教育巴巴 > 小学教案 > 数学教案 > 五年级 >

五年级数学学生教案

时间: 沐钦 五年级

五年级数学学生教案怎么写?如果你家宝贝经常犯基础错误如算错、写错、抄错,一定要追根溯源到最基本的加减乘除上。下面是小编为大家带来的五年级数学学生教案七篇,希望大家能够喜欢!

五年级数学学生教案

五年级数学学生教案(篇1)

教学目标:

1.使学生在现实情境中了解负数产生的背景,初步认识负数,知道正数和负数的读写方法会用正,负数记载相反量。知道0既不足正数,也不足负数,负数都小于0。

2.使学生初步体验数学与日常生活的密切联系,进一步激发学习数学的兴趣。

3.在联想、概括,推演中,体会数学的丰富、联系以及其生活中的应用价值,渗透进行对立统一、联系发展等最朴素的哲学思想教育。

教学重点:理解负数的意义,初步建立负数的概念。

教学难点:理解,正数、负数和0之间的关系。

教学过程:

一、从“生活事例”引入——了解负数的来源

1.同学们,不知不觉就到了金秋时节了(课件呈现美丽的秋景图片),大家觉得我们苏州这两天的天气怎么样?(学生回答后,课件呈现苏州天气预报、温度计图)这个温度计上显示的是昨天的最高气温,你能看出昨天的最高气温是多少吗?

(学生汇报过程小,引导学生了解温度计上一般有左右两行刻度以及左右两边刻度名称,左边代表摄氏度,通常用字母℃表示,一大格表示两度)

2.据科学研究,气温在18—24℃时,人体感觉最舒服。昨天达到28℃,我们就感觉热了。猜想:从现在往后,温度计上的红色酒精柱会怎样变化呢?

(设计意图:气温变化是学生生活中每天都会面对和感觉到的自然话题,将此作为课堂教学的开始,自然,贴切,能够吸引学生的广泛参与、考虑到学生对温度计的认识井不是非常熟悉,先单独安排一个看温度计的插曲,为后面新知教学做好了铺垫)

二、由“相反关系”展开——理解负数的意义

(一)教学例l,初步认识负数。

1.老师也是一个非常关注大气变化的人,几乎每天都要看中央电视台的天气预报。有一次我记录了三个城市的最低气温。第一个是东方大都市上海(出示温度计图),你能从温度计上面看出当天上海的最低气温吗?

2.第二个城市是(出示温度计图),你能从温度计上面看出南京的最低气温吗?这个温度比上海的气温怎样?

3.第三个城市是我们伟大祖国的首都北京。根据你的生活经验,北京的气温通常要比上海和南京怎样?学生提出猜想后,出示温度汁图,让学牛说出北京气温”零下4℃”。

4.刚才二个城市的最低气温中,非常巧,南京正好是0摄氏度。而上海超过了0摄氏度,是零上4摄氏度;北京却低于0摄氏度,是零下4摄氏度。这是一组相反的量。大家能想出巧妙的方法来记录这两个相反的气温吗?

5.学生讨论交流自己的设想,老师选择性板书:+4℃或4℃,-4℃等,并讲解负号,正号以及它们的读写。

6.巩固练习。

(1)选择合适的数表示各地的气温:

当天我还记下了几个城市和地区的最低气温,(分别出示西宁、哈尔滨、香港等城市温度计图)你能用这样的方法分别写出它们的最低气温吗?

(2)小小气象记录员。

我们一起来当气象记录员,一边听天气预报,一边记录气温。课件演示:赤道零上40摄氏度,北极零下26摄氏度,南极零下40摄氏度。

(设计意图:在引入负数这一环节,顺接着课始“看温度计读气温”这一问题情景,从祖国三大城市的气温由高渐低相继展开,教学流畅,衔接自然。而“零上4摄氏度”和“零下4摄氏度”这两个生活中常见的相反温度用怎样的数可以表达并区分?这一问题不仅让学生感受到过去所学的数在表达相反意义的量时的局限性,产生学习新数的需求,而且促使他们借助生活经验联想到在“4”这个数前添加不同的符号表达相反意义的量的方法)

(二)教学例2,深入理解负数。

1.(显示珠穆朗玛峰图)谁知道它有多高吗?(8844米)这个高度是从哪儿到上顶的距离呢?

(学生回答后,在添加8844米前面添加”海拔”,并在图上添加一条海平面的水平虚线)

2.世界上也不是每个地方都比海平面高的,比如,我国的第五大盆地——吐鲁番盆地,就低于海平面155米(接在珠穆朗玛峰图旁边出示盆地图)。

大家能从刚才表示气温的方法受到启发,也用—种比较科学的方法来表示这两个海拔高度呢?(板书:+8844米-155米)

3.模仿练习。

课本第6页“练习一”第1,2题。

4.小结:通过刚才的研究,我们看到,在表示气温时,以0℃为界,高于0℃时用正数表示,低于0℃时用负数表示;在表示海拔高度时,以海平面为界,高于海平面用正数表示,低于海平面用负数表示。

(设计意图:用正负数来表示海拔高度,是学生对相反的量的再一次感知。由于前面有对气温认识的基础,所以本环节力求利用前面学习中获得的用正负数表示气温的经验和范式,在突出“以海平面为界”这一基准后,就让学生尝试解决。学生在先前经验的作用下,容易想到“高于海平面为正、低于海平面为负”的计数规则。在深层次上把握了负数产生的背景和计数的要领与方法)

三、以“比较反思”提升——深化概念的内涵

1.我们用这些数分别表示零上和零下的温度以及海平面以上和海平面以下的高度。(课件同时呈现:温度计和海拔高度图,其中0℃和海平面用红色线标出)

2.观察这些数(课件出示),你能把它们分类?按什么分?分成几类?小组讨论。小结:像+4,40、+8844这样的数都是正数,像-4,-7,-11,-155这样的数都是负数。

3.讨论:0属于正数或负数呢?(指导学生借助网络在设置的讨论区内发表意见)

引导学生辨析:从温度计上观察,0摄氏度以上的数都是正数,0摄氏度以下的数都是负数。海平面以上的数都是正数,海平面以下的数都是负数。

教师借助课件观察画有箭头的轩线(即数轴),认识到:0是下数和负数的分界线,0既不是正数也不是负数。正数大于0,负数小于0。

4.练习-完成第3页“练…—练”第l题(在原题中增加0)。

提问:

(1)0为什么不写?(0既不是正数,也不是负数)

(2)观察这些正数,你发现了什么?

(我们以前学过的除0以外的数都是正数)

5.出示“你知道吗?——中国是最早使用负数的国家”。(学生自由浏览网上资源)

(设计意图:本课是学生初次认识负数,为了让学生对负数的内涵与外延有完整的认识,这里将温度计、海拔高度图同时出示,让学生直观地感受零度刻度线、海平面是分界点。让学生很好地借助直观情景来理解接纳正数,负数与0三者间的关系。同时在习题中注意让学生体会过去已学过的数(除0外)都是正数,以帮助学生沟通新旧知识的内在联系)

四、用“多层练习”巩固——拓展负数的的外延

1.基本练习。

每人写出5个正数和5个负数,并进行交流:读出所写的数,并判断写的是否正确。

2.对比练习。

选择合适的结果填在括号内:

2007年,我国发射成功的嫦娥卫星在太空中向阳面的温度为()以上,而背阳面却低于(),但通过隔热和控制,卫星舱内的温度始终保持在(),保证了卫星能够正常开展探测工作。

①21℃②100℃③-100℃

3.应用练习。

(1)“生活中的负数”信息发布会。

说一说:生活中还有哪些情况也可以用正数或负数来表示?

随后课件配合出示有关图片。

(2)小结:像零摄氏度以上与零摄氏度以下,海平面以上和海平面以下,地面以上和地面以下,存入和取出,比赛的得分和失分,股票的上涨和下跌等等都是相反意义的量,都可以用正负数来表示。

4.拓展延伸。

调查自己家一个月的收入、支出情况,并作好记录,记录后对数据进行分析,把自己的感受与家人说一说,用数学日记记下自己的感受及开支建议。

五年级数学学生教案(篇2)

教学内容:观察物体

教学目标:

1.让学生经历观察的过程,认识到从不同的位置观察物体,所看到的形状是不同的。能辨认从正面、左面、上面观察到的简单物体的形状。

2.培养学生从不同角度观察,分析事物的能力。

3.培养学生构建简单的空间想象力。

重点:帮助学生构建初步的空间想象力。

难点:帮助学生构建初步的空间想象力。

教学过程:

一、谜语导入

请同学们猜谜语:“左一片、右一片,摸得着,看不见,是什么呢?”(耳朵)为什么能看见别人的耳朵,却看不见自己的耳朵呢?因为我们观察的角度不一样,那么今天我们就一起来进一步研究观察物体(板书)

二、合作探究

(一)整体观察

1.教师将一个对面涂有相同颜色的长方体举起静止不动,叫学生观察并提问:

你观察到的正方体是什么样的?

在你的位置上观察,你看到了哪几个面?

2.学生汇报交流。

学生自由走动,观察。汇报交流。

3.解释应用

教师出示两个正方体的立体图,一个有虚线,另一个没有。

提问:谁能用刚学到的知识解释一下正方体为什么这样画?

学生解释说明。

(二)分别从三个面进行观察(出示例1)

1.教师提问:我们分别从几个不同的方向去观察这个图形,看看它的正面、左面以及上面分别是什么形状的图形,把它们分别划出来。

学生离开座位自由观察。

2.小组之间相互交流,然后全班交流,学生以组为单位在投影以上展示交流。

总结学生的发言:从不同的方向观察,所看到的形状是不一样的。

三、拓展应用

1.做教科书例2

2.智力游戏:两个同学为一组做游戏,一个同学画,另一个同学猜,负责猜的同学要想办法通过你提问的问题确定这个物体是什么,猜完后,在把物体拿出来验证一下,看是否猜对了。

学生玩游戏,教师指导。

四、总结

本节课你学会了什么?

五、作业布置

兴趣探索,根据以下几幅图找出1的对面是几,2的对面是几,3的对面是几。

1.不同角度观察一个物体,看到的面都是两个或三个相邻的面,不可能一次看到长方体或正方体相对的面。

2.从一个面看到物体的形状,可以有多种不同的摆放方式。

3.知道从两个面看到的物体的形状,可以确定小立方体的个数范围。

五年级数学学生教案(篇3)

学习内容:

人教版小学数学五年级下册第21页第8题、第22页。

学习目标:

1.通过综合练习,我能熟练掌握2、5、3的倍数的特征。

2.我能运用2、5、3的倍数的特征解决问题。

学习重点:

熟练掌握2、5、3的倍数的特征。

学习难点:

运用2、5、3的倍数的特征解决综合问题。

教学过程:

一、导入新课

二、检查独学

1.互动分享独学部分的完成情况。

2.质疑探讨。

三、合作探究

1.小组合作,完成课本第21页第8题。

(1)3个3的倍数的偶数________________

(2)3个5的倍数的奇数________________

讨论:你能说出3个既是3的倍数又是5的倍数的偶数或奇数吗?

2.自主完成第22页第10题,然后与同伴交流。

3.小组合作,完成第11题,然后组内代表汇报。

4.小组交流“生活中的数学”。

五年级数学学生教案(篇4)

一、学习目标

(一)学习内容

《义务教育教科书数学》(人教版)五年级下册第10页的例2。例2是探究3的倍数特征,教材仍然采用百数表,让学生先圈数,再观察、思考。

(二)核心能力

在探究3的倍数特征的过程中,学会从不同角度去观察和思考,进一步积累观察、猜想、验证、归纳的思维活动经验。

(三)学习目标

1.借助百数表,经历探究3的倍数特征的过程,理解3的倍数的特征,能正确判断一个数是不是3的倍数,并解决生活中的实际问题。

2.在探究3的倍数特征的过程中,学会从不同角度去观察和思考,发展合情推理的能力,积累数学思维活动经验。

(四)学习重点

探索3的倍数的特征。

(五)学习难点

归纳举证3的倍数的特征

(六)配套资源

百数表、计算器

二、教学设计

(一)课前设计

(1)回忆我们研究过的2、5倍数的特征是什么?并能给同学们解释是怎样探究出来的。

(2)自制一张百数表。

(二)课堂设计

1.复习引入

师:谁来给大家介绍一下,2、5的倍数特征是什么?我们是怎样研究出来的?

学生自由发言,重点引导学生回忆知识形成的过程。

小结:我们是利用百数表,先找数,然后观察、猜想,最后进行验证和归纳,得出了2、5倍数的特征。

师:这节课我们来研究“3的倍数的特征”。(板书课题)

设计意图:通过复习2、5倍数的特征及探求的方法,唤醒学生的记忆,为探求3的倍数的特征做铺垫。

2.问题探究

(1)找3的倍数

师:研究“3的倍数的特征”,你们准备怎样研究?

生自由发言。

师:你们准备借助百数表,利用研究2、5倍数特征的方法来研究3的倍数的特征,现在拿出你准备的百数表。同桌合作先找出3的倍数,然后观察圈出的数,看看有什么发现?

(2)全班交流、讨论

①发现问题

学生展示圈好的百数表。

师:说说你们的发现?

预设:只看个位不行。

师:为什么不行?

横着看:个位上的数0-9都有,竖着看:个位上的数也是0-9都有。

②分析问题

师:同学们发现,在百数表中(课件出示),横着、竖着观察3的倍数,只看个位上的数,没有规律可循。横着、竖着看,看不出规律,换个角度思考,我们还可以怎样看?只看个位不行,我们还可以看什么?

学生自由发言,引导学生斜着看。

师:大家认为除了横着、竖着看,我们还可以斜着看,现在请你斜着观察3的倍数,你又有什么新发现?

生独立观察、发现。

设计意图:因为3的倍数的特征比较隐蔽,根据探究2、5倍数的特征的经验,学生发现不了规律。在学生实在没人看出规律时,教师再提示学生可以换一个角度去观察、去思考,接着重新去探索。

③解决问题

师:把你的发现和根据发现引发的猜想,在小组内交流一下,并想办法来验证你们的猜想。(可以用计算器)

小组合作交流后全班汇报。

(3)归纳3的倍数的特征

师:你们的发现和猜想是什么?

小组汇报,引导学生评价补充。

引导小结:斜着观察发现,每一行数的个位与十位的和分别是3、6、9、12、15,它们都是3的倍数,各个数位上的和是3的倍数,这个数也是3的倍数。

师:这个猜想对不对呢?你们是怎么验证这个猜想呢?

生汇报验证的过程。

师:举什么样的例子既简单又有代表性?

举的例子包含有两位数、三位数、四位数……,多举几个

师:有没有同学发现反例的,各个数位上的和是3的倍数,但是这个数却不是3的倍数。

师:通过验证,你们得出的3的倍数特征是什么,谁再来说一说?

归纳小结:一个数各个数位上的和是3的倍数,这个数就是3的倍数。

设计意图:经过引导,学生进行二次探索,发现、猜想、验证并归纳出3的倍数的特征,积累数学探究的活动经验。

3.巩固练习

(1)课本第11页“练习二的第3题”

圈出3的倍数。

9、27、53、620、665、3051、7799、9999

111、491、655、988、6551、3122、227、203

(2)课本第10页“做一做”

(3)小明拿了5个圆片,小军拿个6个圆片,用他们拿的圆片在数位表上摆数,谁拿的圆片摆出的数一定是3的倍数?谁拿的圆片摆出的数一定不是3的倍数?

请说明理由。

先独立完成,然后同桌合作操作验证。

4.全课总结

师:通过这节课的探究,我们获得了什么新知识?采用了什么样的研究方法?

在探究的过程中我们遇到了什么新问题?

小结:通过找数、观察、猜想、验证、归纳的研究方法,得出了3的倍数的特征。

师:为什么判断一个数是不是2或5的倍数,只要看个位数?而判断一个数是不是3的倍数,要看各位上数的和呢?请大家课下阅读第13页的“你知道吗”我们下节课进行交流。

五年级数学学生教案(篇5)

课型:

新授

教学内容:

教材P7及练习二第3、5、6、7、10题。

教学目标:

知识与技能:

使学生进一步掌握小数乘法的计算法则,并能正确地运用这一知识进行计算。

过程与方法:

理解倍数可以是整数,也可以是小数,学会解答有关倍数是小数的实际问题。

情感、态度与价值观:

养成认真计算与及时检验的学习习惯。

教学重点:

运用小数乘法的计算法则正确计算小数乘法。

教学难点:

正确点出积的小数点;初步理解和掌握:当乘数比1小时,积都比被乘数小;当乘数比1大时,积都比被乘数大。

教学方法:

观察、分析、比较。

教学准备:

多媒体。

教学过程:

一、复习准备

1.口算。0.9×6 7×0.08 1.87×O

0.24×2 1.4×0.3 0.12×6 1.6×5 4×0.25 60×0.5

指名学生口算,然后集体订正。

2.思考并回答。(1)做小数乘法时,怎样确定积的小数位数?

(2)如果积的小数位数不够,你知道该怎么办吗?如:0.02×0.4。

3.揭示课题:这节课我们继续学习小数乘法。(板书课题)

二、情景引入

1.教学例5。师:同学们,你们见过鸵鸟吗?知道鸵鸟是一种跑得比较快的动物吗?有一只鸵鸟正在帮助2个小朋友解难呢!我们一起去看看吧!鸵鸟正驮着小朋友向前奔跑,后面一只凶猛的非洲野狗紧紧追上来了!小朋友说:“哎呀,它追上来了!”鸵鸟说:“别担心,它追不上我!”

学生观察情境图,提取信息:

所求问题:(鸵鸟的最高速度是多少千米/小时)

所需条件:(非洲野狗的最高速度是56千米/小时,鸵鸟的最高速度是非洲野狗的1.3倍)

思路分析:

(1)引导学生理解小数倍数的含义:谁来说一说“鸵鸟的最高速度是非洲野狗的1.3倍”是什么意思?(鸵鸟的最高速度是非洲野狗的1.3倍,表示鸵鸟的速度除了有一个非洲野狗那么快,还要快。)

(2)追问提高学习新知的兴趣:

①非洲野狗能追上他们吗?(非洲野狗追不上鸵鸟。)

②“鸵鸟的最高速度是多少?”该怎样列式计算呢?(生回答:56×1.3)

③为什么这样列式?(求56的1.3倍是多少,所以用乘法。)

(3)通过学生的回答引导学生小结:倍数关系也可以是比1大的小数。

让学生独立计算出鸵鸟的最高速度,并集体订正。

(4)指导学生用估算进行验算:请同学们看这个算式及结果,你认为对吗?你是怎么验证的?(板书验算,完善课题)

学生可能会有以下几种验算的方法:

①用原式再计算一遍。

②把这个算式的因数交换一下位置,再算一遍。就可知道对与否。

③观察法:观察小数位数或第二个因数比1大还是比1小。

④用计算器进行验算。

师小结:不管用哪一种方法来检验都可以,根据自己的情况,喜欢用那一种就用那一种来验算。

(5)师:请同学们打开书,看一看书上的小朋友算得对吗?为什么?

生:因为两个因数中,56是整数,因数1.3中只有1个小数,所以积中小数点的位置点错了,应该点在2与8之间,即积应为72.8。

师:很好!在计算小数乘法时,每个小朋友都要养成认真做题、仔细检查的好习惯。

师:通过刚才同学们的计算、验算得出鸵鸟的最高速度是72.8千米/小时,比起非洲野狗的速度怎么样?非洲野狗能追上鸵鸟吗?说明刚才我们的想法怎样?(学生小组讨论交流,由代表发言,教师点评。)

2.看乘数,比较积和被乘数的大小。刚才有同学提到56×1.3式子中第二个因数比l大,所以积就比被乘数大,现在我们来研究一下这个问题。

三、巩固练习

1.完成教材第7页“做一做”。先让学生观察两道算式中的因数和积,进行判断,说出理由;再让学生独立计算,并用自己喜欢的验算方法进行验算。最后集体订正。

2.练习二第3题。先让学生独立判断。集体订正时,让学生说明道理,明白每一小题错在什么地方。

四、课堂小结。当乘数比1小时,积比被乘数小;当乘数比1大时,积比被乘数大。我们可以根据它们的这种关系初步判断小数乘法的正误。

作业:5、6、7

课外作业:教材第9页练习二第10题。

板书设计:

求一个数的小数倍数是多少及验算

五年级数学学生教案(篇6)

【教学目标】

1、使学生能理解质数、合数的意义,会正确判断一个数是质数还是合数。

2、知道100以内的质数,熟悉20以内的质数。

3、培养学生自主探索、独立思考、合作交流的能力。

4、让学生在学习活动中体验到学习数学的乐趣,培养学习数学的兴趣。

【重点难点】

质数、合数的意义。

教学过程:

【复习导入】

1、什么叫因数?

2、自然数分几类? (奇数和偶数)

教师:自然数还有一种新的分类方法,就是按一个数的因数个数来分,今天这节课我们就来学习这种分类方法。

【新课讲授】

1、学习质数、合数的概念。

(1)写出1 ~20各数的因数。(学生动手完成)

点四位学生上黑板写,教师注意指导。

(2)根据写出的因数的个数进行分类。

(3)教学质数和合数概念。

针对表格提问:什么数只有两个因数,这两个因数一定是什么数?

教师:只有1和它本身两个因数,这样的数叫做质数(或素数)。

如果一个数,除了1和它本身还有别的因数,这样的数叫做合数。(板书)

2、教学质数和合数的判断。

判断下列各数中哪些是质数,哪些是合数。

17 22 29 35 37 87 93 96

教师引导学生应该怎样去判断一个数是质数还是合数(根据因数的个数来判断)

质数:17 29 37

合数:22 35 87 93 96

3、出示课本第14页例题1。

找出100以内的质数,做一个质数表。

(1)提问:如何很快地制作一张100以内的质数表?

(2)汇报:

①根据质数的概念逐个判断。

②用筛选法排除。

③注意1既不是质数,也不是合数。

五年级数学学生教案(篇7)

教学内容

《除法估算》选自苏教版九年制义务教育小学教科书数学第九册P51的内容。

教学思路

小学数学应该与现实生活相联系,使学生的学习更具有现实性、趣味性和挑战性。“估算”在实际生活中有着广泛的应用,与其他知识也密不可分。因而,在教学“除法估算”这一部分内容时,设计围绕从学生刚经历的秋游活动来展开,让学生独立思考以发现估算的题材、自主探索以感知估算的价值、小组合作来交流估算的策略、尝试解题来总结估算的方法、实践运用以提高估算的能力。

设计理念

1、数学教学活动要关注学生的个人知识和直接经验

新的《国家数学课程标准》(实验稿)中明确指出,数学课程“不仅要考虑数学自身的特点,更应遵循学生学习数学的心理规律,强调从学生已有的生活经验出发……数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上”。因此,教学活动要以学生的发展为本,把学生的个人经验(除法计算)、直接经验(秋游的感受)和现实世界(生活中的数学)作为数学教学的重要资源。

2、注重学生自主性和个性化的学习

引导学生通过独立思考、自主探索、合作交流获得知识,激励学生自得自悟。并且注意在教学过程中要充分利用学生的已有经验,尊重他们不同的思维方式,让数学学习活动成为一个生动活泼的、主动的和富有个性的过程。

教学目标

1、经历除法估算方法的探索过程,理解并掌握估算的方法。

2、能灵活运用估算方法解决实际的问题。

3、在探索学习活动中,培养学生的实践意识,培养探索意识、合作意识、创新意识,并获得积极的、成功的情感体验。

教学过程

一、秋游场景引入,调动学生学习兴趣。

上课后,出示秋游时拍的照片,询问学生当时的心情,一下就让学生回想起秋游那天的情景,因那天是远足秋游,学生对步行印象极深。在导入新课前,就提供路程和时间,让学生进行除数是一位数的除法估算的复习,求出同学们步行每小时大约行多少米。接着让学生把计时的单位改小,继续求每分钟的步行速度,便于我们判断走得比较快还是慢。此时顺利进入了除数是两位数的除法估算的教学中。

二、创设问题情景,激励学生自行探究。

1、关于所需车辆的计算:

师:同学们走的速度很快呢,是玩的心情很迫切吧!怪不得有同学问老师:“为什么不坐车呢?大家想知道原因吗?”

(1)出示题目并讲述:老师联系车子的时候只有中型客车,每辆车子可以坐44人,而我们四年级参加秋游活动的学生一共有235人。现在只有5辆车子可以用,你们认为够吗?

(2)学生自己思考解答后交流。

师:请同学来说说你的结果。(交流情况)

生1:我觉得不够。因为235÷44≈6(辆),要6辆车子才可以。现在只有5辆,所以不够。

(240)(40)

生2:我认为够了。235÷44,235的近似数取200,235÷44≈5(辆)。

(200)(40)

生3:我认为是不够的,老师还没有算在里面呢。

生4:老师,我用小数做的行吗?

师:当然可以了。你课外知识真丰富!请你说说看。

生4:我用235÷44≈5.3,把结果求近似数就是约等于5,所以我觉得5辆车就够了。

生5:可是在现实生活中有时不能把后面的直接去掉,应该要向前面进一。

生6:我同意生5的观点,5辆是不够的。我是这样想的:一辆车可以坐44人,那么5辆车大约可以坐44×5≈200(人),而200人<235人,多出来的人就坐不下了,要用6辆车才够。

师:是啊,多出来的人怎么办呢?不去了吗?

师:我看,问题主要是在生1和生2的两种解法中 235,也就是被除数的取近似数出现了分歧,那先来解决除数取近似数是怎样统一的?

生7:只要省略最高位后面的尾数,保留整十数。

师:其他同学有不同意见吗?(生都摇头表示没有)。问题是被除数到底该怎么考虑求近似数呢?在现实生活中来考虑这个问题,哪一种更符合实际呢?

生齐:生1说的那种。

生2:我现在想想应该是不够的,刚才没有仔细考虑。

师:那就是说,被除数取近似数时,要考虑尽量和原来的数接近。

生8:老师,那230也接近235的,为什么要取240呢?

师:谁能回答这个问题?

生9:因为240÷40是整数6,计算方便,算得快。

师:为什么会这么快?

生9:因为我想乘法口诀:四六二十四

师:这个方法真妙啊!把除数的近似数求出来后,用乘法口诀来想,找个最接近被除数的,把它取作被除数的近似数。你真会动脑筋!

师:(小结)我们用估计的方法求出了5辆车是不够的,所以决定远足秋游,还能观赏沿途风光呢,倒也是一举多得。

2.关于缆车票价的估算(出示缆车图)

(1) 理解价格表

师:到了坐缆车的地方,同学们可兴奋了。不知道有没有同学注意到了这张价格表呢?你能看懂它吗?(指名学生发言)

生10:大人坐缆车上山要20元,上山、下山一起要30元。

生11:大人光上山不下山是20元。儿童的票价是大人的一半。

师:两人说得都很棒,生11补充得更好,那按价格表的说明,同学们每人应该付多少钱呢?

生12:(口答)30÷2=15(元)

师:老师要负责付同学们的费用了。请大家帮忙算一下:一个人的票价是15元,我们班级有58名同学参加秋游,那么该付多少钱呢?

(学生小组讨论后交流)

生13:我们小组认为老师要付15×58≈1200(元)

(20)(60)

生14:我们小组认为老师只要付15×58≈900(元)

(60)

师:怎么一下就相差了300元?该听谁的呢?

生15:我们小组是列竖式计算的,其实只要15×58=870(元)

师:同样是估算,相差300元,这里就要注意联系生活实际的情况,估算目的是计算快速,但也要注意准确。大家想知道事实上老师付了多少钱吗?

(学生纷纷猜测)

生16:老师,我想您付的钱应该比870元少。

师:为什么这么说?

生16:因为我想集体乘坐应该可以优惠的,很多地方集体购票都可以打折的。

师:你的生活经验真丰富!的确如你所料,老师实际上付了775元。

(生恍然,纷纷点头。)

师:58个同学乘坐缆车,总共用了775元,你能算算自己用了约多少钱吗?

列式:775÷58 ≈

生解答后交流:除数58的近似数是60,被除数考虑能被60整除,而又接近775,所以求近似数是780。师板书:775÷58 ≈ 13(元)

三、提供数据信息,鼓励学生自选解题。

在学生掌握了除法估算的方法以后,出示一组信息,让学生选择其中对于自己想了解的情况有用的数据,进行计算解答,并和小组里的同学交流。

反思:

这堂课上得生动活泼,同学们都投身于自己探究知识的活动之中。他们仔细观察,认真思考,合作交流,终于发现了知识、领悟了方法,品尝到了成功的喜悦。我在实践后的体会如下:

1、生活即教育

“生活即教育。”这句话是著名的教育家陶行知说的。也说明了学习应该是学生自己的实践活动。以往教科书上枯燥的例题让学生失去了学习数学的兴趣,而我们现在应该更加关注学生会关心什么、经历了什么、对什么感兴趣、在生活中想要发现些什么。因为生活本身就是一个巨大的数学课堂,将学习和学生们的生活充分融合起来,让他们在自己感兴趣的问题中去寻找、发现、探究、认识和掌握数学。只有这样,学生才会学得积极主动,才会学得兴趣盎然。

2、估算与生活

估算的内容在生活中随处可见,有着极其广泛的应用,在日常生活中,对量的描述,很多时候只要算出一个与精确数比较接近的近似数就可以了。这堂课的教学,让学生把自己的经历和数学知识在生活中的应用结合起来,因此培养了学生的素质和能力。

32955