教育巴巴 > 小学教案 > 数学教案 > 六年级 >

六年级数学拓展课教案设计

时间: 晓晴2 六年级

小学数学教师要引导学生认识生活,把所学知识与实践结合,让数学在生活中发挥作用,促进学生的全面发展。这次小编给大家整理了六年级数学拓展课教案设计,供大家阅读参考,希望大家喜欢。

六年级数学拓展课教案设计

六年级数学拓展课教案设计1

教学目标:

1.通过观察、操作、体会比例尺产生的必要性和按相同的比扩大或缩小的实际意义。

2.通过图形的放缩,结合具体情境,感受图形的相似。

教学重点:目标1、2。

教学难点:目标2。

教学过程:

活动一、创设情境

同学们做了一张贺卡,准备母亲节的时候送给妈妈们,这张贺卡长是6厘米,宽是4厘米。笑笑、淘气、小斌分别在方格纸上画了贺卡的示意图,现在请同学们观察谁画的像。

1.出示图。

2.观察图,同桌互相交流。

3.汇报。

4.小组讨论:为什么同样大小的贺卡,却画出大小不同的长方形,而且有的像有的不像呢?他们是怎么画的?

5.小组汇报

笑笑:我画的图,宽1厘米相当于实际的4厘米,长1.5厘米相当于实际的6厘米。

淘气:卡片的长和宽的比是6:4、也就是3:2,所以,我画的图长和宽的比也是3:2。

小斌:只要长比宽长一些就行。

6.画的图的长和宽与原来的长和宽有什么关系?

得出:只要长和宽都按相同的比(可以有两个意思,一是图中的长与实际的长的比和图中的宽与实际的宽的比相等,二是图中的长和宽的比与实际的长和宽的比相等)来画,画的图才像。长方形画成较小的长方形,首先可以量出原来的长和宽,再将它们的长和宽缩小相同的倍数,才能画的像。

活动二、画一画

把下面的图放大,比一比谁画得像。

1.理解题意。

2.学生独立完成。

3.小组内交流。

4.汇报,全班交流。

活动三、探究活动

1.学生独立完成。

2.小组交流,汇报。

六年级数学拓展课教案设计2

教学目标:

1.通过感知生活中的事例,理解并掌握反比例的含义,经初步判断两种相关联的量是否成反比例

2.培养学生的逻辑思维能力

3.感知生活中的数学知识

重点难点1.通过具体问题认识反比例的量。

2.掌握成反比例的量的变化规律及其 特征

教学难点:

认识反比例,能根据反比例的意义判断两个相关联的量是不是成反比例。

教学过程:

一、课前预习

预习24---26页内容

1、什么是成反比例的量?你是怎么理解的?

2、情境一中的两个表中量变化关系相同吗?

3、三个情境中的两个量哪些是成反比例的量?为什么?

二、展示与交流

利用反义词来导入今天研究的课题。今天研究两种量成反比例关系的变化规律

情境(一)

认识加法表中和是12的直线及乘法表中积是12的曲线。

引导学生发现规律:加法表中和是12,一个加数随另一个加数的变化而变化;乘法表中积是12,一个乘数随另一个乘数的变化而变化。

情境(二)

让学生把汽车行驶的速度和时间的表填完整,当速度发生变化时,时间怎样变化?每

两个相对应的数的乘积各是多少?你有什么发现?独立观察,思考

同桌交流,用自己的语言表达

写出关系式:速度×时间=路程(一定)

观察思考并用自己的语言描述变化关系乘积(路程)一定

情境(三)

把杯数和每杯果汁量的表填完整,当杯数发生变化时,每杯果汁量怎样变化?每两个相对应的数的乘积各是多少?你有什么发现?用自己的语言描述变化关系

写出关系式:每杯果汁量×杯数=果汗总量(一定)

5、以上两个情境中有什么共同点?

反比例意义

引导小结:都有两种相关联通的量,其中一种量变化,另一种量也随着变化,并且这两种量中相对应的两个数的乘积是一定的。这两种量之间是反比例关系。

活动四:想一想

二、 反馈与检测

1、判断下面每题是否成反比例

(1)出油率一定,香油的质量与芝麻的质量。

(2)三角形的面积一定,它的底与高。

(3)一个数和它的倒数。

(4)一捆100米电线,用去长度与剩下长度。

(5)圆柱体的体积一定,底面积和高。

(6)小林做10道数学题,已做的题和没有做的题。

(7)长方形的长一定,面积和宽。

(8)平行四边形面积一定,底和高。

2、教材“练一练”P33第1题。

3、教材“练一练”P33第2题。

4、找一找生活中成反比例的例子,并与同伴交流。

六年级数学拓展课教案设计3

教学内容:教科书第1页的例1、试一试和练一练,练习一的第1~3题。

教学目标:

1、使学生在现实情境中,理解并掌握“求一个数比另一个数多(少)百分之几”的基本思考方法,并能正确解决相关的实际问题。

2、使学生在探索“求一个数比另一个数多(少)百分之几”方法的过程中,进一步加深对百分数的理解,体会百分数与日常生活的密切联系,增强自主探索和合作交流的意识,提高分析问题和解决问题的能力。

教学过程:

一、教学例1

1、出示例1中的两个已知条件,要求学生各自画线段图表示这两个数量之间的关系。

学生画好后,讨论:画几条线段表示这两个数量比较合适?表示哪个数量的线段应该画长一些?大约长多少?你是怎样想的?

提出要求:根据这两个已知条件,你能求出哪些问题?

引导学生分别从差比和倍比的角度提出如“实际造林比计划多多少公顷”“原计划造林比实际少多少公顷”“实际造林面积相当于原计划的百分之几”“原计划造林面积相当于实际的百分之几”等问题。

在学生充分交流的基础上提出例1中的问题:实际造林比原计划多百分之几?

2、引导思考: 这个问题是把哪两个数量进行比较?比较时以哪个数量作为单位1?要求实际造林比原计划多百分之几,就是求哪个数量是哪个数量的百分之几?

小结:要求实际造林比原计划多百分之几,就是求实际造林比原计划多的公顷数相当于原计划的百分之几。

启发:根据上面的讨论,你打算怎样列式解答这个问题?

学生列式计算后,进一步追问:实际造林比原计划多的公顷数是怎样计算的?要求4公顷相当于16公顷的百分之几,又是怎样算的?综合算式应该怎样列?

3、进一步引导:此前,曾有人提出“根据两个已知条件,可以求出实际造林面积相当于计划的百分之几”,你会列式解答这个问题吗?

学生列式计算后追问:这里得到的125%与刚才得到的25%这两个百分数有什么关系?

联系学生的讨论明确:从125%中去掉与单位1相同的部分,就是实际造林比原计划多的百分数。

提出要求:根据上面的讨论,要求“实际造林比原计划多百分之几”,还可以怎样列式?

学生列式后追问:“125%—100%”这个算式中,125%表示什么意思?100%呢?

二、教学“试一试”

1、出示问题:原计划造林比实际少百分之几?

启发:根据例题中问题的答案猜一猜,这个问题的答案是什么?

学生作出猜想后,暂不作评价。

提问:这个问题又是把哪两个数量进行比较?比较时以哪个数量作为单位1?要求“原计划造林比实际少百分之几”,就是求哪个数量是哪个数量的百分之几?你打算怎样列式解答?还能列出不同的算式吗?

2、学生列式计算后讨论:这个答案与你此前的猜想一样吗?为什么不一样?

小结:“试一试”与例题中的问题都是把实际造林面积与原计划造林面积进行比较,但由于比较时单位1的数量不同,所以得到的百分数也就不同。

三、指导完成“练一练”

1、要求学生自由读题。

2、提问:你是怎样理解“20__年在读研究生的人数比20__年增加了百分之几”这个问题的?

学生讨论后,要求他们各自列式解答。

3、根据学生在解答过程中的表现,相机提问:计算中有没有遇到什么新的问题?

学生提出问题后,引导他们自主阅读本页教材的底注,并组织适当的交流。

四、指导完成练习一第1~3题

1、做练习一第1题。

可以鼓励学生独立完成填空。如果有学生感到困难,可启发他们先画出相应的线段图,再根据线段图进行思考。

2、做练习一第2题。

先让学生说说对问题的理解,再让学生列式解答。可提醒学生把计算的商保留三位小数。

3、做练习一第3题。

先鼓励学生独立解答,再通过交流让学生说清楚思考的过程。可提醒学生利用计算器进行计算。

五、全课小结

通过本节课的学习,你学会了什么?求一个数比另一个数多(少)百分之几时,通常可以怎样思考?计算过程中还要注意些什么?

六年级数学拓展课教案设计4

教学内容:

比较正数和负数的大小。

教学目的:

1、知识与技能:借助数轴初步学会比较正数、0和负数之间的大小。

2、过程与方法:初步体会数轴上数的顺序,完成对数的结构的初步构建。

3、情感态度与价值观:培养学生应用数学的能力,使学生体验数学和生活的密切联系,激发学生学习数学的兴趣。

重点难点:

负数与负数的比较。

教学过程:

一、复习

1、读数,指出哪些是正数,哪些是负数?

-8 5.6 +0.9 -2016六年级数学下册教案01-02 +2016六年级数学下册教案01-02 0 -82

2、如果+20%表示增加20%,那么-6%表示 。

3、某日傍晚,黄山的气温由上午的零上2摄氏度下降了7摄氏度,这天傍晚黄山的气温是 ____ 摄氏度

二、新授

(一)教学例3

1、怎样在数轴上表示数?(1、2、3、4、5、6、7)

2、出示例3

(1)提问你能在一条直线上表示他们运动后的情况吗?

(2)让学生确定好起点(原点)、方向和单位长度。学生画完交流。

(3)教师在黑板上话好直线,在相应的点上用小图片代表大树和学生,在问怎样用数表示这些学生和大树的相对位置关系?(让学生把直线上的点和正负数对应起来。

(4)学生回答,教师在相应点的下方标出对应的数,再让学生说说直线上其他几个点代表的数,让学生对数轴上的点表示的正负数形成相对完整的认识。

(5)总结:我们可以像这样在直线上表示出正数、0和负数,像这样的直线我们叫数轴。

(6)引导学生观察

A、从0起往右依次是?从0起往左依次是?你发现什么规律?

B、在数轴上分别找到1.5和-1.5对应的点。如果从起点分别到。5和-1.5处,应如何运动?

(7)练习:做一做的第1、2题。

(二)教学例4

1、出示未来一周的天气情况,让学生把未来一周每天的最低气温在数轴上表示出来,并比较他们的大小。

2、学生交流比较的方法。

3、通过小精灵的话,引出利用数轴比较数的大小规定:在数轴上,从左到右的顺序就是数从小到大的顺序。

4、再让学生进行比较,利用学生的具体比较来说明“-8在-6的左边,所以-8〈-6”

5、再通过让另一学生比较“8 〉6,但是-8〈 -6”,使学生初步体会两负数比较大小时,绝对值大的负数反而小。

6、总结:负数比0小,正数比0大,负数比正数小。

7、练习:做一做第3题。

三、巩固练习

1、练习一第4、5题。

2、练习一第6题。

四、全课总结

1、在数轴上,从左到右的顺序就是数从小到大的顺序。

2、负数比0小,正数比0大,负数比正数小。

五、布置作业

《家庭作业》第2页的练习。

六年级数学拓展课教案设计5

分数乘整数

教学目标:

1、在学生已有的分数加法及分数基本意义的基础上,结合生活实例,通过对分数连加算式的研究,使学生理解分数乘整数的意义,掌握分数乘整数的计算方法,能够应用分数乘整数的计算法则,比较熟练地进行计算。

2、通过观察比较,指导学生通过体验,归纳分数乘整数的计算法则,培养学生的抽象概括能力。

3、 引导学生探求知识的内在联系,激发学生学习兴趣。通过演示,使学生初步感悟算理,并在这过程中感悟到数学知识的魅力,领略到美。

教学重点:使学生理解分数乘整数的意义,掌握分数乘整数的计算方法。

教学难点:引导学生总结分数乘整数的计算法则

教具准备:多媒体课件、

教学过程:

一、复习引入

1.课件出示复习题。

(1)列式并说出算式中的被乘数、乘数各表示什么?

5个12是多少? 9个11是多少? 8个6是多少?

(2)计算:

+ + =   + + =

2.引出课题。

+ + 这题我们还可以怎么计算?今天我们就来学习分数乘法。

二:新知探究

1.出示课题明确学习目标。

2.课件出示自学题纲,让学生自学课本。

(1)分数乘以整数的意义是什么?与整数乘法的意义相同吗?

(2)分数乘以整数的计算方法是怎样的?它是怎样推导出来的?

(3)分数乘以整数的意义。

3、 课件出示例1

教师引导学生画出线段图。

学生根据线段图列出不同的算式,并解答。

(1) 引导学生看图,理解“人跑一步的距离相当于袋鼠跳一下的”,就是把袋鼠跳一下的距离即这一整条线段看作单位“1”。把这条线段平均分成11份,其中的2份就表示人跑一步的距离。

(2) 引导学生根据线段图理解,人跑一步是袋鼠跳一下的 ,那么“人跑3步的距离相当于袋鼠跳一下的几分之几?”就是求3个 是多少?

2/11 + 2/11 + 2/11 =

2/11 × 3 =

(3).分数乘以整数的法则。

A.导出计算方法。

你会计算吗?看哪些同学不用老师讲解就能依据转化思想把分数乘以整数这个新知识转为已经学过的旧知识来进行计算。(可以互相说互相看。)

B.归纳法则。

通过以上计算,想一想分数乘以整数怎样计算呢?

师:比一比,看哪个组的同学总结的语言准确又简练。

小组讨论,总结出法则:分数乘以整数,用分数的分子和整数相乘的积作分子,分母不变。(板书)

C.应用法则计算。

讨论,这两种方法哪种简单?为什么?

强调:能约分,要先约分;结果是假分数一定要化成整数或带分数。

4、 教学例2

(1)出示 ×6,学生独立计算。

(2)根据计算结果,学生观察讨论:乘得的积是不是最简分数?应该怎么办?

(3)学生通过自己的想法的来约分:A、先约分再计算;B、先计算得出乘积后约分。

(4)对比,让学生体会先约分再计算的方法比较简便,同时向学生说明先约分的书写格式。

三、当堂测评(课件出示)

1.看图写算式

2.先说算式意义,再填空。

3.看算式,约分计算。(提醒学生,计算前先观察分数的分母与整数是否可以约分,养成先约分在计算的习惯)

四、学生课堂自评

1、这节课你有什么收获?

2、每个学生给自己在课堂上的表现进行评价。

板书设计

分数乘以整数

意义:求几个相同加数 和的简便运算。

法则:分数乘以整数,用分数的分子和整数相乘的积作分子,分母不变。

2/11 ×3

= 2×3/11

= 6/11

教学后记

3973