次翻转后,杯口朝上的变为1只,仍是奇数;再继续翻转,因为只能翻转两只杯子,即只有两只杯子改变了上、下方向,所以杯口朝上的杯子数仍是奇数。由此可知:无论翻转多少次,杯口朝上的杯子数永远是奇数,不可能是偶数。也就是说,不可能使3只杯子全部杯口朝下。

学生再次操作,感受过程,体验结论。

2、活动2

出示两组数:圆中的数有什么特点?正方形中的数有什么特点?

(1)学生独立猜想,完成“试一试”,小组内汇报交流,然后统一意见进行验证(要求:验证时多选几组进行证明)。

如果两个数相减呢?如果是连加或连减呢?

汇报成果:

(1)奇数﹢奇数=偶数 (2)奇数-奇数=偶数 (3)奇数+奇数+……+奇数=奇数(奇数个)

偶数+偶数=偶数 偶数-偶数=偶数 奇数+奇数+……+奇数=偶数(偶数个)

奇数+偶数=奇数 奇数-偶数=奇数 偶数+偶数+……+偶数=偶数

你能举几个例子说明一下吗?

(学生的举例可以引导从正反两个角度进行)

(2)运用判断下列算式的结果是奇数还是偶数。

10389 + 2004:_____ 46786-5787: _____ 11231+2557+3379+105:

11387 + 131: _____ 60075-997: _____ 335+7757+223+66789+73:

268 + 1024: _____ 9876-5432: _____ 2+4+6+8+10……+998+1000:

3、游戏。规则如下:用骰子掷一次,得到一个点数,以A点为起点,连续走两次,转到哪一格,那一格的奖品就归你。谁想上来参加?

学生跃跃欲试……如果继续玩下去有中奖的可能吗?谁不想参加呢?为什么?

生:骰子始终在偶数区内,不管掷的是几,加起来总是偶数,不可能得到奖品。

是呀,这是老师在街上看到的一个,他就是利用了数的奇偶性专门骗小孩子上当,现在你有什么想法?

学生自由说。

四、课堂小结,课后延伸。

1、说说我们这节课探索了什么?你发现了什么?

2、那如果是4个杯子全部杯口朝上放在桌上,每次翻动其中的3只杯子,能否经过若干次翻转,使得4个杯子全部杯口朝下?最少几次?

教学反思:

踏入七中育才(东区),心情就像这九月的天气一样时阴时晴。教学的压力,学生的现状,迫使我不得不放下我原有的教学模式,改进教学策略,尽快适应这所学校紧张的氛围。

听说学校要组织青年教师公开课比赛,我第一个报了名,旨在让其他老师给我提出一些建设性意见,提高我的课堂教学能力。最后定于第三周完成我的展示。

我上的是五年级数学“数的奇偶性”一节内容。报名后,我便积极的着手准备,钻研教材,查阅资料,设计程式,制作课件,并虚心请教了同教研组的余加秋老师和刘红敏老师,征求了他们的意见。

我的设计思路是:多给学生思维的空间;让学生全方位参与学习;要让学生体验到数学的探索方法;体现数学的生活化和趣味性。为此,我的教学目标定格为:1、在实践活动中认识奇数和偶数,了解奇偶性的规律。2、探索并掌握数的奇偶性,并能应用数的奇偶性分析和解释生活中一些简单问题。3、通过本次活动,让学生经历猜想、实验、验证的过程,结合学习内容,对学生进行思想教育,使学生体会到生活中处处有数学,增强学好数学的信心和应用数学的意识。

在此基础上,我对教学过程进行了如下设计:

一、游戏导入,感受奇偶性

通过两两结对入座的游戏引出数的奇偶性

二、猜想验证,认识奇偶性

教学“活动1”,引导学生运用策略:应用列表法和画示意图法探索数的奇偶性。

三、实践操作、应用奇偶性

1、翻杯子游戏。

2、探索整数加减法得数的奇偶性,通过学生独立猜想,小组内交流,统一验证,巩固练习,让学生自主获取新知。

3、游戏“开心乐”,运用数的奇偶性解释生活中的现象。

四、课堂小结,课后延伸。

课后,教研组组织了所有老师评课。老师们各抒己见,既肯定了我的教学风格,又提出了宝贵的意见,让我受益非浅。我也及时的自省,在不同层面上进行了思考。

1、游戏是学生喜闻乐见的教学形式,能够激发学生的学习兴趣。但是不能没有目的性的为了游戏而游戏,应该在游戏中给学生解决数学问题的启发。本节课,我一共设计了两两结对入座的游戏、翻杯子游戏、“开心乐”等三个游戏,都是结合了教学内容而安排的,第一个游戏重在感受数的奇偶性,第二个游戏重在应用数的奇偶性,第三个游戏重在解释数的奇偶性,游戏的重心最后都落到了“数的奇偶性”上,因此起到了预想的效果。

2、现行的教材内容的广度和深度都有很大的挖掘空间,课前的准备将直接影响课堂教学的容量。本节课,教材上仅有两个活动和两个“试一试”,练习几乎没有,两个活动的探索过程也非常简单,学生稍作思考就能得到正确的答案。课前,我查阅了一些资料,将“翻杯子游戏”和“探索整数加减法得数的奇偶性”进一步拓展,并增加了一些练习,使内容更加丰满,但是练习的典型性、层次性仍然不够,还有值得改进的地方。

3、新课后的应用新知,不能单纯的是例题的改版,还应该有所变化,有所突破,注入新的元素,这样才能让学生灵活牢固的掌握所学知识。这节课中,我所设计的练习就过于程式化,没有跳出固有的“圈”,顺向思维练得多,逆向思维练得少,学生很难推陈出新。

4、数学课上的板书必须要能诠释重点,疏通难点。我在这堂课上的板书做到了前者,而疏漏了后者。“探索整数加减法得数的奇偶性”是本节课的重点,我特意将探索结果板书罗列了出来;探索的过程,是一个不完全归纳的思维过程,本是难点,但我没有把算式板书出来,就有点“空对空”的感觉了。

以上仅是我现有的一点感触,我想,随着教学工作的不断深入,我和学生的不断磨合,教学过程中还有许多的问题等着我去解决,我会以的状态去迎接每一次的挑战。

小学五年级数学课程教案【篇3】

教学内容: 人教版小学数学五年级上册第五单元第三节内容。

教学目标:

知识与技能:在实际情境中,认识计算梯形面积的必要性,能运用梯形面积的计算公式,解决相应的实际问题。

过程与方法:培养学生学会发现知识之间的规律,加强学生动手操作能力和观察能力,在小组合作探索的活动中,经历推导梯形面积公式的过程。

情感态度价值观:在探索梯形面积计算方法的过程中,获得探索问题成功的体验。

教学重点:理解梯形面积的计算方法,正确计算梯形的面积。

教学难点:梯形面积计算方法的推导过程。

教学准备:给每个小组准备梯形若干个,剪刀一把;课件。

教学过程:

一、复习导入,创设情境。

师:同学们,我们在学平行四边形和三角形面积的计算时,学到一种非常重要的学习方法,还记得是什么方法吗?(转化)

师:谁来说说平行四边形式三角形的面积是怎样推导出来的?

(根据学生所述,教师电脑演示平行四边形和三角形面积公式的推导过程)

师:推导平行四边形和三角形面积公式时,我们都用到了转化的方法,把我们要研究的图形转化成已经学过的图形来发现他们之间的联系,进而推导出面积计算的公式。

师:在生活中,我们能看到各种形状的物体,(出示课件)这辆小汽车的车窗玻璃是什么图形?还记得梯形各部分的名称吗?(出示课件)这是一大一小两个梯形,你认为梯形面积的大小可能会与什么有关?它们之间到底有着怎样的关系呢,这节课我们就来探究梯形的面积计算。(板书课题)

二、猜测验证,自主探究。

师:现在请大家想一想,你准备怎么出梯形的面积?看来“转化”这种方法确实很重要,我们在解决很多问题的时候都是利用已有的知识去解决新问题,那么你们认为梯形可以转化成我们以前学过的什么图形呢?

1、生猜想。(平行四边形、长方形、三角形……)

2、公式探究。

师:你们的这些想法是否正确呢?下面咱们一起来验证一下。

先给同学们30秒的时间独立思考,自己想办法。

(30秒过后)

师:好了,下面的时间请同学们把自己的想法在小组内先交流一下,然后选出一种的方法,利用你们手中的学具推导出梯形面积公式。

3、学生进行探究,师相机指导。

4、生汇报。

师:刚才老师在下面走的时候发现第x组的同学最先推导出了梯形的面积公式,下面请第x组的同学派代表到前面展示一下你们是怎么做的。

(生展台展示)

组1:我们组用两个完全一样的梯形拼成了一个平行四边形,得出拼成的平行四边形的面积是梯形面积的2倍,平行四边形的高与梯形的高相等,平行四边形的底等于梯形的上底与下底之和,从而推导出梯形的面积=(上底+下底)×高÷2(师随机贴图并板书)

师:其它组有没有不同的拼摆方法?(让生在座位上说)

请你说说你们组是怎么拼的,推导出的梯形面积公式是什么?

组2:我们用两个完全一样的直角梯形拼成了一个长方形,推导出梯形的面积公式是梯形的面积=(上底+下底)×高÷2

师:老师在下面走的时候发现有一个组采用了割补的方法推导出了梯形的面积公式,是哪个小组?请到前面展示一下。

组3:我们选择了一个梯形,沿着它的腰对折,然后剪开,再移到右边拼成了一个平行四边形,平行四边形的面积与梯形的面积相等,平行四边形的底等于梯形的上底与下底的和,平行四边形的高等于梯形高的一半,所以梯形的面积=(上底+下底)×高÷2(师随机贴图)

师:哪个小组还有不同的方法?

组 4:我们组把梯形剪成了两个三角形,得出梯形的面积等于两个三角形面积之和,这个小三角形的底等于梯形的上底,高等于梯形的高,所以小三角形的面积=上底 ×高÷2,这个大三角形的底等于梯形的下底,高等于梯形的高,所以大三角形的面积=下底×高÷2,从而推导出梯形的面积=上底×高÷2+下底×高÷2(师随机贴图)

(注:师在生汇报的过程中要让生到黑板上画出小三角形也就是钝角三角形的高在哪里,并引导生说明钝角三角形的高为什么和梯形的高相等)

师:刚才同学们说出了这么多的方法,你们真了不起!老师也想出了一种方法,我们一起来看看。

(幻灯出示转化过程)

师:谁能根据老师展出的这种方法推导出梯形的面积公式?

生口头叙述。

师:你真聪明!其实推导梯形面积公式的方法还有很多很多,有兴趣的同学可利用课下时间进一步探究。

师:好了,如果用s表示梯形的面积,用a、b和h分别表示梯形的上底、下底和高,那么梯形的面积公式用字母可以怎样来表示?

生:s=(a+b)h÷2

(师板书)

师:请同学们观察这个公式,想一想,要想求梯形的面积必须知道哪些条件?

由此看来梯形面积的大小与它的上、下底和高这三个因素有关,那么,在计算时应注意什么呢?

三、实践运用,解决问题

接下来我们一起走进生活,来解决一个实际问题。

师:课件出示例题:

(这是我国长江三峡水电站大坝,它的横截面的一部分是梯形,求它的面积。)

师:让生以最快的速度在练习本上只列式不解答。老师算了一下这道题的结果,等于10530平方米,同学们可利用课下时间验证一下老师算的到底对不对。

师:梯形的面积应用很广泛,在很多物体中经常会看到梯形。下面我们来解决另一个日常生活中的问题。(幻灯出示)

一辆汽车侧面的两块玻璃是梯形(如下图),它们的面积分别是多少?

师:好,剩下的时间我们来解决其他问题。

1.算出下面每个梯形的面积。(单位:厘米)90 页第3题

2.判断题。

(1)两个梯形都能拼成一个平行四边形。( )

(2)两个形状一样的梯形一定能拼成一个平行四边形。( )

(3)两个完全一样的梯形一定能拼成一个平行 四边形。 ( )

(4)平行四边形的面积是梯形面积的2倍。( )

3选择题

(1)梯形的上底是4米,下底是6米,高是5米,它的面积是( ) 。

A. 45平方米 B. 25平方米 C. 25米

( 2 ) 一个梯形上底是80厘米,下底是12分米.高是5分米,它的面积是( )平方分米。

A 50 B. 25 C. 230

4. 90 页第3题

5、一条新挖的渠道,横截面是梯形,渠口宽2.8米,渠底宽1.4米,渠深1.2米. 横截面的面积是多少平方米?

四、小结。

师:这节课同学们在探索的过程中发挥了自己的聪明才智,利用转化的思想创造出了多种推导梯形面积计算公式的方法,并能用所学的知识解决生活中的问题。你们真了不起!今后我们将会利用这种方法来探究更多的有关图形的知识。相信你们今后会有更加出色的表现。

小学五年级数学课程教案【篇4】

教学目标:

1让学生在实际情境中,认识计算梯形面积的必要性。

2在自主探索活动中,让学生经历推导梯形面积公式的过程。

3能运用梯形面积的计算公式,解决相应的实际问题。

教学重难点:

理解梯形面积公式的推导过程,帮助学生形成思考问题的习惯。

教学准备:

梯形纸片、多媒体课件、剪刀。

教学过程:

一复习引入回顾平行四边形、三角新的面积公式,想一想:三角型面积的公式是怎么推导出来的

二探究新知

实际操作,自主探究。

电脑演示地24页的情境图,启发学生思考:如何把体型转化成我们已经学过的图形呢?

1独立操作,自主探索。

学生用事先准备的学具自己进行剪拼,在探索的过程中,逐步形成特有的思考问题的习惯。

2小组讨论。

四人小组继续运用转化的方法将梯形转化成前面学过的图形,进而求出梯形的面积。

3交流汇报,发现规律。

(1)引导观察,转化后的图形与原来的梯形有什么关系?请学生用语言描述梯形面积的推导过程。

(2)联系三角形的面积公式,分析理解:为什么梯形和三角形的面积计算公式都要除以2?

(3)经观察分析后,引导学生得出结论,并用字母公式来表示。

三看书质疑,交流感想

阅读第24页内容,回顾自己探索梯形面积公式的过程,并与同伴谈谈自己的想法。

完成课前提出的问题

四巩固应用,拓展提高

完成25页习题

五全课总结与反思

通过本课的学习,你又有哪些收获?你在学习方法上又有了那些提高。

小学五年级数学课程教案【篇5】

教学目标:

1.通过复习,使学生能够运用所学知识,采用列方程的方法解答应用题.

2.让学生独立思考,合作交流,确定等量关系,正确用方程解答应用题

3.培养学生利用恰当的方法解决实际问题的能力。

教学重点:

通过复习,使学生弄请已知量与未知量的联系,找出题目中的等量关系.

教学难点:

通过复习,使学生能够准确的找出题目中的等量关系.

教学过程:

一、复习准备.(P107)

1.找出下列应用题的等量关系.

①男生人数是女生人数的2倍.

②梨树比苹果树的3倍少15棵.

③做8件大人衣服和10件儿童衣服共用布31.2米.

④把两根同样的铁丝分别围成长方形和正方形.

( 学生回答后教师点评小结)

我们今天就复习运用题目中的等量关系解题.(板书:列方程解应用题)

二、新授内容

1、教学例3、

(1)、一列客车以每小时90千米的速度从甲站开往乙站,同时有一列货车以每小时75千米的速度从乙站开往甲站,经过4小时相遇,甲乙两站的铁路长多少千米?

①.读题,学生试做.

②.学生汇报(可能情况)

(90+75)×4

提问:90+75求得是什么问题?再乘4求的是什么?

90×4+75×4

提问:90×4与75×4分别表示的是什么问题?

(由学生计算出甲乙两站的铁路长多少千米。)

(2)、甲乙两站之间的铁路长660千米,一列客车以每小时90千米的速度从甲站开往乙站,同时有一列货车以每小时75千米的速度从乙站开往甲站。经过多少小时相遇?

(先用算术方法解,再用方程解)

①、660÷(90+75)=?

②方程

解: 设经过x小时相遇,

(90+75)×x =660 或者, 90×x +75×x =660

让学生说出等量关系和解题的思路

教师小结(略)

(3)、甲乙两站之间的铁路长660千米。一列客车以每小时90千米的速度从甲站开往乙站,同时有一列货车从乙站开往甲站,经过4小时相遇。货车每小时行多少千米?

( 先用算术方法解,再用方程解)

①、(660—90×4)÷4=?

②、方程

解:设货车每小时行x千米

90×4+ 4x = 660 或者(90 + x )×4 = 660

让学生说出等量关系和解题的思路

教师小结(略)

让学生比较上面三道应用题,它们有什么联系和区别?

比较用方程解和用算术方法解,有什么不同?

教师提问:这两道题有什么联系?有什么区别?

三、巩固反馈.(P109---1题)

1.根据题意把方程补充完整.

(1)张华借来一本116页的科幻小说,他每天看x 页,看了7天后,还剩53页没有看.

_____________=53

_____________=116

(2)妈妈买来3米花布,每米9.6元,又买来x千克毛线,每千克73.80元.一共用去139.5元.

_____________=139.5

_____________=9.6×3

(3)电工班架设一条全长x 米长的输电线路,上午3小时架设了全长的21%,下午用同样的工效工作1小时,架设了280米.

_____________=280×3

2.(P110----4题)解应用题.

东乡农业机械厂有39吨煤,已经烧了16天,平均每天烧煤1.2吨.剩下的煤如果每天烧1.1吨,还可以烧多少天?

小结:根据同学们的不同方法,我们需要具体问题具体分析,用哪种方法简便就用哪种方法.

3.思考题.

甲乙两个港相距480千米,上午10时一艘货船从甲港开往乙港,下午2时一艘客船从乙港开往甲港.客船开出12小时后与货船相遇.如果货船每小时行15千米.客船每小时行多少千米?

四、课堂总结.

通过今天的复习,你有什么收获?

五、课后作业.

(P110---5题)不抄题,只写题号。

板书设计:

列方程解应用题

等量关系 具体问题具体分析

例3:一列火车以每小时90千米的速度从甲站开往乙站,同时有一列货车以每小时75千米的速度从乙站开往甲站,经过4小时相遇,甲乙两站的铁路长多少千米。

小学五年级数学课程教案【篇6】

教学目标:

1.在理解题意的基础上寻找等量关系,初步掌握列方程解两、三步计算的简单实际问题。

2.从不同角度探究解题的思路,让学生学会在计算公式中求各个量的方法。

3.让学生初步体会利用等量关系分析问题的优越性。

教学重点:

1.让学生学习在计算公式中求各个量的方法。

2.让学生体会利用等量关系分析问题的优越性。

教具准备:

配套教与学的平台

教学过程:

一、复习引入

1.解方程

8x ÷ 2 =28       7(x+3)÷ 2 =28

2(x +17 )=40     6(5+x)÷ 2 =36

2.任意选择一题进行检验。

3.复习以前学过的公式:C=2(a+b)

C=4a   S=ab   S=ah÷2   S=(a+b)h÷2 ……

4.揭示课题:列方程解应用题(1)

[说明:复习部分安排解方程,一方面帮助学生巩固方程的合理解法;另一方面也对方程的检验格式稍作复习,便于学生养成良好的验算习惯。同时,适当地帮助学生整理与复习计算公式,这样导入新课比较自然,也有助于展开后续的学习。]

二、探究新知

1.出示例题:用一根长为28厘米的铁丝围成一个长方形,这个长方形的长是8厘米,宽是多少厘米?

(1)学生尝试。(抽生板演)

(2)分析、交流

先设这个长方形的宽是x厘米,

再找等量关系来列方程。

(长方形的周长计算公式就是一个等量关系。)

(3)板书:解:设这个长方形的宽是x厘米。

2(8 +x )=28

8+x =14

x =6

答:这个长方形的宽是6厘米。

(4)比较算术与方程的解法。(建议学生,选择方程的方法。)

(5)检验。

2.补充例题:一块三角形土地的面积是900平方米,高36米,它的底边长多少米?

问:(1)这道题已知条件是什么?要求什么?

(2)能不能直接用三角形的面积计算公式算出高。

(3)可以利用三角形的面积计算公式列方程,未知数高怎样表示?

学生练习并交流。

3.小结:根据计算公式列方程解应用题。

[说明:让学生通过尝试、分析、交流、比较的探究活动,进一步体会用方程解的优越性。探究活动开始,先让学生尝试练习,学生会出现方程和算术两种解法;后小组比较、大组交流,让学生自己来解决问题。其主要目的是通过方程与算术解法的比较,让学生体会用方程解的优越性,特别是列方程时的优越性。]

三、巩固练习

1.只列方程不求解

(1)有一个长方形的面积是3600㎡,宽是40m,长应是多少米?

(2)已知长方形的周长是26厘米,它的长是8厘米,它的宽应是多少厘米?

(3)已知正方形的周长是100厘米,它的边长是多少厘米?

2.练一练:列方程解应用题

(1)长方形游泳池占地600平方米,长30米,游泳池宽多少米?

(2)面积为15平方厘米的三角形纸片的底边长6厘米,这条底边上的高是多少厘米?

(3)一块梯形草坪的面积是30平方米,量得上底长4米,高6米,它的下底长多少米?

(学生练习并交流。)

3.总结:列方程解应用题的一般步骤。

四、课堂总结

1.通过这堂课的学习,你有什么收获?还有什么问题?

2.布置作业:练习册

小学五年级数学课程教案【篇7】

教学内容:

教材P32例6及练习八第1、2、3、8题。

教学目标:

1.知识与技能:能理解商的近似数的意义。

2.过程与方法:掌握小数除法计算中用“四舍五入”法求商的近似数的一般方法。

3.情感、态度与价值观:培养学生在实际生活中灵活运用数学知识的能力,能根据实际情况进行求近似数。

教学重点:

掌握小数除法计算中用“四舍五入”法求商的近似数的一般方法。

教学难点:

根据题意正确求出商的近似数。

教学方法:

注重新旧知识的迁移,引导学生自主学习、总结。

教学准备:

多媒体。

教学过程:

一、复习导入

复习旧知:(出示如下题目)

1.用“四舍五入”法将下面的数改写成一位小数。

8.769  3.452  12.71  18.64

2.计算下面各题,得数保留两位小数。

2.43×4.67   12.15×3.41

订正答案,并通过问题:你是用什么方法求这些数的近似数?

(保留几位小数就看这位小数后面的数位,大于4就向前一位进一,小于五就舍去。师引导总结方法的名称:“四舍五入”法。)

引出课题:这节课我们要学习“商的近似数”。(板书课题:商的近似数)

二、互动新授

1.出示教材第32页例6情境图。

阅读情境图中的信息,并问:怎样解决爸爸提出的问题呢?

引导学生自主列算式,并试着计算:19.4÷12

学生在计算过程中,会发现除不尽。这时,师引导学生小组交流,遇到这种情况应该怎么办?

通过交流,学生可能会想到:实际计算钱数时应该算到分,因为分是人民币的最小单位;也可以算到角,因为现在买东西时已经不用分了。

教师小结:根据我们的生活实际,当所买的商品数量少的时候,可以保留整数,或者保留一位小数,或者两位小数。当然如果数量很多的时候,通常会计算到分,这就要根据我们的实际需要进行取近似数了。看来取近似数一种是按照要求去取,一种是按照实际情况去取。(板书:按要求取,按需要取。)

然后再引导学生想一想:算到分和角时分别需要保留几位小数?

(算到分要保留两位小数,算到角就要保留一位小数。)

师引导学生思考并讨论:除的时候应该怎么算?

小组讨论后,学生汇报:保留两位小数,就要算出三位小数,再按“四舍五入”法省略百分位后面的尾数;保留一位小数,就要算出两位小数,再按“四舍五入”法省略十分位后面的尾数。

让学生自己用竖式计算:19.4÷12。教师根据学生汇报,板书

2.提问:说一说如何求商的近似数?

让学生独立思考后,在小组内交流、讨论。引导学生小结:求商的近似数时,只需要比需要保留的小数位数多除出一位,然后再用“四舍五入”法就可以取近似数了。或者除到要保留的小数位数后,不再继续除了,只把余数同除数作比较,若余数比除数的一半小,就说明求出下一位商要直接舍去,若余数等于或者大于除数的一半,就说明要在已除得的商的末一位加上1。同时,求商的近似数的时,不需要算出商的准确值之后再进行取舍。

3.引导学生比较求商的近似值和求积的近似值的异同点。

小组讨论后发言:相同点:都是用“四舍五入”法求近似数。

不同点:积的近似数要求出准确数之后再求近似数;商的近似数不需要求出准确数,只需比需要保留的小数位数多除出一位就可以求近似数。

师小结:求商的近似数非常重要,有时按照要求取近似数,有时按照实际取,在取商的近似数的时候,要明白应该除到哪位就可以不用再除了。

三、巩固拓展

1.完成教材第32页“做一做”。学生独立完成。订正时让学生说一说它们的近似值分别是怎么取的。有些题保留指定小数位数后,近似数的末尾有0,要让学生说说是如何处理的。如第2小题1.55÷3.9,保留两位小数是0.40。

四、课堂小结。同学们,这节课你学了什么知识?有哪些收获?

引导学生归纳

1.求商的近似数时,计算到比保留的小数位数多一位,再将最后一位“四舍五入”。

2.求商的近似数的时候不需要算出商的准确值之后再进行取舍。除到要保留的小数位数后,不再继续除了,只把余数同除数作比较,若余数比除数的一半小,就说明求出下一位商要直接舍去,若余数等于或者大于除数的一半,就说明要在已除得的商的末一位加上1。

作业:教材第36~37页练习八第1、2、3、8题。

板书设计:

商的近似数

求商的近似数时,计算到比保留的小数位数多一位,再将最后一位“四舍五入”。

52970