教育巴巴 > 小学教案 > 数学教案 > 五年级 >

数学五年级上册教学教案

时间: 沐钦 五年级

数学五年级上册教学教案都有哪些?在古代,数学的主要原理是研究天文学、土地的合理分配、粮食作物、税收、贸易等相关计算。下面是小编为大家带来的数学五年级上册教学教案七篇,希望大家能够喜欢!

数学五年级上册教学教案

数学五年级上册教学教案精选篇1

教学目标:

1.在理解题意的基础上寻找等量关系,初步掌握列方程解两、三步计算的简单实际问题。

2.从不同角度探究解题的思路,让学生学会在计算公式中求各个量的方法。

3.让学生初步体会利用等量关系分析问题的优越性。

教学重点:

1.让学生学习在计算公式中求各个量的方法。

2.让学生体会利用等量关系分析问题的优越性。

教具准备:

配套教与学的平台

教学过程:

一、复习引入

1.解方程

8x ÷ 2 =28       7(x+3)÷ 2 =28

2(x +17 )=40     6(5+x)÷ 2 =36

2.任意选择一题进行检验。

3.复习以前学过的公式:C=2(a+b)

C=4a   S=ab   S=ah÷2   S=(a+b)h÷2 ……

4.揭示课题:列方程解应用题(1)

[说明:复习部分安排解方程,一方面帮助学生巩固方程的合理解法;另一方面也对方程的检验格式稍作复习,便于学生养成良好的验算习惯。同时,适当地帮助学生整理与复习计算公式,这样导入新课比较自然,也有助于展开后续的学习。]

二、探究新知

1.出示例题:用一根长为28厘米的铁丝围成一个长方形,这个长方形的长是8厘米,宽是多少厘米?

(1)学生尝试。(抽生板演)

(2)分析、交流

先设这个长方形的宽是x厘米,

再找等量关系来列方程。

(长方形的周长计算公式就是一个等量关系。)

(3)板书:解:设这个长方形的宽是x厘米。

2(8 +x )=28

8+x =14

x =6

答:这个长方形的宽是6厘米。

(4)比较算术与方程的解法。(建议学生,选择方程的方法。)

(5)检验。

2.补充例题:一块三角形土地的面积是900平方米,高36米,它的底边长多少米?

问:(1)这道题已知条件是什么?要求什么?

(2)能不能直接用三角形的面积计算公式算出高。

(3)可以利用三角形的面积计算公式列方程,未知数高怎样表示?

学生练习并交流。

3.小结:根据计算公式列方程解应用题。

[说明:让学生通过尝试、分析、交流、比较的探究活动,进一步体会用方程解的优越性。探究活动开始,先让学生尝试练习,学生会出现方程和算术两种解法;后小组比较、大组交流,让学生自己来解决问题。其主要目的是通过方程与算术解法的比较,让学生体会用方程解的优越性,特别是列方程时的优越性。]

三、巩固练习

1.只列方程不求解

(1)有一个长方形的面积是3600㎡,宽是40m,长应是多少米?

(2)已知长方形的周长是26厘米,它的长是8厘米,它的宽应是多少厘米?

(3)已知正方形的周长是100厘米,它的边长是多少厘米?

2.练一练:列方程解应用题

(1)长方形游泳池占地600平方米,长30米,游泳池宽多少米?

(2)面积为15平方厘米的三角形纸片的底边长6厘米,这条底边上的高是多少厘米?

(3)一块梯形草坪的面积是30平方米,量得上底长4米,高6米,它的下底长多少米?

(学生练习并交流。)

3.总结:列方程解应用题的一般步骤。

四、课堂总结

1.通过这堂课的学习,你有什么收获?还有什么问题?

2.布置作业:练习册

数学五年级上册教学教案精选篇2

教学目标:

1、通过生活中的情境,进一步体会小数除法在实际生活中的应用。

2、利用已有知识,自主探究除数是整数商是小数的小数除法的计算方法。

3、正确掌握已学过的小数除法的计算方法,并能运用小数除法解决日常生活中的简单问题。

教学重点:

除数是整数,商是小数的小数除法的计算方法。

教学难点:

除得的结果有余数,补“0”继续除。

教学过程:

一、复习导入

课件出示情境主题图

开学了,班级购置了打扫卫生用具,买6把笤帚共花了18.6元,买4个簸箕共花了24元。你能提出哪些问题?怎样计算?

引导学生列出算式并独立计算:18.6÷6 24÷4

计算后说一说整数除法与小数除法的异同。

二、对比中探索,交流中生成

师:复习题中的两道问题同学们解决得非常好,如果老师把它们稍作改动,你还会不会计算呢?

教师把情境题中的18.6改成18.9,把24改成26.

1、初步尝试,发现问题。

请你尝试计算这两题,你发现了什么?

2、独立思考,尝试解决。

师:有余数还能不能继续除下去?该怎么继续除?试算18.9÷6

3、讨论交流,异中求同。

(1)在小组内汇报自己的计算方法。

(2)展示汇报。(可能出现第4页中几种不同的方法)

(3)对比这几种方法:有什么相同的地方?

引导学生发现,无论是转化成整数,拆分整数与小数分别除,还是竖式的方法,都有一个 共同的地方,就是小数的末尾可以添“0”继续除,在具体的情境中可以解释为,18元里有6 个3元,9?里有6个1角,剩余的3角可以换算成30分,30分里有6个5分,合在一起就 是3.15元。

4、应用方法,归纳总结。

竖式计算26÷4

(1)引导学生发现,整数除以整数有余数时,可以在被除数个位后点小数点,添“0”继续除,商的小数点一定要与被除数的小数点对齐。

(2)尝试总结除数是整数的小数除法的计算方法。

三、巩固练习。

1、买16个玩具恐龙花了12元,平均每个玩具恐龙多少元?

2、错题诊所。

209÷5=418   10÷25 =4   1.26÷18=0.7

3、先估算下面各题的商哪些大于1,哪些小于1,再竖式计算。

32÷8   12÷25   2.45÷3

4、一只蜜蜂的飞行速度是蝴蝶的2倍,如果蜜蜂每小时飞行11千米,蝴蝶每小时能飞行多少千米?

四、课堂总结

本节课你有哪些收获?

数学五年级上册教学教案精选篇3

教学目标:

1、体会小数混合运算的运算顺序和整数是一样的,会计算小数四则混合(以两步为主,不超过三步)

2、利用学过的小数加、减、乘、除法解决日常生活中的实际问题,发展应用意识。

3、培养学生善于探讨数学问题的良好习惯,能够综合问题的能力。

教学重点:

掌握小数四则混合运算的算法,会进行小数四则混合运算。

教学难点:

通过解决具体问题理解运算间的联系。

教学过程:

一、情境导入

师:前几天五年级同学对我们平时所产生的生活垃圾进行了调查研究,下面就是五年级两个班级的调查汇报情况。(课件出示教材情境图) 师:从这个调查汇报情况中你获得了哪些数学信息?

学生:五年级1班汇报信息:一个人4周可产生30.8千克生活垃圾。五年级2班汇报信息:一个小区周一到周五共产生生活垃圾3.5吨,周末每天产生生活垃圾1.3吨。

师:看到这些数学信息,你能提出哪些数学问题? 引导学生根据不同的信息提出不同的数学问题。

二、探究新知

1、研究连除、乘除混合运算。

根据学生提出的不同问题,教师有选择性地出示问题:一个人4周可产生30.8千克生活垃圾,那么一个人平均每天产生多少千克生活垃圾?

学生阅读题目后,教师提问:“要想求出一个人平均每天产生多少千克生活垃圾,需要什么书籍条件?题目中是否直接给出?用什么方法计算?”学生独立思考计算后,在小组内交流自己的想法。

小组汇报,学生可能会呈现的方法

一种方法:先计算4×7=28,算出四周一共多少天,再用30.8÷28算出平均一天产生多少垃圾。

另一种方法:先算每周产生多少千克垃圾,用30.8÷4=7.7,再用7.7÷7算出平均每天产生多少千克垃圾。

2、研究除、加混合运算。

出示问题2:一个小区周一到周五共产生生活垃圾3.5吨,周末每天产生生活垃圾1.3吨。与平时相比这个小区周末每天要多处理多少吨生活垃圾?

学生独立完成,教师要引导列分步算式的同学试着列出综合算式,根据其中的数量关系,运算出结果。

3、总结规律

引导学生面容两题中的三个综合算式,再一次得出结论:小数四则混合运算的顺序与整数四则混合运算顺序相同,整数运算定律在小数运算中同样适用。

三、巩固练习

完成教材第17页算一算

数学五年级上册教学教案精选篇4

教学内容:

教材P32例6及练习八第1、2、3、8题。

教学目标:

1.知识与技能:能理解商的近似数的意义。

2.过程与方法:掌握小数除法计算中用“四舍五入”法求商的近似数的一般方法。

3.情感、态度与价值观:培养学生在实际生活中灵活运用数学知识的能力,能根据实际情况进行求近似数。

教学重点:

掌握小数除法计算中用“四舍五入”法求商的近似数的一般方法。

教学难点:

根据题意正确求出商的近似数。

教学方法:

注重新旧知识的迁移,引导学生自主学习、总结。

教学准备:

多媒体。

教学过程:

一、复习导入

复习旧知:(出示如下题目)

1.用“四舍五入”法将下面的数改写成一位小数。

8.769  3.452  12.71  18.64

2.计算下面各题,得数保留两位小数。

2.43×4.67   12.15×3.41

订正答案,并通过问题:你是用什么方法求这些数的近似数?

(保留几位小数就看这位小数后面的数位,大于4就向前一位进一,小于五就舍去。师引导总结方法的名称:“四舍五入”法。)

引出课题:这节课我们要学习“商的近似数”。(板书课题:商的近似数)

二、互动新授

1.出示教材第32页例6情境图。

阅读情境图中的信息,并问:怎样解决爸爸提出的问题呢?

引导学生自主列算式,并试着计算:19.4÷12

学生在计算过程中,会发现除不尽。这时,师引导学生小组交流,遇到这种情况应该怎么办?

通过交流,学生可能会想到:实际计算钱数时应该算到分,因为分是人民币的最小单位;也可以算到角,因为现在买东西时已经不用分了。

教师小结:根据我们的生活实际,当所买的商品数量少的时候,可以保留整数,或者保留一位小数,或者两位小数。当然如果数量很多的时候,通常会计算到分,这就要根据我们的实际需要进行取近似数了。看来取近似数一种是按照要求去取,一种是按照实际情况去取。(板书:按要求取,按需要取。)

然后再引导学生想一想:算到分和角时分别需要保留几位小数?

(算到分要保留两位小数,算到角就要保留一位小数。)

师引导学生思考并讨论:除的时候应该怎么算?

小组讨论后,学生汇报:保留两位小数,就要算出三位小数,再按“四舍五入”法省略百分位后面的尾数;保留一位小数,就要算出两位小数,再按“四舍五入”法省略十分位后面的尾数。

让学生自己用竖式计算:19.4÷12。教师根据学生汇报,板书

2.提问:说一说如何求商的近似数?

让学生独立思考后,在小组内交流、讨论。引导学生小结:求商的近似数时,只需要比需要保留的小数位数多除出一位,然后再用“四舍五入”法就可以取近似数了。或者除到要保留的小数位数后,不再继续除了,只把余数同除数作比较,若余数比除数的一半小,就说明求出下一位商要直接舍去,若余数等于或者大于除数的一半,就说明要在已除得的商的末一位加上1。同时,求商的近似数的时,不需要算出商的准确值之后再进行取舍。

3.引导学生比较求商的近似值和求积的近似值的异同点。

小组讨论后发言:相同点:都是用“四舍五入”法求近似数。

不同点:积的近似数要求出准确数之后再求近似数;商的近似数不需要求出准确数,只需比需要保留的小数位数多除出一位就可以求近似数。

师小结:求商的近似数非常重要,有时按照要求取近似数,有时按照实际取,在取商的近似数的时候,要明白应该除到哪位就可以不用再除了。

三、巩固拓展

1.完成教材第32页“做一做”。学生独立完成。订正时让学生说一说它们的近似值分别是怎么取的。有些题保留指定小数位数后,近似数的末尾有0,要让学生说说是如何处理的。如第2小题1.55÷3.9,保留两位小数是0.40。

四、课堂小结。同学们,这节课你学了什么知识?有哪些收获?

引导学生归纳

1.求商的近似数时,计算到比保留的小数位数多一位,再将最后一位“四舍五入”。

2.求商的近似数的时候不需要算出商的准确值之后再进行取舍。除到要保留的小数位数后,不再继续除了,只把余数同除数作比较,若余数比除数的一半小,就说明求出下一位商要直接舍去,若余数等于或者大于除数的一半,就说明要在已除得的商的末一位加上1。

作业:教材第36~37页练习八第1、2、3、8题。

板书设计:

商的近似数

求商的近似数时,计算到比保留的小数位数多一位,再将最后一位“四舍五入”。

数学五年级上册教学教案精选篇5

一、教学目标

(一)知识与技能

通过具体实例体会求商的近似数的必要性,感受取商的近似数是实际应用的需要。

(二)过程与方法

掌握用“四舍五入”法截取商的近似数的一般方法。

(三)情感态度和价值观

在解决相关实际问题时能根据实际情况合理取商的近似数,培养学生探索数学问题的兴趣和解决实际问题的能力。

二、教学重难点

教学重点:掌握用“四舍五入”法截取商的近似数的一般方法。

教学难点:理解求商的近似数与积的近似数的异同。

三、教学准备

多媒体课件。

四、教学过程

(一)复习旧知,揭示课题

1.按照要求写出表中小数的近似数。(PPT课件出示题目。)

2.求出下面各题中积的近似值。(PPT课件出示题目。)

(1)得数保留一位小数:2.83×0.9;

(2)得数保留两位小数:1.07×0.56。

3.揭示课题:我们已经会求小数乘法中积的近似数了。在小数除法中,常常会出现除不尽的情况,或者虽然除得尽,但是商的小数位数比较多,实际应用中并不需要这么多位的小数,这时就可以根据需要用“四舍五入”法保留一定的小数位数,求出商的近似数,这就是我们这节课要探究的内容。(板书课题:商的近似数。)

【设计意图】通过复习求一个小数的近似数,为新课学习做好铺垫。通过复习求积的近似数,为后面将求积的近似数和求商的近似数进行对比做好准备,也利于引出课题。在引出课题的同时,让学生知道求商的近似数的必要性。

(二)创设情境,自主探究

1.教学教材第32页例6。

(1)出示例6题目信息。(PPT课件演示。)

(2)教师引导学生根据问题中的信息自主列式计算,并指名板演。(教师巡视,了解学生的计算情况,给予适当指导。)

(3)当学生除到商为两位小数、三位小数……还除不尽时,教师适时引导学生思考:在计算价钱时,通常只精确到“分”,这里的计量单位是“元”,那应该保留几位小数?除的时候应该怎么办?(教师适时板书或PPT课件演示。)

①学生回答后,修改自己的计算过程,得到19.4÷12≈1.62(元)。

②订正后,教师引导学生明确:商保留两位小数时,要除到第三位小数,再将第三位小数“四舍五入”。

(4)教师进一步引导学生思考:如果要精确到“角”,又应该保留几位小数?除的时候应该怎么办?

①学生独立完成。

②订正后,教师引导学生明确:商保留一位小数时,要除到第二位小数,再将第二位小数“四舍五入”。(教师适时板书或PPT课件演示。)

(5)教师组织学生交流讨论。

①通过上面的两次计算,想一想怎样求商的近似数?

②教师引导学生小结:求商的近似数时,计算到比保留的小数位数多一位,再将最后一位“四舍五入”。(教师适时板书或PPT课件演示。)

(6)介绍求商的近似数的简便的方法:求商的近似数时,除到要保留的小数位数后,可以不用再继续除,只要把余数同除数作比较。

①如果余数小于除数的一半,就说明下一位商小于5,直接舍去;(PPT课件演示例6精确到“角”的计算过程。)

②如果余数等于或大于除数的一半,就说明下一位商等于或大于5,要在已求得的商的末一位上加1。(PPT课件演示例6精确到“分”的计算过程。)

【设计意图】复习已唤起了学生用“四舍五入”法取近似数的知识经验,这里通过买羽毛球的情境,让学生经历求商的近似数的过程,体会和总结求商的近似数的一般方法。同时也结合实例体会了商的近似数的实际意义。

2.对比求商的近似数与求积的近似数的异同。

(1)对比求“1.07×0.56”的积的近似数与求“19.4÷12”的商的近似数,想一想,它们在求法上有什么相同和不同?(PPT课件演示。)

(2)思考:求商的近似数与求积的近似数有什么相同和不同?(PPT课件演示。)

(3)引导学生交流、概括。(PPT课件演示。)

①相同点:都是按“四舍五入”法取近似数。

②不同点:求商的近似数时,只要计算到比要保留的小数位数多一位就可以了;而求积的近似数时,则要计算出整个积后再取近似数。

【设计意图】通过例题与复习题的对比,让学生明确求商的近似数与求积的近似数的异同,既突破了教学难点,又让学生形成了较完整的认知结构。

(三)巩固应用,内化方法

1.基本练习。

(1)完成教材第32页“做一做”。

①学生独立完成,教师巡视,适时指导。

②集体订正,着重让学生明确每一小题除到第几位小数,然后怎么取近似数。

(2)完成教材第36页练习八第3题。

①学生独立练习,教师巡视,适时指导。

②组织学生交流、比较取近似值的各种方法,看哪种方法既快捷又简便。明确从全局出发只列一个竖式,看最多保留三位小数,就先直接除到第四位小数,然后再一位小数、两位小数、三位小数地进行保留,这样既简便又不易出错。

2.提高练习。

判断对错。(对的在括号里打“√”,错的在括号里打“×”。)

(1)求商的近似数时,计算到比保留的小数位数多一位,再将最后一位“四舍五入”。( )

(2)求商的近似数时,精确到百分位,就必须除到万分位。( )

(3)求商的近似数和求积的近似数一样,必须先求出准确数。( )

3.解决问题。

(1)完成教材第36页练习八第2题。

①引导学生理解题意,让学生说一说要想知道“是上午铺路的速度快,还是下午铺路的速度快”,该怎么办?(要分别计算出上午和下午铺路的速度,并比较大小。)

②学生独立计算,教师巡视,了解学生保留不同小数位数的取值情况。

③组织学生交流各种不同保留小数位数的情况,体会只要能比较出速度的快慢,保留的小数位数越少越简单,明确取近似值时可以根据实际情况确定精确度,灵活选择保留的位数。

(2)完成教材第36页练习八第4题。

①引导学生审题,并让学生明白当题目中没有明确保留小数位数的要求时,一般要保留两位小数。

②引导学生自觉、灵活地进行简便计算(将“1.9÷0.045”转化为“3.8÷0.09”),并完成第(1)问。

③完成第(2)问:提出其他数学问题并解答。

【设计意图】练习设计注意了练习的针对性和层次性,注重了让学生通过练习内化求商的近似数的方法。同时对解决问题的技巧进行了适时点拨和指导,发展了学生思维的深刻性和灵活性。

(四)课堂小结,畅谈收获

这节课你学会了什么?有什么收获?

(五)作业练习,及时巩固

1.课堂作业:教材第36页练习八第1题。

2.课外作业:教材第36页练习八第5题。

数学五年级上册教学教案精选篇6

教学目标:

1、引导学生通过观察、思考、归纳、总结等方法,掌握简单的时间单位的换算。

2、引导学生从图片中获取有意义的数学信息,找出要解决的问题,通过独立思考、小组合作等方式解决问题,掌握解学问题的基本方法。

3、通过教学,使学生体验数学与生活的密切联系,在运用所学知识解决问题的过程中,体验数学学习的乐趣。

教学重点:

1、掌握简单的时间单位的换算。

2、建立计算经过时间的模型:终点时间-起点时间=经过的时间。

3、渗透解决问题的三个步骤:阅读与理解、分析与解答、回顾与反思。

教学难点:

建立计算经过时间的模型:终点时间—起点时间=经过的时间。

教学过程:

一、导

开学了,熊大和熊二从熊堡出发去学校,熊大用了2小时,熊二用了120分钟,熊大说它用的时间少,熊二说它的用时少,它俩谁也不甘示弱。同学们,请你们当裁判,它们俩究竟谁用的时间少,好吗?

二、学

(一)单位换算

1.从熊堡到学校,熊大熊二谁用的时间少?为什么2时=120分?你是怎么想的?

2.学生独立思考后,汇报:1时是60分,2时就是2个60分,也就是60+60=120分。

3.同学间相互说一说。

4.180秒=()分,你是怎么想的?

5.练一练:3分=()秒

600分=()时

你是怎么想的?你又是怎么算的?

先独立思考,然后与你的同学交流交流。

(二)时间计算

9月1日,小明背着书包上学去了!(课件出示)

三、析

1、观察你从中获得了哪些有意义的数学信息?(小明7时30分离家,7时45分到校)你能提出什么数学问题?(小明从家到学校用了多长时间?)

2.小明从家到学校用了多长时间?怎么解决这个问题呢?你有什么方法?先独立思考,然后与小组同学交流你的想法。

3.小组合作交流,教师巡视指导,收集信息。

4.学生汇报,课件出示

(1)直接数一数,7:30到7:45分针走了15分钟。

(2)7:30到7:45分针走了3个大格,是15分钟。

(3)都是7时多,直接用45-30算出用了15分钟。

5.小明从家到学校用了15分钟对吗?你是怎么想的?(7:30过15分钟就是7:45,15分钟是对的。)

6.写上答语。(小明从家到学校用了15分钟。)

7.你喜欢哪种方法?为什么?

8.整理解决问题的基本方法。我们是怎么解决这个问题的?谁来说说?师做整理板书:阅读与理解→分析与解答→回顾与反思。

四、练

1.填一填。

在○里填上>、<或=

9分○90秒 4时○24分 1分15秒○65秒 3时○200分 140秒○2分 1时30分○90秒

2.做一做。

小明去给外地打工的妈妈打电话,电话亭的营业时间,早上9:00开门,晚上8:00关门。小明8:40到达,他还要等多久呢?

3、总结:今天的学习,你有哪些收获?

4、作业:课本第7页第8题。

数学五年级上册教学教案精选篇7

教学目标:

1、 加深对时间单位的认识。

2、了解时间的知识在生活中的实际用途,会通过观察、数格子、计算来知道所经过的时间。

3、了解生活中处处有数学知识。

教学重点:

学会一些有关时间的计算。

教学准备:

教师准备多媒体课件。

教学过程:

一、复习旧知

1、时、分、秒进率

板书:1时=60分 1分=60秒

2、填空题

2 时=( )分   2 分=( )秒

180分=( )时   120秒=( )分

1时40分=( )分   6分=( )秒

3、填合适的时间单位

(1)一节课的时间是40( )。

(2)看一场电影要2( )。

(3)小东跑一100米要用16( )。

二、探究新知

1、小学作息时间表

多媒体课件展示“小学作息时间表”学生自读问题,依次解决问题

(1)上午第一节课是从几时几分到几时几分?这一节课上了多少时间?

你是怎么知道一节课的时间,你有什么方法?你会不会列算式。

(老师讲解列算式计算)

板书:8:50 – 8:10=40分

8 :5 0

-8 :1 0

4 0

答:这节课上了40分钟。

(2)反馈练习:学生板演,说说自己怎么想的。

下午第七节课上了多少时间?

(3)深入探究,10:50~11:30 第四节上了多少时间?

学生先试做,问在计算中发现有什么问题?

重点讲解分不够减,到时退一作60分。

(4)反馈练习:1.小明从家里出发去学校,路上经历了多长时间?先看钟表,再请列式计算。

让学生说出不同的方法,学生板演并订正错误。

三、巩固练习

1.王老师看一场电影时刻表如下,请问这场电影放映了多长时间?

2.王华上午在校3小时20分,下午在校2小时30分。他一天在学校多长时间?上午比下午多多少时间?

3.小明从家到学校要走15分钟,他每天要在7:40到学校,他应该在什么时候从家出发,才能准时到校?

四、全课小结

师:今天你学习了什么知识?还有什么不明白的地方吗?

36426