学生数学六年级教案
学生数学六年级教案都有哪些?了解对数的概念及其运算性质,知道一般对数可以通过改变底数公式转化为自然对数或普通对数;通过阅读材料,理解对数的历史及其在简化运算中的作用。下面是小编为大家带来的学生数学六年级教案七篇,希望大家能够喜欢!
学生数学六年级教案(精选篇1)
教学目标:
1、结合具体情境,体会生活中存在着大量互相依赖的变量;
2、在具体情境中,尝试用自己的语言描述两个量之间的关系。
教学过程:
一、创设情境、导入新课
1、师:生活中有哪些变化的现象?这些现象可以用数学的方法表示吗?
(学生已经完成“课前准备”,选择几个学生回答)
2、师:在生活中,很多事物在发生变化。如:人的年龄、身高、体重在变,我国的人均收入、生产总值等等都在变化,象这样的会变化的量,我们都称为变量。
3、师:象这样的例子很多,今天我们就来学习“变化的量”。
设计意图:学生预习后直接导入新课,加深对“变化的量”的认识,寻找生活中的量的认识,引起新课的学习积极性。本环节的课前准备是要学生独立完成。
二、进行新课,掌握变量。
1、请独立完成导学案的“学一学”。
2、师:小组交流刚才的自主学习的内容。并确定中心发言人。
3、小组进行自我展示。
(1)小明的体重变化情况表。
学生谈群学体会:人的年龄和体重是相关联的两个量,人的体重随着年龄的变化而变化。
教师小结。我发现(体重)随(年龄)的增加而增加。
设计意图:课本呈现出第一幅情景图,表格的形式让学生更加清晰的了解年龄与体重的变化,能够回答问题,发现年龄与体重的变化情况,小明的体重随年龄的变化,学生先观察然后回答问题。
(2)沙漠之舟
师:骆驼被称为“沙漠之舟”,它的体温随时间的变化而发生较大的变化。(课件出示:出示骆驼体温随时间的变化统计图。)
A、从图中你知道了什么信息?
B、一天中,骆驼体温是多少?最低是多少?
C、一天中,在什么时间范围内骆驼的体温在上升?在什么时间范围内骆驼的体温在下降?
D、第二天8时骆驼的体温与前一天8时的体温有什么关系?
E、每天骆驼的体温总是怎样变化的?
教学意图:通过教学第二幅情景图,认识有关沙漠之舟的基本知识,拓宽学生的课外知识面。读懂统计图,回答问题,通过问题,发现规律。这是本环节的教学目标,学生对于折线统计图的认识已有基础。
3、蟋蟀与气温的关系
A、出示蟋蟀叫的次数与气温之间关系的情境图。
B、你能用式子表示这个近似关系吗?
生:气温h=t÷7+3。
C、理解式子中量的变化。
师:如果蟋蟀叫了7次,这时的气温大约是多少?
如果蟋蟀叫了14次,这时的气温大约是多少?
如果蟋蟀叫了28次呢?
你能发现蟋蟀叫的次数与气温之间是怎样变化的?
小结:通过举例我们可以发现一个量随另一个量变化而变化,这些量就是变化的量。
教学意图:这环节学生理解蟋蟀的叫声用关系式表示,大多学生通过书上的文字提示,都可以完成关系式,个别不行的,就个别辅导。
三、课堂巩固,加深理解。
1.说一说,一个量怎样随另一个量变化。
(1)一种故事书每本3元,买书的总价与书的本数。
(2)一个长方形的面积是24平方厘米,长方形的长与宽。
2、小明到商店买练习簿,每本单价2元,购买的总数x(本)与总金额y(元)的关系式,可以表示为: 。
设计意图:我在这一课的练习设计上,没有太多的练习量,反而注重巩固课本上的练习。由难到易,重质不重量,希望通过补充练习提高后进生的课堂参与度,帮助部分学生的梳理知识。
四、全课小结,谈谈收获。
师:在生活中还有很多象这样相关联的两个变量,一个量总是随着另一个量的变化而变化,谁还能举出一些这样的例子?
学生数学六年级教案(精选篇2)
教学目标:
1.结合具体目标,体会生活中存在着大量互相依存的变量。
2.在具体情境中,尝试用自己的语言描述两个变量之间的关系。
教学重点:
结合具体目标,体会生活中存在着大量互相依存的变量。
教学难点:
在具体情境中,尝试用自己的语言描述两个变量之间的关系。
教学用具:课件
教学过程:
一、 课前预习
1、预习书18页内容,尝试回答书上的问题
2、找一找其中的变量,想一想它们之间有没有关系?如果有,有怎样的关系?
3、仔细看书,看看哪些关系能够用式子表示?
二、课堂展示
活动一:观察并回答。
1、下表是小明的体重变化情况。
观察表中所反映的内容,搞清楚表中所涉及的量是哪两个量?观察后请回答。
2、上表中哪些量在发生变化?
3、说一说小明10周岁前的体重是如何随年龄增长而变化的?
小结:小明的体重随年龄的增长而变化。2—6岁和6---10岁是体重的增长高峰。说明这两个阶段是孩子成长的重要阶段。
4、体重一直会随年龄的增长而变化吗?这说明了什么?
说明:体重和年龄是一组相关联的量。体重的增长是随着人的生长规律而确定的。
1、教育学生要合理饮食,适当控制自己的体重。
活动二:骆驼被称为“沙漠之舟”,它的体温随时间的变化而发生较大的变化。
观察书上统计图:
1、图中所反映的两个变化的量是哪两个?
2、横轴表示什么?纵轴表示什么?
同桌两人观察并思考,得出结论后,记录在书上,然后再在全班汇报说明。
3、一天中,骆驼的体温是多少?最低是多少?
4、一天中,在什么时间范围内骆驼的体温在上升?在什么时间范围内骆驼的体温在下降?
5、第二天8时骆驼的体温与前一天8时的体温有什么关系?
6、 骆驼的体温有什么变化变化的规律吗?
活动三:某地的一位学生发现蟋蟀叫的次数与气温之间有如下的近似关系。
1、 蟋蟀1分叫的次数除以7再加3,所得的结果与当时的气温值差不多。
2、 如果用 t 表示蟋蟀每分叫的次数,你能用公式表示这个近似关系吗?请你写出这个关系式,全班展示,交流。
3、你还发现生活中有哪两个量之间具有变化的关系?它们之间是怎样变化的?四人小组交流你收集到的信息,选派代表请举例说明
4、 你还发现我们学过的数学知识中有哪些量之间具有变化的关系?
三、反馈与检测
1、连一连,把相互变化的量连起来。
路程 正方形周长
边长 购卖数量
总价 行驶时间
2、说一说,一个量怎样随另一个量变化。
(1)一种故事书每本3元,买书的总价与书的本数。
(2)一个长方形的面积是24平方厘米,长方形的长与宽。
3、小明到商店买练习簿,每本单价2元,购买的总数x(本)与总金额y(元)的关系式,可以表示为:
四、全课小结:今天我们研究的两个量都是相关联的。它们之间在变化的时候都具有一定的关系。下一节课我们将深入研究具有相关联的两个量,在变化时有相同的变化特征,这样的知识在数学上的应用。
学生数学六年级教案(精选篇3)
教学目标:
1、使学生了解表示成正比例的量的图象特征,并能根据图象解决相关简单问题。
2、通过练习,巩固对正比例意义的认识。
3、情感、态度与价值观:初步渗透函数思想。
重点难点:
能根据数量关系式或图象判断两种量是否成正比例。
教学准备:
投影仪。
教学过程:
一、新课讲授
教学第46页内容。
教师出示表格(见书),依据表中的数据描点。(见书)
师:从图中你发现了什么?
生:这些点都在同一条直线上。
看图回答问题
①如果铅笔的数量是7支,那么铅笔的总价是多少?②总价是4.0的铅笔,数量是多少?③铅笔的数量是3支,那么铅笔的总价是多少?描出这一对应的点,它们是否在同一直线上?
你还能提出什么问题?有什么体会?
组织学生分小组汇报,学生汇报时可能会说出
①正比例关系的图象是一条经过原点的直线。
②利用正比例图象不用计算,可以由一个量的值,直接找到对应的另一个量的值。
二、练习讲授
1、基本练习。
(1)投影出示教材第49页第1题。
教师引导学生回顾正比例的意义及判断是否成正比例的方法。学生独立完成练习。
教师要求学生从两个方面说明为什么成正比例。a.电是随着用电量的增加而增加;b.电费与用电量的比值总是相等的。
师生共同订正。
(2)投影出示:一列火车1小时行驶90km,2小时行驶180km,3小时行驶270km,4小时行驶360km,5小时行驶450km,6小时行驶540km,7小时行驶630km,8小时行驶720km……
①出示下表,填表。
一列火车行驶的时间和路程
②填表并思考发现了什么?
③教师点拨:随着时间的变化,路程也在变化,我们就说时间和路程是两种相关联的量。(板书:两种相关联的量)
④教师:根据计算你们发现了什么?指出:相对应的两个数的比值固定不变,在数学上叫做一定。
⑤用式子表示它们的关系: 路程÷时间 =速度(一定)。
教师:上节课,我们学习了成正比例的量,下面我们继续学习和练习。
2、指导练习。
(1)完成教材第49页第2题。
(2)完成教材第49页第3题,先由学生独立做,后由老师抽查。在抽查第(1)小题时,多让不同的学生回答。做第(2)小题时应多让学生们交流。第(3)小题汇报时要求说出,你是怎样估计的,上台在投影仪上展示估计的思维过程。
(3)解决教材49页第4题:①投影出示书中的表格,引导学生观察表中的数据。
②组织学生在小组中合作探究。a.动手画一画,指名汇报图象特点。b.组织学生说一说,相互交流。
提示:判断两种量是否成正比例,先要判断它们是不是相关联的量,再判断它们的比值是否一定。
三、课堂作业
1、根据x和y成正比例关系,填写表中的空格。
2、看图回答问题。
(1)在这一过程中,哪个量没变?
(2)路程和时间有什么关系?
(3)不计算,从图中看出4小时行驶多少千米?
(4)7小时行驶多少千米?
课堂小结:
教师:判断两个相关联的量成正比例的三个要素是什么?
通过这节课的学习,你有什么收获?
课后作业:
完成练习册中本课时的练习。
板书设计:
正比例图像
图像:一条过原点的直线。
学生数学六年级教案(精选篇4)
[教学目标]:
1.结合具体情境,体会生活中存在着大量互相依赖的变量。
2.在具体情境中,尝试用自己的语言描述两个变量之间的关系。
[教材分析]:
教材通过让学生观察表格、图像、关系式,尝试用自己的语言描述两个变量之间的变化,为后面学习正比例、反比例打下基础,同时体会函数思想。
教材呈现了三个具体情境,鼓励学生在观察、思考、讨论和交流中,体会在生活情境中,存在着大量互相依赖的变量:一个量变化,另一个量也会随着发生变化,两个变量之间存在着关系。这三个情境分别用表格、图像和关系式呈现变量之间的关系,以使学生体会表示变量之间关系的多种形式。
[学校及学生状况分析]:
我校是一所民办实验小学,学校的数学的课堂教学中以学生为本,突显人文性,这样学生喜爱学习数学,敢于在课堂上表现自我,学生有较好的思维能力,探索能力和合作能力。
[教学过程]:
一、创设情境,导入新课。
1、用手势表示出自己从出生到现在身高的变化。
2、用手势表示出自己从出生到现在体重的变化。
3、师:身高、体重都会变化,这些都是变化的量。(板书课题)
二、观察表格,感知变量。
1、出示小明的体重变化情况表。
师:这是小明的体重变化情况表。
(1)从表中你知道了什么信息?
(2)上表中哪些量在发生变化?
(3)师生共同画一画小明的体重变化情况折线统计图。
(4)说一说小明10周岁前的体重是如何随年龄增长而变化的。
2、说一说。
(1)我发现( )随( )的增加而增加。
(2)我发现( )随( )的减少而减少。
3、师:通过你们举的例子,可以发现什么?
三、通过读图,感受变量。
1、师:骆驼被称为“沙漠之舟”,它的体温随时间的变化而发生较大的变化。
2、出示骆驼体温随时间的变化统计图。
3、读懂统计图。
(1)从图中你知道了什么信息?
(2)一天中,骆驼体温是多少?最低是多少?
4、感受量的周期变化。
(1)一天中,在什么时间范围内骆驼的体温在上升?在什么时间范围内骆驼的体温在下降?
(2)第二天8时骆驼的体温与前一天8时的体温有什么关系?
(3)第二天,在什么时间范围内骆驼的体温在上升?在什么时间范围内骆驼的体温在下降?第三天呢?第十天呢?
(4)师:每天骆驼的体温总是怎样变化的?
四、建立模型,感悟变量。
1、出示叫的蟋蟀叫的次数与气温之间关系的情境。
2、你能用式子表示这个近似关系吗?
即气温h=t÷7+3。
3、理解式子中量的变化。
师:如果蟋蟀叫了7次,这时的气温大约是多少?
如果蟋蟀叫了14次,这时的气温大约是多少?
如果蟋蟀叫了28次呢?
你能发现蟋蟀叫的次数与气温之间是怎样变化的?
4、举出而变化的例子。
5、通过举例我们可以发现一个量随另一个量变化而变化,这些量就是变化的量。
五、课堂巩固,加深理解。
1、连一连,把相互变化的量连起来。
路程 正方形周长
边长 购卖数量
总价 行驶时间
2、说一说,一个量怎样随另一个量变化。
(1)一种故事书每本3元,买书的总价与书的本数。
(2)一个长方形的面积是24平方厘米,长方形的长与宽。
六、全课小结,谈谈收获。
学生数学六年级教案(精选篇5)
教学要求:
1.使学生进一步掌握含有百分数统计表的结构及能够准确熟练地进行数据计算与表格填写。
2.进一步培养学生观察、分析的能力。
3.通过制统计表,培养学生认真、仔细的良好习惯。
教学过程:
1.讲述练习内容
上节课我们学习了制作含有百分数的统计表,这节课我们进行巩固练习。
2.复习
让学生观察教材52页例1统计表提问:制一张合格的统计表的步骤是什么?(要求边看书边讨论,然后回答)
制复式统计表的步骤:
(1)设计“表头”
(2)定纵横栏目各需几格
(3)画表
(4)填写数据(包括总计、合计)
(5)写上名称、制表日期
3.巩固练习
在学生掌握复式统计表制作方法的基础上,出示练习十七第3题。
方法:指导做题,让学生研究后再制表
(1)提问:“各年级”和“全年级”各表示什么意思?
(2)教师巡视指导,然后让学生结合题目说一说制表的步骤。
4.综合练习
(1)完成教材练习十一第5题。
方法:独立完成。然后让学生回答第二季度合计数填写的位置,全班齐练。
(2)完成教材练习十一第4题。
方法:要求学生认真审题,抓住关键词语,弄清数量关系,正确列出算式,准确计算。在做题时一定要注意差后,发现普通的问题要统一纠正。
5.深化练习
练习十一第6题,不要求所有的学生都能完成,教师提示引导,学生试做。
教师引导,表中各班占总数的百分几中的总数指的是谁平均每人植树的棵数又是什么意思?学生试做后讲评。
6.全课总结
有关统计部分的知识在我们的生活中应用很广,因此这部分知识很重要,同学们一定要牢牢记住。
7.作业(补充)
学生数学六年级教案(精选篇6)
教学目标
1.使学生初步学会制作一些含有百分数的简单的统计表.
2.通过看表,会回答一些简单的问题.
教学重点
在已学过统计表的形式和制法的基础上,会制作含有百分数的统计表.
教学难点
掌握统计表中数量之间的百分比关系,会分析含有百分比的统计表。
教学步骤
一、铺垫孕伏
1.复习旧知.
我们已经学过,把调查收集到的数据,加以分类整理,请看下面表格(下表),你能说出每个数据分别表示什么吗?
2.计算.
教师提问:表格中“合计”的数据怎样算?
3.引新.
统计表不仅反映某一类事物的具体数据,而且还能说明有关数据之间的关系,如表中合计的数据表示了三年同类项目收入的总和,现在的表格,还能反映出村办企业收入占全村的总收入的百分比吗?(不能)
下面我们就继续学习百分数在统计中的应用.
二、探求新知
(一)教学例题.
1.出示例题.
下面是1998~2000年东山村每年的总收入与村办企业收入的统计表.如果要使这个统计表表示出这三个年度中村办企业收入占全村总收入的白分之几,应该怎样做?
教师提问:例题向我们提出了什么问题?
2.增加栏目,扩展统计表含量.
教师提问:
(1)计算每个年度村办企业收入占全村总收入的百分比比较容易,计算出的三个百分数写在表格的什么位置?
(表格右侧旁边)
(2)能不能把表格向右侧扩充一下,把有关百分数的数据也纳入表中?
(学生扩充表格,并计算百分数,填入表内.)
(3)我们再纵向观察,这组百分数表示什么?
(村办企业收入占总收入的百分比)
(4)你们能概括地讲一讲我们是怎么做的?
(把原来的统计表右边增加一栏,再把每一年村办企业收入占全村总收入的百分数填写过去,这样就成了含有百分数的统计表.)
3.强调“合计”中“百分数”的计算方法.
教师提问:我们以后在计算统计表中百分数时,如果没有特殊要求,一般百分号前的数只需取一位小数.“合计”项目中的百分数如何计算?
学生回答:用村办企业三年收入总和去除三年全村总收入的总和,三年“合计”项目的百分数不是三年中每年的百分数的和,也不是三年中每年的百分数的平均数.
4.看统计表回答问题.
(1)2000年全村总收入比1999年增加_________万元;
(2)2000年村办企业收入比1999年增加_________万元;
(3)2000年该村其他收入(包括粮食、副业等)比1999年增加_________万元;
(4)2000年村办企业收入占全村总收入的_________%.
教师提问:
(1)通过看表回答问题,你发现全村总收入和村办企业总收入是怎样逐年变化的? (逐年增长)
(2)其中村办企业收入增长幅度怎样?
(很大)
教师讲述:仅通过1998-2000年三年的收入,我们不难看出,坚持改革开放,农村的发展非常迅速,特别是村办企业收入增长幅度之大,说明要加快农村现代化建设步伐,不仅要抓好农业,还要大力发展村办企业.
(二)反馈练习
某洗衣机厂第一季度生产洗衣机情况如下.分别算出每个月完成计划的百分数,并制成统计表.
三、全课小结
这节课我们在原来有关统计表知识的基础上,又进一步学习了百分数在统计中的应用,这就使统计表中反映数据之间关系的内容更充分,更丰富.
四、课堂练习
1.陈庄三户农民1999年和2000年平均每人纯收入的情况如下:
陈志刚1999年2186元,2000年2274元;
李卫民1999年2140元,2000年2261元;
陈世昌1999年2205元,2000年2313元;
完成下面的统计表.(百分号前面的数保留一位小数.)
五、布置作业
1.完成下面的统计表.(百分号前面的数保留一位小数.)
六、板书设计
学生数学六年级教案(精选篇7)
教学目的:
使学生认识圆锥,掌握圆锥的特征,会看圆锥的平面图。
教具准备:
要求每个学生用教科书图样做一个圆锥的模型,并让学生收集一些圆锥形的实物,教师准备一个圆锥形物体,一块平板(或玻璃),一把直尺。
教学过程:
一、复习
1、提问:圆柱体积的计算公式是什么?
2、圆柱的特征是什么?
二、导入新课
教师:我们已经学习了圆柱的有关知识。请大家拿出自己准备好的跟老师一样的物体,看一看,摸一摸,你们感觉它与圆柱有什么不一样?
三、新课
1、圆锥的认识。
让学生拿着圆锥模型观察和摆弄后,指定几名学生说出自己观察的结果。从而使学生认识到圆锥有一个曲面,一个顶点和一个面是圆,等等。
教师指出:像这样的物体就叫做圆锥体,简称圆锥。这节课我们就来学习这种新的立体图形
板书谋题:圆锥
教师:大家门才认识了圆锥形的物体,我们把这些物体画在投影片上。
出示有圆锥形物体的投影片。
教师:现在我们沿着这些圆锥形物体的轮廓画线,就可以得到这样的图形。
随后教师抽拉投影片,演示得到圆锥形物体的轮廓线。
然后指出:这样得到的图形就是圆锥体的几何图形。
教师指出:圆锥有一个顶点,它的底面是一个圆。
然后在图上标出顶点,底面及其圆心O。
同时还要指出:我们所学的圆锥是直圆锥的简称。
接着让学生用手摸一摸圆锥周围的面,使学生发现圆锥有一个曲面。由此指出:圆锥的这个曲面叫做侧面。(在图上标出侧面。)
让学生看着圆锥形物体,指出:从圆锥的顶点到底面圆心的距离叫做高。然后在图上标出高。
教师顺着母线的方向演示。问:这条线是圆锥的高吗?
指名学生回答后,教师要指出:沿着曲面上的线都不是圆锥的高。
教师:圆锥的高到底有多少条呢?
引导学生根据高的定义,弄清楚由于圆锥只有一个顶点,所以圆锥只有一条高。
然后让学生拿出自己的学具,同桌的两名同学相互指出圆锥的底面、侧面和顶点,注意提醒学生圆锥的高是不能摸到的。
2、小结。
圆锥的特征(可以启发学生总结),强调底面和高的特点,使学生弄清圆锥的特征是底面是圆,侧面是一个曲面,有一个顶点和一条高。
3、测量圆锥的高。
教师:由于圆锥的高在它的内部,我们不能直接量出它的长度,这就需要借助—块平板来测量。
教师边演示边叙述测量过程:
(1)先把圆锥的底面放平;
(2)用一块平板水平地放在圆锥的顶点上面;
(3)竖直地量出乎板和底面之间的距离。
测量的时候一定要注意:(1)圆锥的底面和平板都要水平地放置;(2)读数时一定要读平板下沿与直尺交会处的数值。
4、教学圆锥侧面的展开图。
教师:圆锥的侧面是哪一部分?
教师展示圆锥模型,指名学生说出侧面部分。
教师:我们已经学习过圆柱,哪位同学能说一说圆柱的侧面展开后是什么图形?
学生回答出圆柱的侧面展开图是长方形后,教师设问:那么,请大家想一想,圆锥的侧面展开后会是什么图形呢?”
留给学生短暂的思考讨论时间后,教师指出:下面我们通过实验来看看圆锥的侧面展开后是一个什么图形。
然后教师指导学生把圆锥模型的侧面展开,使学生看到圆锥的侧面展开后是一个扇形。展开后还可以再把它合拢,恢复原状,使学生加深对圆锥侧面的认识。
四、课堂练习
1、做“做一做”的题目。
让学生拿出课前准备好的模型纸样.先做成圆锥,然后让学生试着独立量出它的底面直径。教师行间巡视,对有困难的学生及时辅导。
2、做练习九的第1题。
让学生自由地想,只要是接近于圆锥的都可以视为是圆锥。
3、做练习九的第2题。