优秀的五年级数学教案
在数学的世界里,无论是一个概念还是一个词语抑或是一个数字和一个符号,都具有较为精确的意义,模糊的概念、模糊的说法在数学的世界中并不存在。今天小编在这给大家整理了一些优秀的五年级数学教案,我们一起来看看吧!
优秀的五年级数学教案1
教材分析
在本次活动中,学生将综合应用图形、乘除法、方程等知识解决实际问题,使学生在探索实践中体会数学的价值与应用,是培养学生初步数学意识的好教材。能培养学生多动脑、勤思考的习惯,增强学生学数学、爱数学、爱数学的意识。
教学目标
1.通过具体情境和实际操作,培养学生综合应用图形面积、乘除法、方程等知识解决实际问题,进一步了解数学在生活中的应用。
2.培养学生观察、思考以及与同伴交流的良好习惯。
3.在实践活动中对学生进行美育教育,培养学生的审美意识。
教学重点
学生能够综合应用图形面积、乘除法、方程等知识解决实际问题。
教学难点
学生解决实际问题能力的培养。
教具准备:课件
教学过程
一、创设情境
屏幕显示:小明家搬新家,妈妈让小明自己设计自己的卧室。星期天,小明要和妈妈去买地砖,去之前小明要做些什么准备呢?
生:应该知道小明的房间有多大?
生:从屏幕上看小明的房间是长方形的,那小明应该量一量房间的长和宽分别是多少米?
师屏幕显示:小明的新房间的长和宽分别是4m和3m。
师:同学们,你们能帮小明算算他的房间有多大吗?
生:3×4=12(平方米)(师板书)
师:买多少地砖?怎样铺呢?现在就让我们和小明一起来讨论“铺地砖”的问题。(板书课题)
【利用课件显示小明卧室要铺地砖的情景,让学生深切体会到生活中处处有数学,学好数学能更好地解决生活中的问题。
由学生自己讨论买地砖前应做的准备工作,培养学生解决问题的能力。】
二、自主探究,合作交流
(一)提出问题
师:小明一家来到装饰城,小明逛了一圈,看到了很多漂亮的地砖,小明经过认真的挑选,再三权衡,最后剩下两种地砖(课件出示两种地砖)
师:现在小明无法取舍,同学们,你们能帮小明拿拿主意吗?
生讨论后汇报出:先分别算算用两种地砖铺满整个地面,至少需要多少块这样的地砖,需要多少钱?选择便宜的一种。
(二)解决问题
师:现在我们一起来帮小明选便宜的地砖铺卧室
生分组讨论:
1.所需40厘米×40厘米地砖的数量及所需钱数
2.所需30厘米×30厘米地砖的数量及所需钱数
3.比较选哪种便宜
生汇报交流:
问题一:用边长为40cm的正方形地砖铺满整个地面,至少需要多少块这样的地砖?需要多少元?
方法一
4×3=12(平方米)=120000(平方厘米)
40×40=1600(平方厘米)
120000÷1600=75(块)
8×75=600(元)
方法二
40×40=1600(平方厘米)=0.16(平方米)
1÷0.16=6.25块
4×3=12(平方米)
6.25×12=75(块)
8×75=600(元)
方法三
解:设至少需要边长为40厘米的地砖x块.
40×40×X=4×3×10000
X=75
8×75=600(元)
问题二:如果要用边长为30cm的正方形地砖,那么铺满整个房间至少需要多少块这样的地砖?需要多少元?
(用同样的方法求出至少需要边长为30厘米的地砖的数量以及钱数)
问题三:用哪一种地砖铺地面便宜些?便宜多少元?
生会很快答出用边长为30厘米的地砖便宜,便宜了70元.
【创设出买地砖时出现的取舍问题,引发学生思考,找到解决问题的关键,很自然地引出了本课需要解决的问题。再由学生自主探索,合作交流,最终解决问题。学生的主体性得以充分发挥。】
三、巩固新知,练习反馈
1.小明爸爸、妈妈的房间面积约为18平方米,用边长为40厘米的正方形地砖铺地面,至少需要多少块这样的地砖?需要多少钱?你能帮小明算算吗?
(生独立完成后汇报)
2.有一块长方形田地,长100米,宽80米,在中间筑两条如图所示(图见课件)的路,路宽3米,那么剩下的面积是多少平方米?
(生汇报后,课件验证)
3.李伯伯去年修建了一块1公顷的正方形花圃,今年要扩大规模,把花圃的边长再增加50米,每平方米需要栽花木幼苗5棵。今年比去年多栽花木多少棵?
(独立完成后,同桌交流,再汇报)
【在学生独立完成练习后,进行交流,给所有学生都留有足够的思考的空间,能达到较好的练习效果。】
四、总结与评价
师:通过这节课的学习,你有什么收获?你觉得这节课上自己表现的怎么样?你认为谁表现的?
师:孩子们,这节课,你们积极动脑,解决了生活中遇到的数学问题,老师还相信只要你们善于观察、勤于动脑,一定会解决更多的数学问题!
【总结全课时,学生从知识、能力、情感三个方面谈收获,使他们获得成功的体验。同时让学生评自己、评他人,以培养学生评价能力,增强竞争意识。】
优秀的五年级数学教案2
教学目标:
1.通过剪一剪,拼一拼的方法,探索并掌握平行四边形的面积计算公式。能正确计算平行四边形的面积。
2.通过电子白板的操作、探究、对边、交流,经历平行四边形的推导过程,初步认识转化的思想方法,发展学生的空间观念。
3.运用猜测、验证的方法,使学生积极的情感体验。发展学时自主探索、合作交流的能力,感受数学知识的价值。
教学重点:
探索并掌握平行四边形的面积计算方法。
教学难点:
理解平行四边形面积计算公式的推导过程。
教学工具:
电子白板课件、平行四边形模型、剪刀、初步探究学习卡
教学过程:
一、课前引入、渗透转化。
1.课前通过同学们的谈话,轻松引入主题。师:同学们,你们都玩过七巧板吗?
2.播放制作七巧板的视频。
3.出示一组图形,学生观察,数方格算出面积。拉开幕布,学生们看到露出一点点的图案,调动了学生的积极性,都跃跃欲试,学生动手逐个拖拽出想拖里面的美丽图案。在学时汇报平移的方法时,教师利用电子白板中的拖动图片平移的功能,直接在屏幕上操作演示,感知割补、平移,转化等学习方法。导出视频,拖动、平移等功能。
二、创设情境,揭示课题。
1.电子白板导出两个花坛,比一比,哪个大?
2.揭示课题。学生比一比,猜想这两个花坛的面积大小。让学生猜一猜、想一想,导出两个花坛的课件。
三、对手操作,探究方法。
1.利用数方格,初步探究
2.出示“初步探究学习卡”同桌交流一下填法,汇报。用数方格的方法得出图形的面积,是学生熟悉的、直观计量面积的方法。同时呈现这两个图形,暗示了他们之间的联系,为下面的探究作了很好的铺垫。导出“初步探究学习卡”
四、白板演示,验证猜想。
1.探索把一个平行四边形转化成已学习过的图形。
2.观察拼出的图形,你发现了什么?在班内交流操作,重点演示两种转发方法。
3.平行四边形的面积=底×高
4.引导学生用字母来表示:s表示面积,a表示底,h表示高。那么面积公式就是s=ah利用白板的拖动功能,根据学生反馈的转发方式,随机演示。白板演示、突出拖动、旋转等功能。
五、巩固练习,加深理解。
1.课件出示例1
2.课件出示十九第1、2题。学生试做,并说说解题方法,指名板书。通过练习加深面积公式的理解应用。导出课件
六、课堂小结,反思回顾。
回想一下我们的学习过程,你有什么收获?计算平行四边形的面积必须知道什么条件,平行四边形的面积公式是怎样推导的?
优秀的五年级数学教案3
【教学目标】
1、能正确估计不规则图形面积的大小。
2、能用数格子的方法,计算不规则图形的面积。
【重点难点】能用数格子的方法,计算不规则图形的面积。
【教学准备】课件
【教学过程】
一、开门见山,揭示课题
在现实生活中,学生将接触到大量的不规则图形的面积问题,本节课我们就来学习估计、计算不规则图形的面积。
二、探索新知
本探索活动分为三个部分,前两个部分主要是呈现了小华出生时与2岁时两个不同年龄段脚印面积的大小,第三个部分是让学生运用自己探究出的方法,估计自己的脚印面积。在开展实践活动时,可以按照教材前后呈现的内容,先讨论估计小华两个年龄段脚印面积的大小,然后采用数格子的方法(不满一格的可以按半格来数)来验证前面的估计值。通过两个年龄段脚印大小的估计,要让学生理解成长期中脚印面积的大小与年龄的增长有着密切的关系。
估计自己脚印的面积可以回家完成,然后将所描好的脚印图带到学校进行交流。教学时,教师还可以找一幅公园或某个活动场所的平面图,利用方格纸估算这幅平面图形的面积,再组织同学交流。
如果有些班级的学生能力较强,也可以补充一些没有方格背景的不规则图形面积的估计与计算。学生在估计与计算这些图形的面积时,首先要会把这个图形看作近似的基本图,并围一围,随后用尺量一量基本图的相关条件的尺寸,并计算面积。
板书设计:成长的脚印
优秀的五年级数学教案4
[教学内容]星期日的安排(第68~70页)
[教学目标]
1、理解分数加减法混合运算的顺序。
2、能正确计算分数加减混合运算。
[教学重、难点]理解分数加减法混合运算的顺序,能正确计算分数加减混合运算,理解分数中的剩余问题。
[教学准备]调查活动。'
[教学过程]
一、 复习导入
1、计算。3/8+1/2 5/6—3/4 11/12—1/6
问:进行分数加减法计算时应注意什么?
2、引入。这节课我们来探讨分数加减混合运算的方法。
板书课题:星期日的安排。
二、探索新知
1、展开“星期日的安排”调查活动。通过对星期日三种形式的安排,引出了问题“留在家中的同学占全班同学的几分之几?”
2、讨论出算式。先让学生们独立尝试列式,然后再引导学生们将全班学生看作整体“1”,并作为总数进行运算。
3、讨论具体的运算过程。可以是先全部通分,再进行计算;可以是先从“1”中减去部分,再用剩余的减去另外部分;还可以先计算两个部分的和,再从“1”中减去“和”。
4、做“试一试”题目。
5、归纳小结。
三、巩固练习
1、课本“练一练”的第1、2、3题。
第1题,请学生独自完成计算。
第2题,先作草图,再进行解答。
第3题,先填表,在组织学生进行讨论“为什么行一段山路,山路的路程占总路程的几分之几与所行时间占总数的几分之几会不同?”。建议作草图来帮助理解本题目。
2、课后完成“练一练”的第4~7题。
优秀的五年级数学教案5
【学习目标】
1、尝试用不同的方法解决“鸡兔同笼”问题,并体会代数方法的一般性。
2、解决“鸡兔同笼”问题可用猜测、列表、假设或方程解等方法。
3、体会到数学问题在日常生活中的应用。
【学习重难点】
1、重点是尝试用不同的方法解决“鸡兔同笼”问题。
2、难点是在解决问题的过程中培养逻辑推理能力。
【学习过程】
一、故事引入
在我国古代流传着很多有趣的数学问题,“鸡兔同笼”就是其中之一。这个问题早在1500多年前人们就已经开始探讨了。
阅读书本P112鸡兔同笼的故事,能用你自己的话表述一下题目的意思吗?
二、探索新知
1、阅读P113例1,根据书本提示,会用列表法求出鸡、兔各几只吗?
(完成课本表格。)
2、假设笼子里都是鸡或者都是兔,脚数会发生什么变化呢?能列式解决吗?
(会用假设法解决“鸡兔同笼”问题)
3、自己动笔,尝试用方程的方法解决鸡兔只数的问题?
(有困难的可参考书本P114)
4、用假设或者解方程的方法解决P112“鸡兔同笼”问题
(1)方程解: (2)算术解:
解:设鸡有x只,那么兔就有(35-x)只。 解:假设都是鸡。
根据鸡兔共有94只脚来列方程式 2×35=70(只)
2x+(35-x)×4=94 94-70=24(只)
2x=46 24÷(4-2)=12(只)
x=23 35-12=23(只)
35-23=12(只) 答:鸡有23只,兔有12只。
答:鸡有23只,兔有12只。
5、以上三种解法,哪一种更方便?
☆友情小提示:
要解决“鸡兔同笼”问题,可以采用假设法或方程解都可以。用方程解更直接。
6、阅读P114阅读资料,了解下古人是怎样解决鸡兔同笼问题的。
三、知识应用:独立完成P115“做一做”,组长检查核对,提出质疑。
四、层级训练:1.巩固训练:完成P116练习二十六第1--5题。
2.拓展提高:练习二十六第6、7题。及P117“思考题”
五、总结梳理
回顾本节课的学习,说一说你有哪些收获?
学习心得__________( a.我很棒,成功了; b.我的收获很大,但仍需努力。)
自我展示台:(把你个性化的解答或创新思路写出来吧!)
优秀的五年级数学教案相关文章:
★ 小学教案模板