教育巴巴 > 小学教案 > 数学教案 > 六年级 >

数学六年级教师教案大全

时间: 沐钦 六年级

数学六年级教师教案都有哪些?教师通过精心设计,将抽象问题具体化,将复杂问题简单化,充分调动学生学习数学的主动性,使学生由被动听课变为主动探索,通过参与具有教育价值的数学活动。下面是小编为大家带来的数学六年级教师教案七篇,希望大家能够喜欢!

数学六年级教师教案大全

数学六年级教师教案【篇1】

教学目标:

1、使学生初步掌握分数乘法应用题的数量关系,学会应用一个数乘以分数的意义解答分数乘法一步应用题。

2、培养学生分析能力,发展学生思维。

教学重点:

理解题中的单位“1”和问题的关系。

教学难点:

抓住知识关键,正确、灵活判断单位“1”。

教具准备:

多媒体课件。

教学过程:

一、复习引入(激发兴趣,引入铺垫)

1、列式计算。

(1)20的 是多少?

(2)6的 是多少?

二、自主探究(自主学习,探讨问题)

1、教学例1。

出示例1:学校买来100千克白菜,吃了 ,吃了多少千克?

(1)指名读题,说出条件和问题。

(2)引导学生画出线段图,并在线段图上标出题目中的条件和问题。

先画一条线段,表示“100千克白菜”。

吃了 ,吃了谁的 ?(100千克白菜)要把“100千克白菜”平均分成5份,吃了4份,怎样表示?

教师边说边画出下图

(3)分析数量关系,启发解题思路。

A.请同学们仔细观察图画,并认真想一想,吃了 ,是吃了哪个数量的 ?

B.分组讨论交流:依据吃了100千克的 把哪个量看作单位“1”呢?为什么?你是怎样想的?

(4)列式计算。

A.学生完整叙述解题思路。

B.学生列式计算,教师板书: (千克)

C.写出答话,教师板书:答:吃了80千克。

(5)总结思路。

根据以上分析,让学生讨论一下解题顺序:吃了 吃了谁的 谁是多少(已知)谁的 是多少乘法。

(6)反馈练习。(14页)1-3题,做完后订正。说一说你是怎样想的?

2、阅读课本:把书中的想的过程和线段图认真看一下,不懂提问。

三、拓展总结(应用拓展,盘点收获)

1、判断下面每组中的两个量,应该把谁看作单位“1”。

(1)乙是甲的 ,甲是乙的 。

(2)甲是乙的 ,乙是甲的 倍。

2、练习四1、2题,完成在练习本上,然后订正。

3、操作:画出“体育小组的人数是美术小组的 倍”的线段图自己补充条件和问题并解答。

数学六年级教师教案【篇2】

教学目标:

1.让学生掌握分数乘小数的计算方法,提高学生根据实际情况灵活选择合适的计算方法的能力。

2.在学生自主探索的基础上,引导学生自由地表达自己的想法,培养学生合作交流的能力。

3.通过解决日常生活中的实际问题,让学生体验数学的意义和价值。

教学重点:

掌握分数乘小数的计算方法。

教学难点:

提高学生根据实际情况灵活选择合适的计算方法的能力。

教具准备:

多媒体课件。

教学过程:

一、导入新课(激发兴趣,明确目标)

1.计算下面各题

2.通过计算引导学生回忆分数乘整数和分数乘分数的计算方法,并强调能约分的先约分再计算会更简便。(让学生自由回答,教师加以引导与整理。)

3.教师导语:前几节课我们学习了分数乘整数和分数乘分数的计算方法,今天,我们继续学习分数乘法的有关知识。

【设计意图:通过复习分数乘整数和分数乘分数的计算方法,激活学生的学习经验与学习技能,为学习分数乘小数埋下伏笔。同时,简明扼要地导入新课,让学生迅速地进入学习状态。】

二、自主学习(自主学习,生成问题)

(一)阅读理解

1.出示呈现例5情境图(数学信息),从图中你得到了哪些数学信息?根据这些数学信息你想解决什么数学问题?(学生自主提出问题,教师选择问题板书。)

(1)松鼠欢欢的尾巴有多长?

(2)松鼠乐乐的尾巴有多长?

【设计意图:由孩子们喜欢的小动物的知识引出例5,激发了学生学习的兴趣。了解题目中有哪些数学信息是解决问题的第一步,可以帮助学生更好地解决数学问题。】

(二)探究解答:例5(1)

1.自主解答

松鼠欢欢的尾巴有多长?怎样列式?你能计算出来吗?在练习本上试一试。(板书: ,学生尝试计算,教师巡视,请不同做法的学生板演。)

2.交流探讨,体会不同算法

先在小组内交流计算方法,再全班交流,一一展示,分析出现的不同计算方法。

(1)可以把2.1化成分数 ,再跟 相乘,结果是 ,化成带分数 。

(dm)

(2)可以把 化成小数0.75,再跟2.1相乘,结果是1.575。

2.1× =2.1×0.75=1.575(dm)

【设计意图:本环节的交流分为两个层次,一个是在小组内交流,给每个学生参与的机会,使交流活动不至于成为个别学生的专场展示,尽可能让每个学生都说出自己的解题思路;二是全班交流,使全体学生在理解自己算法的同时,知道解决同一道题目还有不同的思路,享受不同算法带来的快乐,并掌握自己未考虑到的计算方法,逐步提高综合运用所学知识解决实际问题的能力。】

3.师小结:同学们说得都很不错,这道分数乘小数的题目我们主要采用两种方法来计算,既可以把小数化成分数再计算,也可以把分数化成小数再计算,这两种方法用到了我们学过的分数乘分数和小数乘小数的知识。

【设计意图:教师的这段简单小结以旧引新,促进知识迁移,巩固掌握新知识,实现了有意识的学法指导。】

三、合作探究(小组合作,解决问题)

探索简便方法:例5(2)

1.自主解答

刚才例5第(1)题大家完成得很不错,下面第(2)题有没有信心做对呢?(出示课件,学生尝试独立解答。)

2.交流反馈

(1)可以把2.4化成分数 ,再跟 相乘,结果是 。

(dm)

(2)可以把 化成小数0.75,再跟2.4相乘,结果是1.8。

2.4× =2.4×0.75=1.8(dm)

3.自学课本

(1)除了上面两种计算方法,这道题还有另一种算法。同学们打开课本第8页,看一看,有没有不明白的地方?(学生看书自学。)

(2)这种算法你看懂了吗?引导学生说计算过程。(课件逐步出示第三种算法。)

小数2.4和分数 的分母先约分得到0.6,0.6再跟分子3相乘,结果是1.8。

4.对比思考。

为什么可以这样约分?你觉得这样约分计算简便吗?

【设计意图:让学生独立完例5第(2)题,既复习了分数乘小数的两种计算方法,起到巩固练习的作用,又通过自主阅读教材学习先约分再计算的方法,不仅可以让学生准确掌握计算方法,更使学生深刻地体会到分数乘小数先约分再乘比较简便。】

四、回顾反思

1.既然先约分再计算这种方法这么简便,为什么第(1)题没用这种简便方法计算呢?

2.师小结:先约分再计算虽然简便,但只在小数与分数分母有共同因数的情况下适用,如果小数与分数分母没有共同的因数,就不能直接约分,只能采用把小数化成分数或把分数化成小数再计算的方法。所以在实际计算过程中,我们要特别注意观察算式中小数与分数分母的特征,明确小数与分数分母是否有共同的因数,然后再选择合适的算法进行计算。

【设计意图:在这个环节中,通过思考“为什么第(1)题没用这种简便方法计算呢?”,让学生体会到先约分再计算的局限性,从而引导学生在解决问题的过程中灵活选择合适的算法。】

五、拓展总结(应用拓展,盘点收获)

(一)对比练习

1.学生独立完成。

2.反馈:计算 时你更喜欢哪种算法?

【设计意图:在前面学习分数乘整数的过程中,学生已经充分感受了先约分再计算的简便性,在这个练习中,学生会进一步感受到这种算法不仅在分数乘整数中可以让计算更简便,在分数乘小数中同样适用,培养学生简便计算的意识。】

(二)基本练习

教材第8页做一做

1.学生先观察每一道题的特征,思考:每道题可以用几种方法来做?哪种方法更简便?然后选择合适的方法进行计算。

2.反馈交流时提问:哪几题可以先约分再计算?( 、 、 )。 可以把分数化成小数计算吗?

【设计意图:这个环节通过四道题的对比练习,让学生发现不仅先约分再计算有局限性,分数化小数这种算法也有一定的局限性。在引导学生比较各种方法的优缺点的同时,进一步感受计算方法的灵活性与合理性。最终在学生充分理解的基础上共同归纳出结论,以丰富学生体验知识获得结论的过程,加深记忆。】

(三)提高练习

教材第10页“练习二”第2题:美国人均淡水资源量约为1.38万立方米,我国人均淡水资源量仅为美国的 。我国人均淡水资源量是多少万立方米?

1.学生独立完成,一生板演。

2.反馈计算过程,强调能约分的先约分再乘。并适时补充我国的水资源知识,进行节约用水教育。

(四)拓展练习(多余条件)(机动)

教材第10页“练习二”第4题:蜂蜜最主要的成分是果糖和葡萄糖,果糖和葡萄糖的质量占蜂蜜总质量的 以上。有一种蜂蜜,果糖和葡萄糖的质量占蜂蜜总质量的 。如果有2.5 kg的这种蜂蜜,其中的果糖和葡萄糖共有多少千克?

1.学生独立完成。

2.交流汇报。

3.教师点拨:在解决含多余条件的实际问题时,要先弄清楚题意,看问题所需的条件是什么,选择恰当的条件,找出多余条件,然后分析数量关系,列出算式,最后检验结果是否正确。

【设计意图:这道题隐含了一个多余条件,增加了学生的审题难度,所以要引导学生在解决问题的过程中找准题目中的关键条件,提高学生的审题能力,掌握解决含多余条件的实际问题的一些基本策略。】

(五)课堂小结:今天我们学习了什么内容?(板书课题:分数乘小数)分数乘小数怎么计算?计算时应该注意什么?

【设计意图:通过让学生自主回顾本课所学知识,指导学生把新旧知识联系起来,形成知识结构,既帮助学生理清思路、把握学习重难点,又巩固新知识、强化记忆。】

数学六年级教师教案【篇3】

教学目标:

1、理解整数乘法运算定律对于分数乘法同样适用,并能应用这些定律进行一些简便计算。

2、培养学生大胆猜测,勇于实践的思维品质。

教学重点:

会进行分数的混合运算,运用运算定律进行简便计算。

教学难点:

灵活运用运算定律进行简便计算。

教具准备:

多媒体课件。

教学过程:

一、导入新课(激发兴趣,明确目标)

1、运算定律。

我们在四年级时学习过乘法的运算定律,同学们还记得吗?

(学生回答,教师板书运算定律)

乘法交换律:a×b=b×a

乘法结合律:(a×b)×c=a×(b×c)

乘法分配律:(a+b)×c=a×c+b×c

2、这些运算定律有什么用处?你能举例说明吗?

25×7×4 0.36×101

(学生口述自己是怎样应用乘法的运算定律简算上面各题的。)

二、自主探究(自主学习,探讨问题)

1、引入

同学们应用乘法的运算定律,可以使整数、小数的一些计算简便,这些运算定律能不能应用到分数乘法中呢?今天这节课我们就来共同研究这个问题。

(板书课题:整数乘法的运算定律能否推广到分数乘法)

2、推导运算定律是否适用于分数。

(1)学生发表对课题的见解。

(2)验证

有些同学认为整数乘法的运算定律能适用于分数乘法,而有些同学认为不能,你们能找到证据证明自己的观点吗?(学生小组合作学习)

3、教学例5.

(1)出示: ,学生小组合作独立解答。

4、教学例6.

(1)出示: ,学生小组合作独立计算。

(2)小组汇报学习成果,说一说你们组应用了什么运算定律。

5、小结

应用乘法交换律、结合律和分配律,可以使一些计算简便,在计算时,要认真观察已知数有什么特点想应用什么定律可以使计算简便。

三、拓展总结(应用拓展,盘点收获)

1、完成练习三的第6题。

学生说一说应用了什么运算定律。

2、完成课本第10页的“做一做”题目。

其中第2题引导学生讨论解题思路,把87改成“86+1”应用乘法分配律计算比较简便。

3、总结

这节课你有什么收获?

数学六年级教师教案【篇4】

一、故事引入,初步感知

[电脑出示]曹冲称象图片

曹冲用什么称出大象的重量?为什么称石头的重量就能得到大象的重量?

今天我们就来研究如何用替换的策略解决问题。[板书课题]

生活中有哪些地方是用替换来解决问题?

二、出示问题,探索运用

[电脑出示]例1小明把720毫升果汁倒入6个小杯和1个大杯,正好都倒满。小杯的容量是大杯的。小杯和大杯的容量各是多少毫升?

读题,从题目中获得哪些信息。

你是怎样理解“小杯的容量是大杯的”这句话?[电脑出示]

这里720毫升果汁既倒入6个小杯,又倒入1个大杯,要求小杯和大杯的容量,该怎么办呢?

学生说两种替换的过程。为什么要把大杯换成小杯?

四人小组合作。

要求1、画一画,选一种替换方法画出替换过程。

2、说一说,应该怎样替换,并且如何计算。

小组展示汇报。

怎样检验结果是否正确?学生口头检验。

解决这个问题时,运用的是什么方法?这里为什么要用替换的方法?

我们把两个量通过替换转化为一个量,便于我们计算。有时可以借助画图来帮助理解。

三、拓展应用,巩固策略

1、[电脑出示]8块达能饼干的钙含量相当于1杯牛奶的钙含量。小明早餐吃了12块饼干,喝了1杯牛奶,钙含量共计500毫克。你知道每块饼干的钙含量大约是多少毫克吗?1 杯牛奶呢?

学生独立完成。并说出想的过程。

为什么不把饼干替换成牛奶来考虑?

2、[电脑出示]在2个同样的大盒和5个同样的小盒里装满网球,正好是100个。每个大盒比小盒多装8个,每个大盒和小盒各装多少个?

读题,从题目中获得哪些信息?

与例1相比,有什么不同的地方?

“每个大盒比小盒多装8个”这句话你是怎么理解的?

怎样替换?

学生独立完成并核对。

3、学校买来5个足球和10个篮球,共计700元。每只足球比每只篮球便宜10元。足球和篮球的单价各是多少元?

四、小结全课,优化策略

数学六年级教师教案【篇5】

教学内容:

1、求一个数的百分之几是多少和已知一个数的百分之几是多少,求这个数的应用题。(练习三十四第1、3、4题)

2、折扣、纳税、利息

教学目的:

1、通过复习使学生进一步理解“求一个数的百分之几是多少”和已知一个数的几分之几是多少,求这个数的应用题的数量关系,能正确熟练地进行解答。

2、能正确熟练地解答有关税款、税后利息等实际应用问题。

教学过程:

一、基本练习(只列式不计算)

(1) 10万元的5%是多少?(2)一个数的80%是100,求这个数。

(3)500减少20%后是多少?(4)1000元增加2%后是多少?

(5)100比某数多10%,求某数?

二、知识梳理

1、某校男生人数比女生少10%。

①谁是单位“1”。

②男生人数是女生人数的百分之几?

③已知女生有500人,求男生有多少人?

④已知男生有450人,求女生有多少人?

2、把③、④两题进行比较,然后小结。

3、课本104页第3题,105页第1题。

二、 税款的计算方法,利息的计算公式。

1、复习税款的计算方法。

2、复习利息的计算公式:利息=本金×利率×时间(定期整存整取通常还要叫20%的利息税,因此所得利息只有80%)

3、 什么利息不纳税?利息与税后利息有什么不一样?

三、巩固与深化练习

1、课本104页的第4题。

2、课本105页的第6题。

四、作业

课本105页练习二十四第2、3、5题

数学六年级教师教案【篇6】

教学目标:

1.在具体情境中进一步理解“增加百分之几”或“减少百分之几”的意义,能计算出实际问题中“比一个数增加百分之几的数”或“比一个数减少百分之几的数”,提高运用数学解决实际问题的能力。

2.能对现实生活中的有关数学信息作出合理的解释,并尝试解决生活中的一些简单的百分数问题;能试图探索出解答一般百分数应用题的方法,初步学会与他人合作。

3.体验百分数与日常生活的密切联系,认识到许多实际中的问题可以借助数学方法来解决。提高学生学习数学的兴趣,发展学生质疑的能力,感悟数学知识的魅力。

教学重点:

理解“增加百分之几”和“减少百分之几”的意义。

教学难点:

掌握百分数应用题的特征及解答方法。

教学过程:

一、导入

师:同学们,随着科学技术的发展,社会生产力不断进步,我国从1997年至今。铁路已经进行了多次大规模的提速,高速列车已经步入了人们的生活。今天我们一起来研究与列车提速有关的问题。

【设计意图:从时事中提取数学信息,引导学生读活书、用活书,培养关注时事的兴趣。】

二、过程

师:说说从图中你了解到哪些信息?还想知道什么问题?(课件出示:教材第90页情境图)

生:从图中知道,原来的列车每时行驶180千米,现在高速列车的速度比原来的列车提高了50%。我想知道,现在的高速列车每时行驶多少千米?

师:“现在的高速列车每时行驶多少千米”,你是如何思考这个问题的?

生1:现在高速列车的速度比原来的列车快多了。

生2:我们首先要明白“现在高速列车的速度比原来的列车提高了50%”这句话的意思。

师:你是怎样理解这句话的?

生:我们可以画图表示现在的速度和原来的速度之间的关系,这样能帮助我们理解题意。

师:好,那就自己画图,试试看,能明白这句话的意思吗?

学生尝试画图,教师巡视了解情况,个别指导有困难的学生。

师:谁来说说自己的理解?

生1:很容易从图中看出,“现在高速列车的速度比原来的列车提高了50%”,意思是指提高的部分相当于原来的50%,是把原来的速度看作单位“1”,这样我们就可以先计算速度提高了多少千米,也就是求一个数的百分之几是多少,用乘法计算;然后计算现在高速列车的速度。

生2:从图中我们能看出,提高的部分是原来的50%,也就是说现在高速列车的速度是原来列车速度的(1+50%),这样就把问题转化成了“求一个数的百分之几是多少”的问题,用乘法计算。

师:说的都对。请同学们自己列式解决问题吧!

学生尝试独立列式解答,教师巡视了解情况。

组织学生交流汇报,重点说说想法:

先求比原来每时多行驶了多少千米,180×50%+180=270(千米)。

先求现在的速度是原来的百分之几,180×(1+50%)=270(千米)。

对于解答正确的学生及时给予表扬和鼓励。

师:从下面的信息中,选择两个信息,然后提出一个问题,并试着解决。跟小组同学交流一下。(课件出示:教材第91页“试一试”中的4条信息)

学生自己选择信息提出问题并解答,然后交流各自的方法;教师巡视了解情况。

选取不同情况的学生代表汇报交流,只要有道理就要给予肯定。

师:经过练习之后,淘气发现无论解决的是什么问题,都可以用下面的图来表示烘干前后的关系,你同意淘气的看法吗?为什么?(课件出示:教材第91页线段图)

组织学生讨论交流,达成一致意见,明确:烘干前的质量多,烘干后的质量少。

【设计意图:在具体问题的解决过程中,通过寻找数量关系,使学生进一步体会画线段图是一种非常常见的、有效的方法。】

三、总结

让学生说说本节课的收获。

【设计意图:调动学生的积极性,提高课堂的学习效率。】

板书设计:

百分数的应用(二)

先求原来每时多行驶了多少千米

180×50%+180

先求现在的速度是原来的百分之几

180×(1+50%)

教学反思:

能够与实际生活联系在一起,使学生切身体会到数学在实际生活中的运用,更好的激发出学生对数学的学习兴趣。每个学生是不同的个体,他们的思维方法可能千差万别,他们对教材也会有不同的理解。学生的这种不同理解,其实就是一种很好的课程资源。在新知教学过程中,学生在理解题意的基础上,先独立思考,后尝试解答,再合作研讨。提倡、发现学生的多种思维和不同解法。在这个过程中,学生的想法得到了充分的肯定和鼓励,同时也拓宽了其他学生的思路。

数学六年级教师教案【篇7】

【设计说明】

《圆环面积》是人教版义务教育课程标准实验教科书数学六年级上册第69 页例2 的教学内容。环形面积是在圆的面积计算基础上进行教学的,圆的面积计算学生接受并不太困难,但圆环却要把握住外圆和内圆这个形成环形的本质问题。圆环的面积教学,是通过一个例题来完成的,教材借助插图中的光盘帮助学生直观地认识圆环,为学生学习圆环的面积作了感性铺垫。

教学中我是这样设计的:首先安排了两道相关圆面积的计算题,让学生回顾圆的面积计算过程,为学习新知奠定基础。接着安排了认识生活中的圆环内容,让学生更多感受生活中的圆环,产生学习圆环的必要性。让学生通过画一画、剪一剪,建立环形的表象,体会环形的特点。然后设计提问:求圆面积必须知道什么?你能找到内圆和外圆的半径吗?

充分让学生的思维活跃,把环形真实地显露在学生眼前,再通过小组合作的讨论,得出环形的面积计算公式。再接着让学生自学例2 的问题,引导学生对圆环面积计算方法进行比较、优化。最后在练习环节设计中,结合直观图像来引导学生理解和掌握圆环的面积计算方法。

【教学设计】

教学内容:人教版义务教育课程标准实验教科书数学六年级上册第69 页例2。

教学目标:

1.认识生活中的环形,掌握环形面积的计算方法,提高学生自主探究的学习能力。

2.学生联系生活认识圆环,并通过自主探究、合作交流等方式理解和掌握圆环的面积计算方法。

3.培养学生学习数学的浓厚兴趣和与他人交流、分享学习成果的良好习惯。

教学重点:探究圆环面积的计算方法。

教学难点:理解环形的形成过程,掌握环形面积的计算方法。

教具、学具准备:课件、圆纸片、剪刀、直尺、圆规。

【教学过程】

一、复习旧知,引入新知

1.计算圆的面积

(1)半径是5 厘米

(2)直径8 厘米

2.说一说圆的面积计算公式

二、自主探究,掌握方法

1.认识环形

(1)我们来欣赏一组美丽的图片。

(课件演示:环形花坛、奥运五环标志、光盘等环形图案)

(2)图片的形状和我们学过的什么图形很相似?(圆)

(3)教师拿出环形光盘说明:像这样的图形,我们称它环形或圆环。(环形)

(4)学生找生活中的环形。

2.建立环形表象

(1)利用手边的工具自己做出一个圆环。

(2)学生可利用工具剪出环形或画出环形。

3.发现环形特点

老师拿着学生制作的环形提问:

“这个环形,你是怎样得到的?”(从大圆中剪掉一个小圆)

(1)解释什么叫外圆半径和内圆半径。

(2)求环形面积是求哪部分面积?

(3)你怎样求这个环形的面积?

(要求学生先独立思考,再在小组内交流)

(4)师:谁能总结一下环形的面积是怎样计算的?

(学生讨论、交流、总结,教师点拨、总结,板书:环形的面积= 外圆面积—内圆面积:S=πR2-πr2)

师:这道题你们会了,老师的黑板上还有一道例题,你们能帮助老师解决吗?

4.教学例2 内容

光盘的银色部分是一个圆环,内圆半径是2 厘米,外圆半径是6 厘米。它的面积是多少?

(1)学生读题。

观察:哪里是内圆和内圆半径?你能指一指吗?外圆是哪几部分组成的?哪里是环形面积?你打算怎样求出环形的面积?

(2)学生讨论。

(3)学生试做,指生演板。

(4)交流算法,学生将列式板书:

3.14×(6×6) -3.14×(2×2)

=113.04- 12.56

=100.48( 平方厘米)

3.14×(6×6 -2×2 )

=3.14×32

=100.48 (平方厘米)

(5)比较两种算法的不同。

三、应用新知,解决问题

1.计算阴影部分的面积

(半个环形:R=10 厘米,r= 6 厘米)

2.判断正误

(1)在圆内剪去一个小圆就得到一个圆环。( )

(2)环宽=外圆半径-内圆半径。( )

3.一个圆形环岛的直径是50 米,中间是一个直径为10 米的圆形花坛,其它的部分是草坪。草坪的占地面积是多少?

四、反思体验,总结提高

学生畅谈本节课的学习收获,教师适当总结归纳。

【教学反思】

《圆环的面积》教学时,我非常关注学生的生活经验和已有的知识体验。由于学生已经掌握了圆的面积的计算方法,所以本节课的重点是如何激发学生兴趣,引导学生通过操作、交流、讨论、合作学习等方式,自主参与环形面积的计算这一知识的获取过程。在本节课中,我注重引导学生自主学习,从学生的实际水平出发,重视培养学生观察能力和发现问题的能力。

一、在直观演示中,培养学生的思维能力

1.深入了解学生,找准教学的起点

这节课是在学生掌握了求圆的面积基础上进行教学的。而且我事先让学生认识生活中的圆环,并用硬纸板做了环形进行演示,让学生获得直接的经验。大部分同学都能求环形的面积,但同学们对环形特征的认识还不够深刻。因此,我从认识环形的特征入手来完成本节课的教学重点,让学生把做环形的过程说出来,在表述的过程中,自然而然地说出了圆环的特征。这样,学生就学得积极主动,学习效果好。

2.深入钻研教材,促进学生思维的发展

在教学中,我深入钻研教材,充分挖掘教材中蕴含的数学思想与方法,提高学生学习效果。在学生认识环形之后,我有意让学生通过尝试自己练习求圆环面积,总结圆环面积的字母公式,认识到环形面积大小的最根本因素是大、小圆的半径。这样的教学,较好地促进了学生思维的发展,使学生在解决实际问题时,能抓住问题的本质。

二、在动手操作中,培养学生的观察能力

师:请同学们拿出做好的环形,说说你是怎样去做的?

生1:在硬纸板上,我先用圆规画了一个大圆,然后缩短圆规两脚间的距离,圆心不变,再画一个小圆,最后把小圆剪掉就得到了环形。

生2:在硬纸板上,我先用圆规画了一个圆,然后圆心不变,再画一个更大的圆,最后把小圆剪掉也得到了环形。

师:前两位同学都说到了哪几点?

生:都说到了要画两个圆,而且圆心不变,半径大小不同,然后从大圆里剪去小圆,就得到环形。

师:说说日常生活中有哪些物体的表面是环形的?

生:光盘、环形垫片等。

在数学教学中,应坚持以学生为主,把学习的主动权还给学生,让学生自主地进行尝试、操作、观察、想象、讨论、质疑等探究活动,从而亲自发现数学问题潜在的神奇奥秘,领略数学美的真谛。让每一位学生动手进行操作——剪圆环,让学生在动手操作中观察、讨论、归纳、总结,学生在亲身经历的活动中轻而易举就明白了“从大圆里剪去小圆,就得到环形”的道道,从而更容易了解环形的本质特征。这样的教学,不但看到了知识的“静态”存在,更用“动态”的观点引导学生考察了知识,即知识不但是认识的“结果”,更包括认识的“过程”。学生不仅“知其然”,还能“知其所以然”。这样,学生不仅掌握了新知识,也掌握了探索研究问题的方法,同时也培养了探索和创新的精神。

三、在探究发现中,碰撞学生的智慧的火花

师:判别下列图形中,哪些是环形?

师:观察得真仔细!环形的宽度相等。

师:环形中的阴影部分的大小就是环形的面积。你能比较出这几个环形面积的大小吗?

(生纷纷作答)

师:环形的面积与什么有关?

生1:环形的面积与环形的宽度有关。

生2:环形的面积与外圆、内圆的面积有关。

生3:因为圆的面积和半径有关,所以环形的面积与外圆、内圆的半径有关。

(这位学生博得了全班学生热烈的掌声)

师:判断题中其余三个组合图形不是环形,你能求出它们的面积吗?

生1:这些阴影部分的面积都是用大圆面积剪去小圆面积。

生2:不管是不是环形,只要是从大圆里剪去小圆,要求剩下部分的面积,都是用大圆面积剪去小圆面积。

上面的教学中,探求新知,其实就是在圆的面积基础上求圆环的面积。对一些学生来讲,解决它不成问题,所以我采用让学生尝试计算、分析校对、归纳公式的方法,让学生学得积极主动,不断闪出智慧的火花。数学教学,如果找准了起点,注重了学生的发展,就能在整个教学过程中,使学生产生“一波未平,一波又起”之感,让学生始终主动地参与学习活动。这样既能培养学生的学习信心,激发学生学习的主动性,又能切实提高课堂教学的有效性

37255