北师大版五年级数学教案
数学知识来源于人们的日常生活当中,经过总结和升华,形成一门学科。所以,数学教学与人们日常生活密不可分。这次小编给大家整理了北师大版五年级数学教案,供大家阅读参考,希望大家喜欢。
北师大版五年级数学教案1
教学目标:
1、在具体情境中通过观察、比较、发现、理解分数与除法的关系,并会用分数表示两个数相除的商。
2、运用分数与除法的关系,探索假分数与带分数的互化方法,初步理解分数与带分数互化的算理,会正确进行互化。
教学重点:
1、掌握分数与除法的关系,会用分数表示除法的商。
2、运用分数与除法的关系,正确进行假分数与带分数的互化。
教学教法:
为了完成上述教学目标,突出重点,突破难点,我主要采用创设情境法、引导探究发现、归纳等教学方法。在探索知识本质规律处适当给予启发、指导、点拔,帮助学生完成探索知识的过程。
教学过程:
一、情境导入,引出新知。
课件播放“分饼”情境,学生观察说出相应的除法算式和用分数表示每人分得的块数。这个环节承接了上一节课学生熟悉的分饼情境,引出“除法”与“分数”这两个教学内容的主角。
二、探究发现,归纳认知。
1、分数与除法的关系。这时教师及时将学生分饼的思维顺向发展,快速练习
(1)、把a块饼平均分成8份,每份是多少块?
(2)、把a块饼平均分成b份,每份是多少块?
学生先写出除法算式,再用分数表示结果,教师板书
1÷2=1/2块
9÷4=9/4块
a÷8=a/8块
a÷b=a/b块
通过这个练习完成从个别到一般的思维过渡,为充分发现分数和除法的关系创造条件。
2、归纳认知,明确关系。
(1)、学生观察思考:分数和除法有怎样的关系?
(2)、汇报发现。
板书:被除数÷ 除数=
(3)、引导思考:在除法中除数不能为0,那在分数中应该有怎样的规定呢?
学生讨论得出:分母不能为0。
板书:(除数不为0)。
3、尝试用字母表示。
4、及时练习。
2÷3= 8÷7= 16÷5= 10÷12=
5/6= ()÷() 13/15=()÷( )
12/7= ()÷() 100/6= ()÷( )
(二)假分数与带分数的互化。
怎样把7/3化成带分数呢?怎样把 2 化成假分数?
1、学生进行小组合作学习。师出示温馨提示,引导学生合作学习。
2、检测合作学习效果。
3、师做针对性点评。
4、及时练习。
课本40页第2题。这个环节引导学生探索出假分数与带分数的互化方法,并采取边学边练的形式,使知识得到及时巩固。
四、全课小结,学生谈收获。
学生总结出本课的知识点,对本节课的学习形成一个完整的认识。
板书设计:
板书是一节课的缩影,我的板书就是抓住本节课的教学重点分数与除法的关系来进行设计的。
北师大版五年级数学教案2
教学内容:北师大版小学数学五年级(上册)第六单元“铺地砖”。
教材分析
在本次活动中,学生将综合应用图形、乘除法、方程等知识解决实际问题,使学生在探索实践中体会数学的价值与应用,是培养学生初步数学意识的好教材。能培养学生多动脑、勤思考的习惯,增强学生学数学、爱数学、爱数学的意识。
教学目标
1.通过具体情境和实际操作,培养学生综合应用图形面积、乘除法、方程等知识解决实际问题,进一步了解数学在生活中的应用。
2.培养学生观察、思考以及与同伴交流的良好习惯。
3.在实践活动中对学生进行美育教育,培养学生的审美意识。
教学重点
学生能够综合应用图形面积、乘除法、方程等知识解决实际问题。
教学难点
学生解决实际问题能力的培养。
教具准备:课件
教学过程
一、创设情境
屏幕显示:小明家搬新家,妈妈让小明自己设计自己的卧室。星期天,小明要和妈妈去买地砖,去之前小明要做些什么准备呢?
生:应该知道小明的房间有多大?
生:从屏幕上看小明的房间是长方形的,那小明应该量一量房间的长和宽分别是多少米?
师屏幕显示:小明的新房间的长和宽分别是4m和3m。
师:同学们,你们能帮小明算算他的房间有多大吗?
生:3×4=12(平方米)(师板书)
师:买多少地砖?怎样铺呢?现在就让我们和小明一起来讨论“铺地砖”的问题。(板书课题)
【利用课件显示小明卧室要铺地砖的情景,让学生深切体会到生活中处处有数学,学好数学能更好地解决生活中的问题。
由学生自己讨论买地砖前应做的准备工作,培养学生解决问题的能力。】
二、自主探究,合作交流
(一)提出问题
师:小明一家来到装饰城,小明逛了一圈,看到了很多漂亮的地砖,小明经过认真的挑选,再三权衡,最后剩下两种地砖(课件出示两种地砖)
师:现在小明无法取舍,同学们,你们能帮小明拿拿主意吗?
生讨论后汇报出:先分别算算用两种地砖铺满整个地面,至少需要多少块这样的地砖,需要多少钱?选择便宜的一种。
(二)解决问题
师:现在我们一起来帮小明选便宜的地砖铺卧室
生分组讨论:
1.所需40厘米×40厘米地砖的数量及所需钱数
2.所需30厘米×30厘米地砖的数量及所需钱数
3.比较选哪种便宜
生汇报交流:
问题一:用边长为40cm的正方形地砖铺满整个地面,至少需要多少块这样的地砖?需要多少元?
方法一
4×3=12(平方米)=120000(平方厘米)
40×40=1600(平方厘米)
120000÷1600=75(块)
8×75=600(元)
方法二
40×40=1600(平方厘米)=0.16(平方米)
1÷0.16=6.25块
4×3=12(平方米)
6.25×12=75(块)
8×75=600(元)
方法三
解:设至少需要边长为40厘米的地砖x块.
40×40×X=4×3×10000
X=75
8×75=600(元)
问题二:如果要用边长为30cm的正方形地砖,那么铺满整个房间至少需要多少块这样的地砖?需要多少元?
(用同样的方法求出至少需要边长为30厘米的地砖的数量以及钱数)
问题三:用哪一种地砖铺地面便宜些?便宜多少元?
生会很快答出用边长为30厘米的地砖便宜,便宜了70元.
【创设出买地砖时出现的取舍问题,引发学生思考,找到解决问题的关键,很自然地引出了本课需要解决的问题。再由学生自主探索,合作交流,最终解决问题。学生的主体性得以充分发挥。】
三、巩固新知,练习反馈
1.小明爸爸、妈妈的房间面积约为18平方米,用边长为40厘米的正方形地砖铺地面,至少需要多少块这样的地砖?需要多少钱?你能帮小明算算吗?
(生独立完成后汇报)
2.有一块长方形田地,长100米,宽80米,在中间筑两条如图所示(图见课件)的路,路宽3米,那么剩下的面积是多少平方米?
(生汇报后,课件验证)
3.李伯伯去年修建了一块1公顷的正方形花圃,今年要扩大规模,把花圃的边长再增加50米,每平方米需要栽花木幼苗5棵。今年比去年多栽花木多少棵?
(独立完成后,同桌交流,再汇报)
【在学生独立完成练习后,进行交流,给所有学生都留有足够的思考的空间,能达到较好的练习效果。】
四、总结与评价
师:通过这节课的学习,你有什么收获?你觉得这节课上自己表现的怎么样?你认为谁表现的?
师:孩子们,这节课,你们积极动脑,解决了生活中遇到的数学问题,老师还相信只要你们善于观察、勤于动脑,一定会解决更多的数学问题!
【总结全课时,学生从知识、能力、情感三个方面谈收获,使他们获得成功的体验。同时让学生评自己、评他人,以培养学生评价能力,增强竞争意识。】
北师大版五年级数学教案3
一、 教学目标
1、 能直接在方格图上,数出相关图形的面积。
2、 能利用分割的方法,将较复杂的图形转化为简单的图形,并用较简单的方法计算面积。
3、 在解决问题的过程中,体会策略、方法的多样性。
二、 重点难点
整点:指导学生如何将图形进行分割,从而让学生体会到解决问题的多样性和简便性。
难点:学生能灵活运用。
三、 教学过程
(一)直接揭示课题
1、 今天我们来学习《地毯上的图形面积》。请同学们把书_P18页,请同学们认真观察这幅地毯图,看看它有什么特征。
2、 小组讨论。
3、 汇报:对称图形、边长为14米的正方形、图案由蓝色组成。
4、 看这副地毯图,请你提出一些数学问题。
(二)自主探索、学习新知
1、 如果每个小方格的面积表示1平方米,,那么地毯上的图形面积是多少呢?
2、 学生独立解决问题。要求学生独立思考,解决问题,怎样简便就怎样想,并把解决问题的方法记录下来。
3、 小组内交流、讨论。
4、 全班汇报。
a) 直接一个一个地数,为了不重复,在图上编号;(数方格法)
b) 因为这个图形是对称的,所以平均分成4份,先数出一份中蓝色的面积,再乘4;(化整为零法)
c) 用总正方形面积减去白色部分的面积;(大减小法)
d) 将中间8个蓝色小正方形转移到四周兰色重叠的地方,就变成4个3×6的长方形加上4个3×3的正方形。(转移填补法)
5、 师总结求蓝色部分面积的方法。
(三)巩固练习
1、 第一题。
(1)学生独立思考,求图1的面积。
(2)说一说计算图形面积的方法。引导学生了解“不满一格的当作半格数”。
2、 第二题。独立解决后班内反馈。
3、 第三题。
(1)学生独立填空。求出每组图形的面积。学生完成后班内交流反馈答案。
(2)学生观察结果,说发现。
第(1)题的4个图形面积分别为1、2、3、4的平方数;
第(2)题与第(1)题进行比较,第(2)题的3个图形的面积分别是前面一组题的前3个图形面积的一半。
(四)总结
对于计算方格图中规则图形的面积,我们可以分割,可以直接数,可以“大减小”,还可以转移填补。
四、 板书设计
地毯上的图形面积
一个一个地数(数方格法)
平均分成4份,再乘4;(化整为零法)
总面积减去白色面积;(大减小法)
五、 教学反思
本节课从设计上讲,我充分考虑到学生是主体的新理念,采用小组合作、探索交流的教学形式,在大胆猜测、积极尝试中寻找解决问题的策略,对于不同情况优化选择。
北师大版五年级数学教案4
教学目标:
1、通过具体情境和实际操作,培养学生综合运用图形面积、乘除法、方程等知识解决实际问题,进一步了解数学在生活中的应用。
2、培养学生观察、思考以及与同伴交流的良好习惯。
教学重点:
会用小块方砖铺满某个平面。
教学难点:
计算铺满某个平面需要多少块方砖,多少钱。
教学过程:
一、创设情境
同学们,小明家买了一套新房。近期,家里要装修了。妈妈让小明设计自己的卧室怎样铺地砖。今天就请同学们来帮小明出出主意,和小明一起来研究一下铺地砖中的数学问题。(板书课题)
二、自主探究,合作交流。
(一)算卧室面积
1、买地砖之前要了解哪些相关知识?
2、小明卧室地面的长和宽分别是4m和3m,你们能帮他算算他的卧室有多大吗?
(二)分小组讨论,并填写表格
所需地砖的数量 所需钱数
40厘米×40厘米
30厘米×30厘米
(三)汇报交流方法
1、学生汇报交流
2、得出结论
3、算一算
小明爸爸、妈妈的房间面积约为18平方米,用边长为40厘米的正方形地砖铺地面,至少需要多少块这样的地砖?需要多少钱?你能帮小明算算吗?
学生独立完成,指名学生上黑板板演。
三、巩固新知,练习反馈。
四、全课总结
北师大版五年级数学教案5
教学目标:
1.使学生理解两个整数相除的商可以用分数来表示。
2.使学生掌握分数与除法的关系。
3.培养学生的应用意识。
教学重点:
1.理解归纳分数与除法的关系。
2.用除法的意义理解分数的意义。
教学准备:
课件、圆片
教学过程:
一、复习引入
师:同学们,上节课我们学习了分数的产生和意义。在进行测量、分物或计算时,往往不能正好得到整数的结果,这时,我们常用分数来表示。那么什么是分数呢?(学生回答分数的意义)
课件出示练习题
(1)把一根铁丝平均截成3段,每段的长度是这根铁丝的几分之几?这道题把谁看作单位“1”?
(2)把9个香蕉平均分成3份,每份是这些香蕉的几分之几?每份有几个?
(3)把1包饼干平均分给2个人,每人分得(1/2)包 。
引入:知识与知识之间存在着许多密切的关系,这节课我们来研究一下分数与除法之间的关系。(板书课题)
二、探究新知
课件出示习题
(1)把18个蛋糕平均分给3个人,每个人分得多少个?(列式计算)
(2)把6个蛋糕平均分给3个人,每个人分得多少个?(列式计算)
师:这两道题都是我们学过的用除法来解决的问题,计算的都是把一个整体平均分成3份,求每份是多少。下面我们再来看一下这道题。
出示例1:把1个蛋糕平均分给3个人,每个人分得多少个?
师:这道题该怎样列式呢?(学生列式,师板书:1÷3)
师:1÷3表示什么意思?
生:1÷3表示把一个蛋糕平均分给3个人,求一个人分得多少。
师:好,这道题也是把一个整体平均分成3份,求一份是多少,也是平均分的问题,所以也要用除法来计算。那么,你知道每人分得多少个吗?
生:1/3个。(师板书)
师:大家都认为是这样吗?(是)谁来说说你是怎么想的?
教师出示课件,学生边说边演示:我们把这个圆看作这个蛋糕,把它平均分成3份,每人得到其中的一份,也就是这个蛋糕的1/3 。
师:请大家看,每份都是1/3 ,每个人得到的是多少个蛋糕呢?
生:1/3 个。
师:在分物时,不能正好得到整数的结果,我们就可以用分数来表示。所以每个人分得的蛋糕就是 个。
教师说明:1÷3表示把一个蛋糕平均分给3个人,求每人得到多少个,而我们通过演示知道了每人得到1/3个。所以1÷3的结果就是1/3。(板书“=”)(齐读算式)
师:一个蛋糕平均分给3个人,我们知道了每人分得1/3个,现在要分一些其它的物品,你会吗?(课件出示例2)
指名读题
师:谁能列出算式?
生:3÷4(师板书)
师:这道题是把一个整体平均分成4份,求每份是多少,也是用除法来计算的。究竟每人分得多少块月饼呢?老师为每个小组都准备了学具(3个圆片),现在请大家利用手中的学具一起动手分一分,看看到底每人分得多少块月饼。
小组操作,教师巡视指导。
师:大家都有了结论了,哪个小组的同学愿意来给大家说一说你们小组的结论是什么?
(小组边汇报,边演示)
小组1汇报:我们小组是一个一个分的。我们先把一个圆平均分成4份,每人得到其中的1份,也就是1/4块。
师:你能用一个式子表示一下吗?
小组1:1÷4=1/4块。
师:好。请接着汇报吧。
小组1:接下来,我们按照同样的方法分其他两个圆。最后每个人分到的是3个1/4块,也就是3/4块。
师:大家认为他们的方法可以吗?(可以)我们再来一起回忆一下他们的方法。(教师边叙述方法,边进行课件演示)
师:还有没有和这组方法不同的?
小组2汇报:我们小组是把3个圆叠放在一起,把它们一起平均分成4份,每人得到其中的1份,拼在一起就得到了3/4块。
师:(课件演示方法二)这种方法是把3块月饼放在一起,把它们看成一个整体,平均分成4份,每人得到了其中的一份,也就是3块月饼的1/4,拼在一起就是3/4块。
师:通过大家操作我们知道了每人得到了3/4块月饼(板书3/4块)。有些同学是一块一块分的,有些同学是3块一起分的,但这两种不同的方法都得到了3/4块,也就是说3÷4的结果就是3/4。
师:请大家看一看,今天这两道除法算式的结果都是什么数?(分数)请大家想一想,分数与除法有什么关系呢?
学生小组讨论
生:我们发现,被除数就是分子,除数就是分母。
师:你能试着表示出来吗?
生:被除数÷除数=被除数/除数(师板书)
师:如果用a来表示被除数,b表示除数,你能用字母来表示分数与除法之间的关系吗?
生1:a÷b=a/b(师板书)
生2:老师,我认为还要写上b≠0。
师:为什么b≠0?
生:因为b表示除数,除数不能为0。
生:分数的分母也不能等于0。
师:好。通过观察思考,我们知道了分数与除法存在着这样的关系(齐读分数与除法的关系)
师:我们知道,两个整数相除,商可以用分数来表示,反过来看看,分数能不能表示两个整数相除呢?
学生观察算式,思考
生:可以。比如3/4=3÷4。
课件出示,齐读:两个整数相除,商可以用分数来表示,要用除数作分母,被除数作分子。反之,一个分数也可以看作两个数相除,分数的分子相当于除法中的被除数,分母相当于除数,
分数线相当于除号。
师:我们通过学习了解了分数与除法的联系,那么分数与除法有什么区别呢?
请学生观察黑板算式,和同学讨论。
学生汇报,教师总结:除法和我们学过的加法、减法、乘法一样,是一种运算;而分数是一种数,同时分数也可以表示两个数相除。
三、巩固练习
1.用分数表示下列算式的商
7÷13= 3÷11= 8÷5=
9÷16= m÷n=
2.试一试
( )÷7=4/7 1÷( )=1/3
7/9=( )÷9 5/8=( )÷( )
3.把1千克葡萄干平均装在2个袋子里,每袋重多少千克?平均装在3个袋子中呢?
4.填空(练习十二3题)
5.把5米长的绳子平均截成8段,每段长(5/8)米,每段绳子的长度是全长的(1/8)。
四、全课总结