六年级数学教案学生
六年级数学教案学生都有哪些?教学目标基于对教材、教学教学大纲和学生学习情况的分析。在新课程理念的指导下,应更加注重培养学生的合作与交流能力,培养学生探究问题的习惯和意识。下面是小编为大家带来的六年级数学教案学生七篇,希望大家能够喜欢!
六年级数学教案学生(篇1)
教学目标:
1、知识与技能:联系生活实际,引导学生认识一些常见的百分率,理解这些百分率的含义,并通过自主探究,掌握求百分率的一般方法,会正确地求生活中常见的百分率,依据分数与百分数应用题的内在联系,培养学生的迁移类推能力和数学的应用意识。
2、过程与方法:引导学生经历探索、发现、交流等丰富多彩的数学活动过程,自主建构知识,归纳出求百分率的方法。
3、数学思考:使学生学会从数学的角度去认识世界,逐步形成“数学的思维”习惯。
4、情感、态度与价值观:让学生体会百分率的用处及必要性,感受百分率来源于生活,体验百分率的应用价值。
教学重点:
理解百分率的含义,掌握求百分率的方法。
教学难点:
探究百分率的含义。
教学用具:
PPT课件
教学过程:
一、复习导入(8分)
1、出示口算题,1分钟,并校正题目。
2、小结学生所提问题,并指名口头列式。
3、将问题中的“几分之几”改为“百分之几”,引学生分析、解答。
4、小结:算法相同,但计算结果的表示方法不同。
5、说明:我们把做对题目占总题数的百分之几叫做正确率;那么做错的题目占总题数的百分之几叫做错误率。这些统称为百分率。导入新课,揭示目标。
6、口算比赛:(1分钟)(见课件)
7、根据口算情况,提出数学问题。(做对的题目占总题数的几分之几?做错的题目占总题数的几分之几?)
8、尝试解答修改后的问题。
9、比较:“求一个数是另一个数的几分之几”与“求一个数是另一个数的百分之几”的问题在解法上有什么相同点和不同点?
10、举一些生活中的百分率,明确目标,进入新课的学习:(1)知道达标率、发芽率、合格率等百分率的含义。(2)学习求百分率的方法,会解决求百分率的问题。
二、设问导读(9分)
1、说明达标率的含义。
2、板书达标率的计算公式,并说明除法为什么写成分数的形式?
3、组织学生以4人小组讨论。
4、巡回指导书写格式。阅读例题,思考下面的问题
(1)什么叫做达标率?
(2)怎样计算达标率?
(3)思考:公式中为什么要“×100%”呢?
(4)尝试计算例1的达标率。
三、质疑探究(5分)
1、在展示台上展示学生写出的百分率计算公式。
2、要求学生认真计算,并对学生进行思想教育。
①生活中还有哪些百分率?它们的含义是什么?怎样求这些百分率?
②求例1(2)中的发芽率。
四、巩固练习(14分)
1、指名口答,组织集体评议,再次引学生巩固百分率的含义。
2、对每一道题都要让学生分析、理解透彻,并找出错误原因。
3、出示问题,指导学生书写格式,并强调
4、解决问题要注意:看清求什么率?找出对应的量。
5、引学生比较、发现:这些百分率和100%比较,大小怎样?哪些百分率可能超过100%?
6、引学生观察、发现:出勤率+缺勤率=1.
五、加强巩固
1、说说下面百分率各表示什么意思。(1颗星)
(1)学校栽了200棵树苗,成活率是90%。
(2)六(1)班同学的近视率达14%。
(3)海水的出盐率是20%。
2、判断。(2颗星)
(1)学校上学期种的105棵树苗现在全部成活,这批树苗的成活率为105%。()
(2)六年级共有54名学生,今天全部到校,今天六年级学生的出勤率为54%。()
(3)把25克盐放入100克水中,盐水的含盐率为25%。()
(4)一批零件的合格率为85%,那么这批零件的不合格率一定是15%。()
3、解决问题(3颗星)
(1)我班有27名同学,上学期期末测试中,有24人优秀,那么我们班成绩的优秀率是多少?27名同学全部合格,合格率是多少?
(2)六(1)班今天有48人到校,有2人缺席,求出勤率。
(3)要求,以2人小组互查,每人练习一道题,口头列式。1、王大爷在荒山上植树,一共植了125棵,有115棵成活。这批树的成活率约是多少?
(4)王师傅加工的300个零件中有298个合格,合格率是多少?
六年级数学教案学生(篇2)
教学目标:
1.在具体的情境中,探索确定位置的方法,能用数对表示物体的位置。
2.使学生能在方格纸上用数对确定位置。
教学重点:能用数对表示物体的位置。
教学难点:能用数对表示物体的位置,正确区分列和行的顺序。
一、导入
1、我们全班有53名同学,但大部分的同学老师都不认识,如果我要请你们当中的某一位同学发言,你们能帮我想想要如何表示才能既简单又准确吗?
2、学生各抒己见,讨论出用“第几列第几行”的方法来表述。
二、新授
1、教学例1
(1)如果老师用第二列第三行来表示__同学的位置,那么你也能用这样的方法来表示其他同学的位置吗?
(2)学生练习用这样的方法来表示其他同学的位置。(注意强调先说列后说行)
(3)教学写法:__同学的位置在第二列第三行,我们可以这样表示:(2,3)。
按照这样的方法,你能写出自己所在的位置吗?(学生把自己的位置写在练习本上,指名回答)
2、小结例1:
(1)确定一个同学的位置,用了几个数据?(2个)
(2)我们习惯先说列,后说行,所以第一个数据表示列,第二个数据表示行。
如果这两个数据的顺序不同,那么表示的位置也就不同。
3、练习:
(1)教师念出班上某个同学的名字,同学们在练习本上写出他的准确位置。
(2)生活中还有哪里时候需要确定位置,说说它们确定位置的方法。
4、教学例2
(1)我们刚刚已经懂得如果表示班上同学所在的位置。现在我们一起来看看在这样的一张示意图上(出示示意图),如何表示出图上的场馆所在的位置。
(2)依照例1的方法,全班一起讨论说出如何表示大门的位置。(3,0)
(3)同桌讨论说出其他场馆所在的位置,并指名回答。
(4)学生根据书上所给的数据,在图上标出“飞禽馆”“猩猩馆”“狮虎山”的位置。(投影讲评)
三、练习
1、练习一第4题
(1)学生独立找出图中的字母所在的位置,指名回答。
(2)学生依据所给的数据标出字母所在的位置,并依次连成图形,同桌核对。
2、练习一第3题:引导学生懂得要先看页码,在依照数据找出相应的位置
3、练习一第6题
(1)独立写出图上各顶点的位置。
(2)顶点A向右平移5个单位,位置在哪里?哪个数据发生了改变?点A再向上平移5个单位,位置在哪里?哪个数据也发生了改变?
(3)照点A的方法平移点B和点C,得出平移后完整的三角形。
(4)观察平移前后的图形,说说你发现了什么?(图形不变,右移时列也就是第一个数据发生改变,上移时行也就是第二个数据发生改变)
四、总结
我们今天学了哪些内容?你觉得自己掌握的情况如何?
五、作业
练习一第1、2、5、7、8题。
六年级数学教案学生(篇3)
教学目标:
1、经历了解税收的意义、解决有关税收实际问题的过程。
2、了解税收的有关知识,会解答有关税收的实际问题。
3、体会税收在国家建设中的重要作用,培养依法纳税的意识。
重点难点:
会解答有关税收的实际问题。
教具准备:
学生课前去进行各种税种的调查,初步了解它们的含义。
教学过程:
一、谈话导入
昨天我去“大清花”饺子馆吃了一餐饺子,味道可真不错!一共用了168元,收银员找钱时还主动给了我一张发票,你能评价一下这种做法吗?
对,这个餐厅知法、守法,开发票对谁有好处?
开发票减少了餐厅的利润,但却增加了国家的税收,看来越来越多的人具有了纳税意识,今天我们就一起来学习有关纳税的知识。
板书:纳税
二、了解纳税及其作用
1、你知道哪些纳税的知识?
2、那今天这节课你还想学习哪些纳税方面的知识?
(什么是纳税?为什么要纳税?怎样纳税?……)
3、要想更多更准确地了解这方面的知识,可以通过什么样的方法或途径来学习呢?
(看书、查资料、上网、去税务局或向税务局的亲戚朋友了解这方面的知识……)
4、让学生自由说一说
纳税就是根据国家各种税法的规定,按照一定的比率,把集体或个人收入的一部分缴纳给国家,纳税是件利国利民的大事,只要人人都有纳税意识,我们的国家一定会更加繁荣、富强!
5、说得很好,同学们通过刚才的学习已经了解了什么是纳税,为什么纳税,可作为小学生,光了解这些还不够,还应争当小纳税人,学会怎样纳税!
教师介绍上网查询内容,纳税有哪几个步骤?
在这几个步骤中,哪个与数学密切相关?要运用到哪部分数学知识?
(百分数、百分数的计算)
究竟怎样运用这部分知识呢?谁知道如何纳税?怎样计算税款?
(应纳税额与各种收入的比率叫税率。应纳税额=各种收入×税率)
板书公式:各种收入×税率=应纳税额
应纳税额简单的说就是指什么?(应交的税款)
各种收入呢?是一定的吗?税率是一定的吗?你了解哪些税率(不同的税率)
那我选这个3%的来还!为什么不行?(根据税种选择税率来还。)
那你会哪种税种的计算方法?(消费税、营业税……)
都会算了吗?看这道题会算吗?(例1)
板书:230×5%=11、5(万元)
230是什么?5%是什么?230×5%表示什么?
6、看来同学们没吹牛,确实会算营业税了,关于其它税种的计算还有什么问题或难以理解的地方吗?
可能说,什么是应纳税所得额。
师:谁能帮助他?个人所得税怎样计算?
师:会算个人所得税的请举手!看来个人所得税的计算靠自学还真有点难度,不急,我们一起解决它!哪些人要交个人所得税?
师:对,只要有工资收入的公民都有可能要交个人所得税!
(出示:个人所得税图表)
能看懂吗?什么意思?
帮我算算好吗?(猜猜我的工资收入?)
好吧,就透露这个秘密给你们,我上个月的工资收入是2100元,奖金是380元,该怎样算我的个人所得税?
板书:2100+380—2000=480(元)
480×5%=24(元)
谢谢大家,我一定会依法纳税的!
三、练一练
练一练1—4题
四、总结
今天这节课,我们借助网络、运用百分数的知识解决了纳税中的数学问题,知道了运用各种收入×税率=应纳税额的方法来计算要交的税!对于今天所学的.知识,大家还有没有疑问?
如果没有,那老师这有几个话题想和同学们一起探讨!
主题
1、你能为自觉纳税设计一句广告语吗?
2、如果我是税务稽查员,如何防止偷税、漏税行为?
3、我们能为纳税做些什么?
板书设计:
纳税
各种收入×税率=应纳税额
230×5%=11.5(万元)
六年级数学教案学生(篇4)
教学目标:
1、结合具体事物,经历认识“成数”,解答有关“成数”的实际问题的过程。
2、对“成数”问题有好奇心,获得运用已有知识解决问题的成功体验。
教学重点:
理解“成数”的意义。
教学难点:
解决解答有关“成数”的实际问题。
教学过程:
一、复习
1、填空
①四折是十分之( ),改写成百分数是( )。
②六折是十分之( ),改写成百分数是( )。
③七五折是十分之( ),改写成百分数是( )。
2、商店里花了56元钱买了一条牛仔裤,因为那儿的牛仔裤正在打七折销售,这条牛仔裤原价多少元?
二、创设情境,导入新课
同学们有听农民们说:“今年我家的稻谷比去年增产二成”,“我家的桂皮晒干后只有五成”等吗?他们说的是什么意思呢?原来商业上与百分数有关的术语是“折扣”,而农业上与百分数有关的术语就是“成数”。渗透环保教育
三、探究体验
(一)成数表示一个数是另一个数的十分之几,通称“几成”。例如一成就是十分之一,改写成百分数就是10%。
1、让学生尝试把二成及三成五改写成百分数。
2、让学生说说除了农业上使用成数,还有哪些行业是使用了成数的知识。
3、练习:将下列成数改写成百分数。
二成=( )%;四成五=( )%;七成二=( )%。
(二)教学例2
1、出示例题,某工厂去年用电350万千瓦时,今年比去年节电二成五,今年用电多少万千瓦时?
2、让学生读题,分析题意,今年比去年节电二成五怎么理解?是以哪个量为单位“1”?
3、学生尝试独立分析问题,解决问题,教师巡堂了解情况,指导个别学习有困难的学生。
4、理解“节电二成五”就是比去年节省了百分之二十五的意思。从而根据求一个数的百分之几是多少的解法列出算式和解答。
350×(1—25%)=262.5(万千瓦时)
或者引导学生列出:
350—350×25%=262.5(万千瓦时)
四、巩固练习
1、三成=( )%;五成六=( )%;八成三=( )%;
2、第9页做一做
3、解决问题
(1)某乡去年的水稻产量是1500吨,今年因为受到天气灾害的影响水稻产量只有去年的八成五,今年的水稻产量是多少吨?
(2)鼎湖山20__年累计旅游人次是18万人次,20__年累计旅游人次比20__年增加一成五,20__年累计旅游人次是多少?(出外玩要做好垃圾分类)
(3)我校20__年的在校生人数有820人,比20__年在校生人数减少了二成,我校20__年的在校生人数是多少?
(4)某鞋厂20__年的年产量为30万双,20__年年产量比20__年增加了一成六,20__年年产量又比20__年增加一成,这个鞋厂20__年的年产量是多少万双?
五、课堂总结
这节课你收获了什么?
六年级数学教案学生(篇5)
教学内容:
圆的面积。
教学目标:
1. 通过操作,引导学生推导出圆面积的计算公式,并能运用公式解答一些简单的实际问题。
2. 激发学生参与整个课堂教学活动的学习兴趣, 培养学生的分析、观察和概括能力,发展学生的空间观念。
3. 渗透转化的数学思想和极限思想。
教学重点:
正确计算圆的面积。
教学难点:
圆面积公式的推导。
学情分析:
本课是在学生掌握了面积的含义及长方形、正方形等平面图形面积的计算方法,认识了圆,会计算圆的周长的基础上进行教学的,教学时要注意遵循学生的认识规律,重视学生获取知识的思维过程,重视从学生的生活经验和已有的知识出发。
学法指导:
教学本课时,重点引导学生提出将圆割拼成已学过的图形,组织学生动手操作,让学生主动参与知识形成的过程,从而培养学生的创新意识、实践能力,并发展学生的空间观念。
教具准备:
多媒体课件,圆片。
学具准备:
把圆片分成十六等分,并按课本图所示,剪拼并贴成近似长方形。
教学设计:
一、复习旧知,导入新课
1. 前面我们学习了圆、圆的周长。如果圆的半径用r表示,周长怎样表示?(2πr)周长的一半怎样表示?(πr)
2. 课件:出示一块圆形的桌布。如果要给这块桌布的边缝上花边,是求什么?(圆形桌布的周长)
3.件:出示一块圆形的镜框。如果要镜框配一块玻璃,至少需要多大?是求什么?(圆的面积)谁能指出这个圆的面积?谁能概括一下什么是圆的面积?请同学们用手摸出学具圆的面积。
提问:如果圆的半径是2分米,你能猜猜这块玻璃到底有多大?(同学们纷纷地猜测,有的学生可能说这个圆面小于所在的正方形面积)
这块圆形玻璃有多大,就是要求圆形的面积,这节课我们一起来研究怎样计算圆的面积。(板书课题:圆的面积)
二、动手操作,探索新知
1. 回忆平行四边形、三角形、梯形面积计算公式推导过程。
(1)以前我们学习了平行四边形、三角形和梯形的面积计算公式。请同学们回想一下,这些图形的面积计算公式是怎样推导出来的?(学生回答,师用课件演示。)
(2)通过回忆这三种平面图形面积计算公式的推导,你发现了什么?(发现这三种平面图形都是转化为学过的图形来推导出它们的面积计算公式。)
(3)能不能把圆转化为学过的图形来推导出它的面积计算公式呢?那么同学们想一想,圆可能转化为什么平面图形来计算呢?
2. 推导圆面积的计算公式。
(1)拿出已准备好的学具,说说你把圆剪拼成了什么图形?
(2)学生小组讨论。
看拼成的长方形与圆有什么联系?
学生汇报讨论结果。
(3)课件演示:请看大屏幕,把圆分成16等份,拼成了近似平行四边形,再分成32等份,拼成近似的平行四边形,再分成64等份,拼成近似长方形,你发现什么?(如果分的份数越多,每一份就会越细,拼成的图形就会越接近于长方形。)
(4)你能根据长方形的面积计算公式推导出圆的面积计算公式吗?小组讨论一下。
生边答师边演示课件。
生答:因为拼成的长方形的面积与圆的面积相等,长方形的长相当于圆周长的一半,宽相当于半径。
因为长方形的面积=长×宽
所以圆的面积=周长的一半×半径
S=πr × r S=πr2 师小结公式
S=πr2,让学生小组内说说圆的面积是怎样推导出来的?
(5)读公式并理解记忆。
(6)要求圆的面积必须知道什么?(半径)
3. 利用公式计算。
(1)用新的方法算一算:刚才的玻璃到底有多大?看谁刚才猜得较接近。(学生计算并汇报)
(2)出示例3,学生尝试练习,反馈评价。
提问:如果这道题告诉的不是圆的半径,而是直径,该怎样解答?不计算,谁知道结果是多少吗?
(3)完成第95页做一做的第1题。
(4)看书质疑。
三、运用新知,解决问题
1. 求下面各圆的面积,只列式不计算。(CAI课件出示)
2. 测量一个圆形实物的直径,计算它的周长及面积。
3. 课件演示
用一根绳子把羊栓在木桩上,演示羊边吃草边走的情景。(生看完提问题并计算)(羊吃到草的面积即圆面积是多少?)
四、全课小结
这节课你自己运用了什么方法,学到了哪些知识?
五、布置作业
1. 第97页的第3题和第4题。
2. 找出身边的圆,同桌合作量一量半径,算一算面积(完成实验报告单)
测量物、直径(厘米)、半径(厘米)、面积(平方厘米)
板书设计:
圆的面积
长方形的面积= 长× 宽
圆的面积=周长的一半×半径
S=πr×r
S=πr2
六年级数学教案学生(篇6)
教学内容: 教材第22页相关内容及练习题
教学目标: 知识与技能:能用语方描述简单的路线图,并能根据描述画出具体的路线示意图。
过程与方法:在学习过程中培养学生的观察分析和交流合作的能力。
情感态度价值观:
1.体会到数学知识与实际生活紧密联系,感受到生活中处处有数学。
2.培养学生合作交流的能力以及学习数学的兴趣和自信心。
教学重难点: 重点:能用语方描述简单的路线图,并能根据描述画出具体的路线示意图。
难点:能根据观测点的变化灵活描述路线。
教学方法: 合作交流、共同探讨
教、学具准备: 教师:多媒体实物投影仪、量角器、三角尺、中国地图等。
学生:量角器、三角尺、中国地图等。
教学过程:
一.复习导入
1.复习。
同学们,在上节课的学习过程中,我们知道了要确定一个物体的位置,需要哪几个条件?
分别让学生说一说。
(确定物体相对于观测点的方向;确定物体相对于观测点的距离。)
2.导入。
今天这节课我们继续学习位置与方向的相关知识。
[板书课题:位置与方向(二)]
【设计意图】简单的知识回顾,帮助学生回忆学习过的有关知识,为学习新课做准备,让学生能快速地进入学习状态。
二、探过新知
㈠教学例题3。
1.出示台风的大致路径图。
(1)让学生在路径图上分别找一找:台风生成地、A市、B市、路径图上的方向标。
(2)指名汇报。
2.提出问题。
你能用自己的语言说说台风的移动路线吗?
如果学生有困难,可以进行如下适当启发:
台风生成以后,先是沿正西方向移动 km,然后改变方向,向西偏北 方向移动了 km,到达A市。接着,台风又改变了方向,向 偏 30度方向移动了 km,到达B市。
3.组织交流。
指名汇报,其他学生进行补充。
通过交流活动让学生明白台风到达一个新的位置后,要以新的位置作为观测点来判断台风运行的方向。
4.小结描述路线的方法。
描述路线时要讲清楚“从哪里出发”“沿什么方向”“移动多少距离”“到达哪里”。
(二)出示教材第22页“做一做”。
1.提出要求。
根据下面的描述画出路线示意图。
2.小组讨论画图方法。
⑴学生小组讨论怎么样画图。
教师巡视,参与个别小组讨论。
⑵组织交流汇报。
通过交流,让学生明白画图的步骤:
①定下出发时的位置。
②标出示意图的方向标。
③用量角器量出方向。
④确定比例尺,计算出图上距离,量出图上距离。
3.学生独立画路径图。
教师巡视,辅导有困难的学生。
4.展示汇报,交流评议。
交流时分别让学生说一说自己是如何画的。
教师要适时指导学生,特别是如何确定比例尺,也就是图上每一格代表实际的距离是多少。
【设计意图】教学过程中让学生通过观察分析、独立思考、合作交流等方式,亲历问题分析、解决过程,更好地理解物体之间的相对位置关系。
三、巩固练习
1.教材第23页“练习五”第3题。
这道题主要是通过动手操作测量,体会观测点的不同,引起方向的不同,从而懂得物体位置的方向是相对的。教学时可以通过以下步骤进行:
(1)在中国地图上找出北京和哈尔滨的位置;
(2)分别以北京和哈尔滨为观测点,画出“十”字方向标;
(3)连一连,量一量;
(4)说一说北京在哈尔滨的什么方向上,哈尔滨在北京的什么方向上;
(5)你发现了什么?(物体位置方向是相对的)
2.教材第26页“练习五”第9题。
(1)先根据描述,把公共汽车行驶的路线图画完整。通过这个小题,让学生巩固画路线图的方法。
(2)再根据路线图,说一说公共汽车沿原路返回时行驶的方向和路。通过这个小题,感受物体位置方向的相对性。
四、课堂小结
师生通过交流总结:知道了如何描述路线图,并根据路线图画出示意图,知道了物体的位置方向是相对的。
板书设计;
位置与方向㈡
描述路线:从哪里出发→沿什么方向→移动多少距离→到达哪里
定下出发的位置。
↓
标出示意图的方向标。
↓
画路线图的方法: 用量角器量出方向。
↓
确定比例尺,计算出图上距离,量出图上距离。
教学反思:
六年级数学教案学生(篇7)
教学目标:
1、学会用方向与距离来确定物体的位置。
2、通过解决实际问题,了解确定位置的知识在生活中的应用。
教学重难点:学会用方向与距离来确定物体的位置。
一、复习导入
1、用学过的数学知识表示出班级“__”同学的位置?指一生说。(这位同学是用数对表示的)
2、以学校为参照点点,说一说旗医院的位置?指一生回答。(旗医院在学校的西北方向)(这位同学用方向表示,为什么不用数对表示了?反之,第一问为什么没有用方向表示?)
3、师小结引出新课,表示位置的时候,区域小,没有参照点时可以用数对表示,比如第一小题。区域大有参照点时要用方向表示,如第二问,可是在学校西北方向的建筑还有很多,比如水泵厂家属楼,锦山市民广场,西府加油站等等,怎样能更具体的表示出旗医院的位置呢?这节课我们就来探究一下。
二、新课探究
1、出示课本情境图,说一说图中讲述的是什么事?知道了哪些数学信息?你有什么不懂的地方?(学生提出问题)
预设1:A市东偏南30°是什么意思,怎样确定?(学生先说,说的不准确不完整。师:说的有道理,你的意思是不是这样。课件演示:A市东偏南30°是以A市为顶点,以正东方向为起始边,向南旋转30°的过程。)
预设2:在图中怎样画东偏南30°?(这个问题稍后解决)
预设3:是以谁为参照点的东偏南30°。(谁能回答他的问题?“A市”你们是这样想的吗?不错)
预设4:台风中心在哪个大的区域内?(谁能回答他的问题?“A市及周边”你们是这样想的吗?你的想法与老师的不谋而合)
预设5:能不能说南偏东?(你的这个想法很有创新,能不能这样说?“能”谁知道用“南偏东”应该如何表示?学生先叙述)(说的不错,看来用图结合着说会更好。课件展示:南偏东60°,南偏东60°是以A市为顶点,以正南方向为起始边,向东旋转60°的过程。与东偏南30°,他们表示的是同一条射线.因此东偏南30°亦可以表示为南偏东60°。那么北偏西20°,还可以表示为什么?生说“西偏北70°”像这样你还能举个例子吗?)(同学们真厉害,能够举一反三,老师也要向你学习。)
2、我们理解了题意,把不明白的问题也解决了,考验大家的时刻到了,(教师出示只有4个方向的方位图,学生每人一份)你能用方位图表示出台风中心的具体位置吗?请同学们独立思考并完成。
3、选取有代表性的图在展台展示,并说一说这幅图能不能表示出台风中心的具体位置,为什么能,为什么不能?(预设:1、没标名称的;2、没标度数,距离的;3、东偏南30°画错的;4只有方向没有距离的等等)
4、现在同学们知道怎样才能准确的表示出台风中心的具体位置了吗?
5、修改自己的图,并在小组内说一说你是怎么画的?
6、展示两个组的图,并说说先画什么,再画什么?
7、小结:怎样确定物体的具体位置?
先画出4个方向的方位图;再画出方向,标出度数;用一条
线段表示一定的距离,标出图上的距离;标出各个名称。
想一想:确定物体的具体位置需要哪几点?方向、距离
二、巩固练习
独立完成课本20页的“做一做”,再在小组里交流。
想一想:确定物体的具体位置需要哪几点?方向、距离
四、我的收获与思考
五、板书设计
位置与方向
具体位置:方向、距离