教育巴巴 > 小学教案 > 数学教案 > 五年级 >

五年级数学教案设计

时间: 沐钦 五年级

五年级数学教案设计怎么写?现代数学要求我们用数学的眼光来观察世界,用数学的语言来阐述世界。下面是小编为大家带来的五年级数学教案设计七篇,希望大家能够喜欢!

五年级数学教案设计

五年级数学教案设计【篇1】

教学目标

1、知识与技能

理解并熟记3的倍数的特征,能正确判断一个数是不是3的倍数,培养理解力和应用知识的能力。

2、过程与方法

经历自主实践、合作交流探究3的倍数的特征的过程,培养的探究能力和合作意识。

3、情感态度与价值观

感受数学知识探究的条理性,培养严谨的学习态度,体验合作的乐趣。

教学重难点

教学重点

3的倍数特征。

教学难点

探究3的倍数特征的过程。教学过程

教学过程

一、以旧引新,竞赛导入

1、请说出2的倍数的特征、5的倍数的特征。

2、下面各数哪些是2的倍数,哪些是5的倍数,哪些既是2的倍数又是5的倍数?

3、5、15、8、200、87、65、164、41、22

既是2的倍数又是5的倍数的数有什么特征?

3、你能说出几个3的倍数吗?上面这些数中,哪些是3的倍数。你能迅速判断出来吗?

4、比一比。请学生任意报数,学生用计算器算,老师用口算,判断它是不是3的倍数。看谁的数度快!

5、设疑导入:你们想知道其中的奥秘吗?这节课就来学习3的倍数的特征。我相信:通过这节课的探索大家也一定能准确迅速地判断出一个数是不是3的倍数。(揭示课题)

二、猜想探索,归纳验证

1、大胆猜想:猜一猜3的倍数有什么特征?

(1)交流猜想。(有的说个位上是3、6、9的数是3的倍数,有的同学举出反例加以否定)

(2)整理认识。只观察个位上的数不能确定它是不是3的倍数,那么3的倍数到底有什么特征呢?

2、观察探索:出示第10页表格。

(1)圈一圈。上表中哪些是3的倍数,把它们圈起来。

(2)议一议。观察3的倍数,你有什么发现?把你的发现与同桌交流一下。(学生交流)

(3)全班交流。横着看圈起的前10个数,个位上的数字有什么规律?十位上的数字呢?判断一个数是不是3的倍数,只看个位行吗?

(4)问题启发:

大家再仔细看一看,3的倍数在表中排列有什么规律?

从上往下看,每条斜线上的数有什么规律?(个位数字依次减1,十位数字依次加1)

个位数字减1,十位数字加1组成的数与原来的数有什么相同的地方?(和相等)

每条斜线的数,各位上数字之和分别是多少,它们有什么共同特征?(各位上数字之和都是3的倍数。)

3、归纳概括:现在你能自己的话概括3的倍数有什么特征吗?

3的倍数的特征:一个数各位上的数的和是3的倍数,这个数就是3的倍数。

4、验证结论

大家真了不起!自主探索发现了3的倍数的特征。但如果是三位数或更大的数,你们的发现还成立吗?请大家写几个更大的数试试看。

(1)尝试验证。(生写数,然后判断、交流、得出结论。)

(2)集体交流。

教师说一个数。如342,学生先用特征判断,再用计算器检验。

一个更大的数。4870599,学生先用特征判断,再用计算器检验。

5、巩固提高。

五年级数学教案设计【篇2】

教学目标 :

1、使学生通过观察、操作等活动认识正方体和正方体的面、棱、顶点以及棱长的含义;

2、掌握正方体的基本特征,体会正方体和长方体的联系与区别;

3、培养学生的观察、概括能力。 教学

教学重点:

掌握正方体的特征。

教学难点:

正方体与长方体的比较。

课前准备:

教法学法 实践法、讨论法

教学过程:

一、复习导入

1、昨天,我们学习了长方体。请大家回顾一下:长方体有哪些特征?

2、口答:说出每个图形的长、宽、高各是多少。

3、设疑:第4个图形的长、宽、高相等,说明:这样的物体叫作正方体。大家想不想研究它?这节课我们要研究它的有关知识。

(揭示课题:正方体的认识)

二、概括特征

1、以小组为单位发学具。

2、以小组为单位研究手中的正方体。建议:用看一看、摸一摸、数一数、量一量、比一比的方法来研究。

3、自主探究。让学生结合手中的实物进行探究,再让他们小组交流自己的发现。

4、汇报交流

(1)让生结合实物说说面有什么特点?你是怎样验证的?从中明确:正方体的6个面是完全相同的正方形。

(2)让学生说说棱有什么特点?你是怎样验证的?从中明确:正方体的12条棱长度都相等。

(3)让生说说有几个顶点?你是怎么验证的?

5、提问:谁能完整地说一说正方体有什么样的特征?

多指名几个同学说特征。

6、结合直观图小结:正方体6个面是完全相同的正方形,它有12

条棱,每条棱的长度都相等。它还有8个顶点。

7、提问:依据我们今天所学的知识想一想,生活中哪些物体的形状是正方体?

8、请同学们小组合作,运用手中的学具验证一下我们今天学习的正方体的特征。然后找代表说一说。完成表格。

三、观察比较,体会异同

1、提问:长方体和正方体有哪些相同点,有哪些不同点?

2、让学生结合长方体和正方体实物进行观察、归纳,再同桌交流观察的结果。

3、汇报交流。相同点是:都有6个面、12条棱、8个顶点。

4、根据比较结果,想一想正方体和长方体有什么关系?

不同点:长方体每个面都是长方形,特殊情况有两个相对的面是正方形,相对的面完全相同,正方体6个面都是完全相同的正方形;长方体相对的棱长度相等,正方体每条棱的长度都相等。

练习 完成P20做一做

总结 今天这堂课我们认识了正方体,你有哪些收获?还有什么疑问?

作业布置

板书设计 :

正方体的认识

6个面 (完全相同,都是正方形)

立体图形正方体 12条棱 (长度相等)

8个顶点

五年级数学教案设计【篇3】

一、学习目标

(一)学习内容

《义务教育教科书数学》(人教版)五年级下册第10页的例2。例2是探究3的倍数特征,教材仍然采用百数表,让学生先圈数,再观察、思考。

(二)核心能力

在探究3的倍数特征的过程中,学会从不同角度去观察和思考,进一步积累观察、猜想、验证、归纳的思维活动经验。

(三)学习目标

1.借助百数表,经历探究3的倍数特征的过程,理解3的倍数的特征,能正确判断一个数是不是3的倍数,并解决生活中的实际问题。

2.在探究3的倍数特征的过程中,学会从不同角度去观察和思考,发展合情推理的能力,积累数学思维活动经验。

(四)学习重点

探索3的倍数的特征。

(五)学习难点

归纳举证3的倍数的特征

(六)配套资源

百数表、计算器

二、教学设计

(一)课前设计

(1)回忆我们研究过的2.5倍数的特征是什么?并能给同学们解释是怎样探究出来的。

(2)自制一张百数表。

(二)课堂设计

1.复习引入

师:谁来给大家介绍一下,2.5的倍数特征是什么?我们是怎样研究出来的?

学生自由发言,重点引导学生回忆知识形成的过程。

小结:我们是利用百数表,先找数,然后观察、猜想,最后进行验证和归纳,得出了2.5倍数的特征。

师:这节课我们来研究“3的倍数的特征”。(板书课题)

【设计意图:通过复习2.5倍数的特征及探求的方法,唤醒学生的记忆,为探求3的倍数的特征做铺垫。】

2.问题探究

(1)找3的倍数

师:研究“3的倍数的特征”,你们准备怎样研究?

生自由发言。

师:你们准备借助百数表,利用研究2.5倍数特征的方法来研究3的倍数的特征,现在拿出你准备的百数表。同桌合作先找出3的倍数,然后观察圈出的数,看看有什么发现?

(2)全班交流、讨论

①发现问题

学生展示圈好的百数表。

师:说说你们的发现?

预设:只看个位不行。

师:为什么不行?

横着看:个位上的数0-9都有,竖着看:个位上的数也是0-9都有。

②分析问题

师:同学们发现,在百数表中(课件出示),横着、竖着观察3的倍数,只看个位上的数,没有规律可循。横着、竖着看,看不出规律,换个角度思考,我们还可以怎样看?只看个位不行,我们还可以看什么?

学生自由发言,引导学生斜着看。

师:大家认为除了横着、竖着看,我们还可以斜着看,现在请你斜着观察3的倍数,你又有什么新发现?

生独立观察、发现。

【设计意图:因为3的倍数的特征比较隐蔽,根据探究2、5倍数的特征的经验,学生发现不了规律。在学生实在没人看出规律时,教师再提示学生可以换一个角度去观察、去思考,接着重新去探索。】

③解决问题

师:把你的发现和根据发现引发的猜想,在小组内交流一下,并想办法来验证你们的猜想。(可以用计算器)

小组合作交流后全班汇报。

(3)归纳3的倍数的特征

师:你们的发现和猜想是什么?

小组汇报,引导学生评价补充。

引导小结:斜着观察发现,每一行数的个位与十位的和分别是3、6、9、12、15,它们都是3的倍数,各个数位上的和是3的倍数,这个数也是3的倍数。

师:这个猜想对不对呢?你们是怎么验证这个猜想呢?

生汇报验证的过程。

师:举什么样的例子既简单又有代表性?

举的例子包含有两位数、三位数、四位数……,多举几个

师:有没有同学发现反例的,各个数位上的和是3的倍数,但是这个数却不是3的倍数。

师:通过验证,你们得出的3的倍数特征是什么,谁再来说一说?

归纳小结:一个数各个数位上的和是3的倍数,这个数就是3的倍数。

【设计意图:经过引导,学生进行二次探索,发现、猜想、验证并归纳出3的倍数的特征,积累数学探究的活动经验。】

3.巩固练习

(1)课本第11页“练习二的第3题”

圈出3的倍数。

92 75 36 206 65 3051 779 99999

111 49 165 5988 655 131 2222 7203

(2)课本第10页“做一做”

(3)小明拿了5个圆片,小军拿个6个圆片,用他们拿的'圆片在数位表上摆数,谁拿的圆片摆出的数一定是3的倍数?谁拿的圆片摆出的数一定不是3的倍数?

请说明理由。

先独立完成,然后同桌合作操作验证。

4.全课总结

师:通过这节课的探究,我们获得了什么新知识?采用了什么样的研究方法?

在探究的过程中我们遇到了什么新问题?

小结:通过找数、观察、猜想、验证、归纳的研究方法,得出了3的倍数的特征。

师:为什么判断一个数是不是2或5的倍数,只要看个位数?而判断一个数是不是3的倍数,要看各位上数的和呢?请大家课下阅读第13页的“你知道吗”我们下节课进行交流。

五年级数学教案设计【篇4】

教材说明

综合应用“量一量找规律”是在完成了第四单元“简易方程”的教学之后安排的,旨在让学生综合运用所学的测量、统计和方程等方面的知识,通过动手操作揭示事物之间的内在规律,激发学生学习数学的兴趣,在培养学生实践能力的同时培养学生归纳推理的思维能力。

“量一量找规律”活动由以下四部分组成。

1.自制实验工具。

学生在充分理解方程意义的基础上,利用皮筋、木棒、盘子和细绳等材料小组合作制作一个简易秤。具体的做法是用细绳将盘子拴住做成一个托盘,然后用皮筋分别将托盘和木棒拴住。

2.收集实验数据。

学生利用自制的简易秤,依次称量1本、2本、3本等不同数量的课本,在统计表中记录称量的课本数和相应的皮筋总长度,并计算出每增加一本书皮筋伸长的长度。

3.分析数据。

引导学生观察统计表中的信息,并根据表中的数据绘制折线统计图,启发学生讨论从统计图表中能够获得哪些信息。

4.根据统计结果归纳推理。

根据统计图表的结果小组合作探究皮筋长度和课本数二者之间存在的规律及此规律适用的范围。

整个活动不仅使学生经历从收集实验数据、数据、制成统计图表到根据统计结果推理事物之间内在本质关系的全过程,而且促使学生进一步体验运用所学知识探究未知事物的乐趣。

教学建议

1. 这部分内容可用1课时进行教学。

2. 这个活动是一个操作性很强的活动,教学时可采用小组合作的形式放手让学生尝试,充分调动学生自主探索的积极性,教师只在关键处予以一定的引导和点拨。

3.在制作实验工具部分,教师可提前布置学生准备制作材料,并引导学生思考:对制作简易秤使用的橡皮筋和木棒有什么具体要求,启发学生选择弹性较好的橡皮筋,至少在称量6本数学书时不会超出弹性限度或发生永久变形;选择的木棒要尽量做到长度适中、粗细均匀,在称量时不会弯曲、变形。此外,拴盘子时要注意拴的角度和拴绳的长度,使托盘在称量时保持水平、稳定。当然,教师也可根据情况灵活安排,如可用弹簧来代替橡皮筋,在制作时用铁钩等代替木棒达到称量的目的。

4.在收集实验数据部分,教师可在实验之前要求学生先明确书本第77页中统计表中要求采集的信息,并引导学生讨论测量过程中应该注意的事项。例如,要明确测量的起点和终点;测量皮筋长度时要等橡皮筋和秤盘均处于稳定状态时再测;称量时要设法使木棒保持水平……这样得到的数据误差较小。具体实验的实施可采取小组分工合作的形式。

5.在分析数据部分,教师根据统计表绘制出折线统计图,引导学生仔细观察统计图表,想一想统计图表呈现的特点,并讨论它们传达出的信息。然后,对应统计图表,请小组同学互相说一说:“如果要称量7本书,皮筋会伸长多少?8本呢?10本呢?”

6.在根据统计结果归纳推理部分,老师引导学生思考皮筋长度和课本数二者之间存在的规律,向学生初步渗透函数的。如果有的小组实验数据与理论上y=a+bx(a代表皮筋原长,b代表每增加一本书皮筋伸张的长度)的关系存在一定误差,老师可引导学生分析原因,也可向学生客观说明。

7.在学生出二者之间存在的规律后,老师还可进一步启发学生思考“如果要称量的课本越来越多的话,皮筋会发生什么变化”,帮助学生理解上述二者的关系均是建立在皮筋的弹性限度之内的,反之,二者的关系不存在。

五年级数学教案设计【篇5】

教学目标

1.理解和掌握循环小数的概念.

2.掌握循环小数的计算方法.

教学重点

理解和掌握循环小数等概念.

教学难点

理解和掌握循环小数等概念.

教学过程

一、铺垫孕伏

(一)口算

0.8times;0.5= 4times;0.25= 1.6+0.38=

0.15divide;0.5= 1-0.75= 0.48+0.03=

(二)计算

21divide;3= 15divide;3= 12divide;3= 10divide;3=

教师提问:通过计算,你发现了什么?

二、探究新知

(一)教学例7

例7 10divide;3

1.列竖式计算

教师提问:你发现了什么?为什么?(教师用两种颜色的笔分别将商3和余数1描一遍)

使学生明确:因为余数重复出现1,所以商就重复出现3,总也除不尽.

所以10divide;3=3.33……

(二)教学例 8

例8 计算58.6divide;11

1.学生独立计算

2.因为余数重复出现数字3和8,所以商就重复出现数字2和7,

所以58.6divide;11=5.32727……

3.观察比较 10divide;3=3.33…… 58.6divide;11=5.32727……

教师提问:你有什么发现?

(小数部分有的数字重复出现;有一个数字、有两个数字重复出现;)

4.一个小数,从小数部分的某一位起,一个数字或者几个数字依次不断地重复出现,这样的小数叫做循环小数.

教师板书:循环小数.像3.33……和5.32727……是循环小数.

5.简便写法

3.33……可以写作 ;

5.32727……可以写作

6.练习

把下面各数中的循环小数用括起来

1.5353…… 0.19292…… 8.4666……

(三)教学例9

例9 一辆汽车的油箱里原来有130千克汽油,行驶一段路程以后用去了 .大约用去了多少千克汽油?(保留两位小数)

1.学生独立列式计算

130divide;6=21.666……

asymp;21.67(十克)

答:小汽车大约装21.67千克汽油.

2.集体订正

重点强调:保留两位小数,只要除到小数点后第三位即可.

3.练习

计算下面各题,除不尽的先用循环小数表示所得的商,再保留两位小数写出它的近似值.

28divide;18 2.29divide;1.1 153divide;7.2

(四)讨论:两个数相除,如果不能得到整数商,会有几种情况出现?

1.除到小数部分的某一位时,不再有余数,商里小数部分的位数是有限的.也就是被除数能够被除数除尽.如3divide;2=1.5.小数部分的位数是有限的小数,叫做有限小数.

2.除到小数部分后,余数重复出现,商也不断重复出现,商里小数部分的位数是无限的.如10divide;3=3.33……,小数部分的位数是无限的小数,叫做无限小数,循环小数是无限小数.

三、课堂练习

(一)计算下面各题,哪些商是循环小数?

5.7divide;9 14.2divide;11 5divide;8 10divide;7

(二)下面的循环小数,各保留三位小数写出它们的近似值.

1.29090…… 0.0183838……

0.4444…… 7.275275……

四、布置作业

(一)计算下面各题,除不尽的用循环小数表示商,再保留两位小数写出它们的近似值.

9.4divide;6 38.2divide;2.7 204divide;6.6 6.64divide;3.3

(二)一列火车从南京到上海运行305千米,用了3.5小时,平均每小时行多少千米?(保留两位小数)

五年级数学教案设计【篇6】

一、教学目标:掌握有括号的小数四则混合运算的运算顺序。

二、教学重点:掌握有括号的小数四则混合运算的运算顺序。

难点:弄清有括号的运算顺序。

三、教学准备:多媒体。

四、教学过程:

A、准备题:

19 ×(935-875÷ 25) [51÷(120 -103)+24]×64

1、先让学生说一说运算顺序。

2、让学生独立完成。校对。

B、导入新课:

有括号的小数四则混合运算和有括号的整数四则混合运算 相同。今天我们就来学习有括号的小数四则混合运算。

C、讲授新课:

例 3 :4.38 ÷ (36.94 + 34.3×0.2)

提问:1、在有括号的算式里要先算什么?

2、先算什么,再算什么?

3、学生独立完成 。校对。

4.38 ÷ (36.94 + 34.3×0.2)

= 4.38 ÷(36.94 + 6.86)

= 4.38 ÷ 43.8

= 0.1

例 4 : [(5.84 - 3.9 ) ÷0.4 + 0.15] ×0.92

提问:1、先算什么,再算什么?

2、独立完成。校对。

3、做错的说一说错的原因。

[(5.84 - 3.9 ) ÷0.4 + 0.15] ×0.92

= [1.94 ÷0.4 + 0.15] ×0.92

= [4.85 + 0.15] ×0.92

= 5 ×0.92

= 4.6

D、巩固练习:

1.8×(1.4 - 0.26 ÷2) [7.6 - 5 ×(0.3 + 0.9)]÷10

1、先说一说运算顺序,再进行计算。

2、抽两名学生板演。

E、课堂小结:

在既有中括号,又小括号应该先算什么,再什么?

F、布置作业:

P - 52 第一题、第二题和第三题。

课堂作业本

练习 十一

一、教学目标:1、掌握小数四则混合运算的运算顺序。

2、掌握方程的解法。

3、学会应用题的分析方法。

二、教学重点:掌握小数四则混合运算的运算顺序。

难点:学会应用题的分析方法。

三、教学准备:卡片和多媒体。

四、教学过程:

A、口算训练:

6 + 4.4 = 0.01×80 = 7.4-0.9 = 6.3÷0.63 =

2.3×5 = 0.4×0.5 = 0.2÷0.04 = 5÷0.02=

18.6-6 = 5.4 + 6 = 9-1.35= 0.3×0.05 =

1、以小组开火车形式看口算报得数。

2、错的说一说错的原因。

B、比较训练:

8 -0.8 ÷5 + 0.24 ×9

8 -(0.8 ÷5 + 0.24) ×9

[8 -(0.8 ÷5 + 0.24)] ×9

1、说一说每题的计算顺序。

2、括号有什么作用?

3、抽三名学生板演,教师巡视,帮助学困生。

4、校对,错的说出错在哪一步?

C、求未知数:

7.2 + X = 15.4 X - 0.8 = 3.6

1、抽两名学生板演,教师巡视。

2、说一说每题求X的依据什么?

D、应用题:

P - 53 第五题:

1、说一说解答应用题的一般步骤。

2、先让学生分析数量关系。两人相互讨论。

3、让学生独立完成,教师巡视。

4、 42 ÷1.5 表示什么? 42 + 42 ÷1.5 表示什么?

E、布置作业:

P - 53 第三题。

《课堂作业本》

练习 十一 (二)

一、教学目标:1、运用加法和乘法的运算定律进行简便运算。

2、掌握四则混合运算的运算顺序。

3、学会分析解答应用题的步骤。

二、教学重点:掌握四则混合运算的运算顺序。

难点:学会分析解答应用题的步骤。

三、教学准备:多媒体

四、教学过程:

A、简便运算:

0.27 ×99 + 0.27 0.25×1.25×40×8

(0.25 + 2.5 + 25)×0.4 8.4 + 7.66 + 2.34 +1.6

1、抽四名学生板演,教师巡视。

2、说一说错的原因。

B、四则混合计算:

8.4 -8.4×1.5÷18

(1 - 0.99)×(38.6- 8.6)

[0.05 ×(83 + 117)]÷(9.6-5.6)

1、先说一说每题的运算顺序。

2、抽三名学生板演,教师巡视。

3、校对,错的订正。

C、文字题:

2.5 乘以 6.6与1.4的和,积是多少?

1、求什么?积是哪两个数相乘?

2、所以我们要先求什么?

3、列式计算。

D、应用题讲解:

P - 55 第十二题:

1、要求平均每天的营业收入四月份比三月份多多少元?我们 必须知道哪两个条件?

2、四月份每天怎么求?三月份每天怎么求?

3、四月份为什么要除以30,而三月份要除以31呢?

E、课堂小结:

今天我们练习了哪些内容?哪些方面还掌握的不够呢?

F、拓展题:

先让学生讨论完成。

G、布置作业:

《课堂作业本》

五年级数学教案设计【篇7】

教学目标:使学生掌握分数与除法之间的关系,并能进行简单的应用;培养学生

动手操作的能力和抽象,概括,归纳的能力.

教学重点:分数的数感培养,以及与除法的联系.

教学难点:抽象思维的培养.

教学过程:

一,铺垫复习,导入新知 [课件1]

1,提问:A,7/8是什么数 它表示什么

B,7÷8是什么运算 它又表示什么

C,你发现7/8和7÷8之间有联系吗

2,揭示课题.

述:它们之间究竟有怎样的关系呢 这节课我们就来研究"分数与除法的关系".

板书课题:分数与除法的关系

二,探索新知,发展智能

1,教学P90 .例2:把1米长的钢管平均截成3段,每段长多少

提问:A,试一试,你有办法解决这个问题吗

板书:用除法计算:1÷3=0.333……(米)

用分数表示:根据分数的意义,把1米平均分成3份,每份是1米的1/3,就

是1/3米.

B,这两种解法有什么联系吗

(从上面的解法中可以看出,它们表示的是同一段钢管的长度,所以1÷3和 1/3是相等的关系.)

板书: 1÷3= 1/3

C,从这个等式中,我们发现:当1÷3所得的商除不尽时,可以用什么数来

表示 也就是说整数除法的商也可以用谁来表示

2,教学P90 .例3: 把3块饼平均分给4个孩子,每个孩子分得多少块 [课件3]

(1)分析:A,想想:若是把1块饼平均分给4个孩子,每个孩子分得多少 怎么列式

B,同理,把3块饼平均分给4个孩子,每个孩子分得多少 怎么列式 3÷4的商能不能用分数来表示呢

板书: 3÷4= 3/4

(2)操作检验(分组进行)

① 把3个同样大小的圆看作3块饼,分一分,看每个孩子究竟能分得多少块饼

② 反馈分法.

提问:A,请介绍一下你们是怎么分的

(第一种分法:把3块饼一块一块地分,每个孩子分得每个饼的1/4,共得3个1/4 块,也就是3/4块.)

(第二种分法:把三块饼叠在一起分,每个孩子分得3块饼1/4的 ,拼起来相当于一块饼的3/4 ,也就是3/4 块.)

B,比较这两种分法,哪种简便些

※ 把5块饼平均分给8个孩子,每个孩子分得多少 说一说自己的分法和想法.

3,小结提问:A,观察上面的学习,你获得了哪些知识

板书: 被除数 ÷ 除数 = 除数 / 被除数

B,你能举几个用分数表示整数除法的商的例子吗

C,能不能用一个含有字母算式来表示所有的例子

板书: a÷b=b/a (b≠0)

D,b为什么不能等于0

4, 看书P91 深化.

反馈:说一说分数和除法之间和什么联系 又有什么区别

板书:分数是一个数,除法是一种运算.

三,巩固练习 [课件5]

1,用分数表示下面各式的商.

5÷8 24÷25 16÷49 7÷13 9÷9 c÷d

2,口算.

7÷13=( )÷9= 1/2=( )÷( ) 8/13=( )÷( )

3, 7/10表示把单位"1"平均分成( )份,表示这样的( )份的数.1÷21表示两个数( ),还可以表示把( )平均分成( )份,表示这样的一份的数.

四,全课小结

当两个自然数相除不能整除时,它门的商可以用分数表示,由于除法是一种运算,而分数是一种数,因此,我们只能说被除数相当于分数的分子,除数相当于分数的分母.故此,分数与除法既有联系,又有区别.

在整数除法中零不能作除数,那么,分数的分母也不能是零.

五,家作

P93 .1,2,3

板书设计: 分数与除法的关系

例2:1÷3=0.333……(米)=1/3(米) 例3:3÷4= 3/4

被除数 ÷ 除数 = 除数 / 被除数

a÷b=b/a (b≠0)

分数是一个数,除法是一种运算

32956