教育巴巴 > 小学教案 > 数学教案 > 五年级 >

五年级数学教育教案

时间: 沐钦 五年级

五年级数学教育教案怎么写?小学数学是通过教材,教小朋友们关于数的认识,四则运算,图形和长度的计算公式,单位转换一系列的知识,为初中和日常生活的计算打下良好的数学基础。下面是小编为大家带来的五年级数学教育教案七篇,希望大家能够喜欢!

五年级数学教育教案

五年级数学教育教案精选篇1

教学目标:

1、理解除数是小数的除法可以转化成除数是整数的除法来计算的道理

2、掌握除数是小数除法的计算法则,并能运用法则进行正确的计算。

3、培养学生的概括能力。

教学重点:

把除数转化成整数后,利用除数是整数的除法来计算。

教学难点:

小数点的移动。

教具学具:

小黑板、卡片、幻灯。

教学过程:

一、复习:

(1)口算:(卡片)

8.1÷34.84÷40.56÷43÷5

1÷80.75÷150.25÷50.045÷9

如果要把一个数扩大10倍,100倍。1000倍小数点应怎样移动呢?出示(1.50.362.3752)

(3)完成表格:

┌————┬——┬——┬——┤

│被除数│15│150││

├————┼——┼——┼——┤

│除数│5│50│500│

├————┼——┼——┼——┤

│商│││3│

└————┴——┴——┴——┘

根据表格,观察被除数、除数和商之间有什么变化规律?

今天这节课我们就要运用这个规律来计算除数是小数的除法。

想一想,除数是小数,能不能把它转化成除数是整数的除法来计算呢?

二、新授:

1、出示例4、读题、审题、列式

56.28÷0.67

这道算式与前面学过的有什么不同?(除数是小数),能直接计算吗?能不能转化成除数是整数的除法来计算呢?

方法a把米转化成厘米计算。

方法b把除数和被除数同时扩大100倍。

(注:小数点和0要同时划去)

2、引导学生分组讨论:

a他们的计算方法有什么不同?

b哪一种方法更为实用?为什么?

0.6756.28

都扩大100倍利用左边的辅助竖式边提问边板书

讲清除除数转化成整数的过程。

675628

3、师生共同完成小林的计算方法后把答案填在课本上。

4、P20、做一做(1),先说出下面各题中的除数和被除数需同时扩大多少倍,该如何移动小数点?然后再计算。

5、自学例5

思考:a除数是0.725变成整数,小数点必须向右移动几位?

b要使商不变,被除数10.44应怎样?小数点移动时位数不够这么办?

(生讲,师板书完成例5)

6、引导学生概括出除数是小数的小数除法计算法则。

除数是小数的除法,先移动()的小数点,使它变成();除数的小数点向()移动几位,()的小数点也向右移动几位,位数不够的,(),然后按照()进行计算。(生齐读)7、完成P20、做一做

三、巩固练习:练习五1至4。

五年级数学教育教案精选篇2

一、教学内容

教材第30~51页的“例1~例12”以及练习五~七。

二、教材分析

本单元主要教学因数和倍数,以及公因数和公倍数等内容。本单元内容大体分三段安排:第一段,认识因数和倍数,学习在1~100的自然数中有序地找出10以内某个数的所有倍数,以及100以内某个数的所有因数;探索2、5、和3的倍数的特征,学习判断一个数是不是2、5或3的倍数,同时认识奇数和偶数。第二段,认识质数、合数和质因数,学习把一个合数分解质因数。第三段,认识公因数和最大公因数,探索求两个数的最大公因数的方法;认识公倍数和最小公倍数,探索求两个数的最小公倍数的方法。最后,安排了全单元内容的整理与练习。

三、学情分析

本单元内容是在学生已经认识了亿以内的数,以及学习了整数四则运算的基础上进行教学的。学习本单元内容,又为后续学习分数的基本性质、约分和通分,以及分数四则运算打下基础。

四、教学目标

1.使学生经历探索非0自然数的有关特征的活动,知道因数和倍数的含义;能找出100以内某个自然数的所有因数,能在1~100的自然数中找出10以内某个数的所有倍数;知道2、5和3的倍数的特征,能判断一个数是不是2、5或3的倍数;了解奇数和偶数、质数和合数的含义,会分解质因数。

2.使学生通过具体的操作和交流活动,认识公因数与最大公因数、公倍数与最小公倍数;会求100以内两个数的最大公因数和10以内两个数的最小公倍数。

3.使学生在探索和发现数学知识的过程中,积累数学活动的经验,培养观察、比较、分析和归纳的能力,感受一些简单的数学思想,进一步发展数感。

4.使学生在参与学习活动的过程中,培养主动与他人合作交流的意识,体验数学学习活动的乐趣,增强对数学学习的自信心。

五、教学重、难点

教学重点:掌握倍数和倍数、质数和合数、最大公因数和最小公倍数等概念的联系和区别,掌握求两个数最大公因数和最小公倍数的基本方法。

教学难点:根据数的特点合理灵活地确定两个数的最大公因数和最小公倍数,以及根据对最大公因数和最小公倍数的理解正确解答相关的实际问题。

六、课时安排

因数和倍数…………………………………………1课时

2和5的倍数的特征………………………………1课时

3的倍数的特征……………………………………1课时

因数和倍数练习……………………………………1课时

质数和和合数………………………………………1课时

分解质因数…………………………………………1课时

公因数和最大公因数………………………………2课时

公倍数和最小公倍数………………………………2课时

因数与倍数整理与练习……………………………2课时

和与积的奇偶性……………………………………1课时

五年级数学教育教案精选篇3

教学目标:

1、通过学生观察、操作等活动认识长方体,知道长方体的面、棱、顶点以及长、宽、高的含义,掌握长方体的基本特征,理解它们之间的关系。

2、学生在生活中进一步积累探索经验,增强空间观念,发展数学思维。

3、学生体会立体图形学习与实际生活的联系,感受其价值,增强数学的兴趣和学好数学的自信心。

教学重难点:

重点:探索长方体的特征。

难点:理解长方体面、棱、顶点之间的关系,建立空间想象。

教学准备:

每生准备一个长方体,长方体框架;师准备教学道具和课件。

教学过程:

一、导入

同学们,我们已经学过很多图形了,大家回想一下我们都学过哪些?现在老师在黑板上画出两个最简单的图形,请你们快速说出它们的名字。

(师在黑板上画出一个点,一条直线)

生:点、线

师:我的这个点和线都画在一个什么上?

生:黑板、面

师:对,都画在一个面上。现在请你们拿出身边的长方体,找一找长方体中的点、线、面。

师生摸一摸,指一指,说一说。

二、新授

师:长方体中的线有一个固定的名字叫做“棱”,长方体中的点也有一个固定的名字叫做“顶点”。

师:我们现在初步了解了长方体的面、棱、顶点。如果大家想更多的了解长方体,你能提出哪些问题呢?

生:长方体有几个面,几条棱,几个顶点……

师:大家提出的既有关于面、棱、顶点数量的问题,又有关于它们之间关系的问题。下面就请大家小组合作学习,解决课件中给出的这些问题。

小组合作学习,完成以下问题:

面1、长方体有几个面?

2、每个面是什么形状?

3、哪些面是完全相同的?

棱1、长方体有几条棱?

2、哪些棱长度相等?

顶点1、长方体有几个顶点?

你还有什么新的发现?棱是怎么形成的?顶点是怎么形成的?

师:我们先来解决一个最简单的问题,长方体有几个顶点?

生:8个

师:怎样有序地数?

生:可以先依次数上面的四个,再依次数下面的四个。

师:长方体有几个面呢?

生:6个

师:谁能有次序地数出这些面?

师:谁能用具体的方位名词有次序地数出来?

师:长方体有6个面,依次是前面、后面、左面、右面、上面、下面。

师:还可以怎么数?

师:我们在第一单元学习了观察物体,现在试着从一个角度观察我手中的长方体,你最多能看到几个面?

生:3个

师:这三个面的对面都看不到,所以用3乘2就是总数。用这样的方法也能数出长方体的面数。

师:每个面是什么形状?

生:长方形,有的长方体中也有正方形。

师:长方体的每个面都是长方形,特殊情况下有两个相对的面是正方形。

师:长方形哪些面是完全相同的?

生:前面和后面,左面和右面,上面和下面

师:你们说的前与后,左与右,上与下都是相对的关系,所以简单说就是相对的面完全相同。你们是怎么得出这个结论的?

生:我们是看出来的。

师:生活中我们经常有看错人的时候,所以用眼睛看出来的不一定正确,你们有什么方法能证明自己的结论是正确的吗?

生:可以把长方体拆开,拿相对的面对比,如果完全重合,就说明相对的面完全相同。

师:你的方法真棒,那我们就一起来操作和证明一下。

师:相对的两个面放在一起完全重合了,说明大家的结论是正确的。

师:我们来理解一下什么是完全相同?完全相同的两个面,它们的面积相等,周长相等,长相等,宽也相等。

师:关于长方体的棱,你们知道有几条吗?

生:12条

师:谁能有次序地、不重不漏地数出来?

请学生来数

师:刚刚那位同学的数法我再来展示一下,同学们仔细观察,他是分成几组来数的?每组有几条?

生:三组,每组有4条。

师:为什么要这样数?

生:因为每一组中的棱长度是相等的。

师:哪些位置的棱长度相等呢?

生:位置相对的棱

师:我们用尺子量一量是否相等。

师:确实,相对的四条棱长度相等。

师展示长方体框架:假如这个框架中缺少了一条棱,你能想象出缺的这条棱的样子吗?为什么?

生:因为相对的棱长度相等,可以通过相对的棱想象缺的那条棱的样子。

师:如果在一组相对的棱中去掉三根,剩一根,你能想象出去完整的长方体的样子吗?为什么?

生:能,可以通过剩下的那根,想象出跟它相对的其他三条棱的样子。

师:按这样的道理,我们在每一组棱中都去掉三根,依然可以想象出完整的长方体的样子。我来试试去掉这些棱后,会是什么样子。

生:只剩下三根棱。

师:这三根棱有什么特殊?

生:它们相交于一个顶点。

师:对。这是三条非常特殊的棱,我们把它们分别称作长方体的“长”“宽”“高”。也就是说相交于一个顶点的三条棱分别叫做长方体的“长”“宽”“高”。在一个长方体中,我们通常把竖着的这条棱叫做“高”,正对着我们的棱叫做“长”,“长”旁边的那条是“宽”。大家来指一指我手中的这个长方体的长、宽、高。

拿长方体模型横放、竖放、侧放,并让学生指出在不同摆放的情况下的长、宽、高,体会同一个长方体因摆放位置不同而引起的长宽高的变化。

师:根据相对的棱相等,所以“长”对面的棱也是“长”,“宽”对面的棱也是“宽”,“高”对面的棱也是“高”,由此可知,长方体有4条长,4条宽,4条高。共计12条。

师:如果让大家利用小木棒来制作一个长方体框架,思考一下需要几组木棒,共几根?在下面给出的木棒中你可以如何搭配来组建长方体,它们的长宽高分别是多少?

出示例题:

四根8厘米,八根3厘米,四根6厘米,两根5厘米。

生1:长8,宽3,高6

生2:长8,宽3,高3

生3:长6,宽3,高3

师:生2和生3搭建的长方体都是有两个相对的面是正方形的特殊长方体,想象一下,把长缩短到3厘米,这个长方体会变成什么样子?

生:变成了正方体

师:对,变成了长、宽、高都是3厘米的正方体,由此我们可以得出这样的结论:长、宽、高都相等的长方体是正方体,正方体是一种特殊的长方体

师:关于面、棱、顶点,它们之间有什么关系呢?棱和面有什么关系?棱和顶点有什么关系?

生:两个面相交的位置是棱,两条棱相交的位置是顶点。

巩固练习

书上例题1、2

小结

作业布置

练习册《长方体的认识》

五年级数学教育教案精选篇4

设计说明

1、加强动手操作训练,促进学生的思维。

有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探究与合作交流是学生学习数学的重要方式。本设计积极引导学生理解天平平衡的原理,加强对用天平称物和画图的动手操作训练。使学生经历称物、分轻重的过程,了解和思考称物的不同情况,逐步把思维条理化、逻辑化,并想办法用图示表示出来,从而促进学生逻辑思维的发展。

2、自主探索,体会优化思想。

本设计给予学生充分的自主探索的空间,通过试验、汇报不同的解决问题的方法,发现如何分份是优化“找次品”方法的关键,从而总结出最佳的分份方法和最佳的图示方法,渗透优化思想。

课前准备

教师准备ppt课件天平药瓶

学生准备天平

教学过程

情境导入,激发兴趣

1、你们每天上学通常要走哪条路?为什么要选择这条路?

(生自主回答)

2、你们真聪明,在平时做事的时候就能选择最简便的方法。在数学学习中,解决问题的方法是多种多样的,但通常都有一种最有效、最简便的方法,我们把它叫最优化的方法。这节课就让我们带着优化的思想走进课堂。(师出示2瓶钙片)

师:老师这里有2瓶钙片,其中有1瓶少了3片,你们能不能想办法帮我把它找出来呢?(生回答想法)

师:老师准备了一架天平。如果在天平左右两边的托盘里放上质量相同的物品,天平就会平衡;如果一边重一边轻,那重的一边就会沉下去,轻的一边就会翘起来。今天我们就借助天平来完成本节课的学习内容。

设计意图:引导学生根据次品的特点发现用天平“称”的方法,知道并不需要称出每个物品的具体质量,而只要根据天平的平衡情况对托盘两端的物品进行判断就可以了。

实践操作,自主探究

1、提出探究要求。

师:同学们很容易就从2瓶钙片中把这瓶次品找到了,如果是3瓶钙片,你还能从中找到这瓶次品吗?同桌可以用学具摆一摆,试一试。

2、动手操作,汇报方法。

学生动手试验后汇报。(先在天平的两端分别放上1瓶钙片,如果天平平衡,剩下的一瓶就是次品;如果天平不平衡,轻的那端就一定是次品了)

3、总结归纳记录的方法。

组织学生把用天平称的过程用图表记录下来。

合作交流,研究探讨

师:同学们真聪明,这么容易就从3瓶钙片中找到了次品,其实你们已经用自己的聪明才智解决了教材中例1所提出的问题。那么,例2又向我们提出了哪些问题呢?

理解题意,动手操作。

(1)先让学生读题,说说“至少”的含义。

(2)小组分工合作:用学具摆一摆,并尝试用图示和表格表示摆的过程,完成下表。

(合作要求:2名同学摆学具,1名同学用图示法作记录,1名同学填表)

五年级数学教育教案精选篇5

教学目标:

1、通过具体情境和实际操作,培养学生综合运用图形面积、乘除法、方程等知识解决实际问题,进一步了解数学在生活中的应用。

2、培养学生观察、思考以及与同伴交流的良好习惯。

教学重点:

会用小块方砖铺满某个平面。

教学难点:

计算铺满某个平面需要多少块方砖,多少钱。

教学过程:

一、创设情境

同学们,小明家买了一套新房。近期,家里要装修了。妈妈让小明设计自己的卧室怎样铺地砖。今天就请同学们来帮小明出出主意,和小明一起来研究一下铺地砖中的数学问题。(板书课题)

二、自主探究,合作交流。

(一)算卧室面积

1、买地砖之前要了解哪些相关知识?

2、小明卧室地面的长和宽分别是4m和3m,你们能帮他算算他的卧室有多大吗?

(二)分小组讨论,并填写表格

所需地砖的数量,所需钱数

40厘米×40厘米

30厘米×30厘米

(三)汇报交流方法

1、学生汇报交流

2、得出结论

3、算一算

小明爸爸、妈妈的房间面积约为18平方米,用边长为40厘米的正方形地砖铺地面,至少需要多少块这样的地砖?需要多少钱?你能帮小明算算吗?

学生独立完成,指名学生上黑板板演。

三、巩固新知,练习反馈。

四、全课总结

五年级数学教育教案精选篇6

【设计理念】

数学课程标准明确指出,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法。本节课抓住关键词,把握自然数(0除外)按因数个数分类的数学方法,让学生充分讨论质数和合数的特征,经历质数和合数这一知识的发生发展过程,通过观察、比较、分析、归纳,构建质数和合数概念,更好地掌握数学思想,提升学生学习数学的兴趣,培养良好的学习态度。

【教学内容】

人教版五年级下册第23~24页“质数与合数”。

【学情与教材分析】

本课是在学生掌握“因数、倍数、奇数、偶数、2、3、5的倍数特征”的基础上进行的。本单元涉及的概念多,“质数与合数”是一节概念教学课,概念抽象易混淆,在生活中运用较少,与学生的生活有一定的距离,是本课的难点也是本单元内容教学的难点。

【教学目标】

1.让学生经历操作、观察、发现、概念归纳的数学化过程,构建质数和合数概念。

2.把握整数按因数个数的分类法,理解和掌握质数与合数的特征,能应用概念寻找或判断质数。

3.通过研究质数与合数特征的学习活动,体会学习数学的思想方法。

【教学准备】

课件;练习纸每生一张。

【教学过程】

活动一:构建质数和合数概念

1.引导学生按要求列出乘法算式:“因数用整数、不用1”。

教师板书“1=”……“20=”,教师不言语,用手势引导学生按要求说出乘法算式。

学情预设:学生中可能出现用1或小数的问题,师用手势提醒“不用1”“用整数”。

2.师:按“用整数、不用1”的要求无法列出乘法算式的数,我们叫它质数;可以列出乘法算式的数,我们叫它合数。

教师依次在这些质数的前面填上“质数”、“合数”,学生自然而然的在教师板书时说出“质数”和“合数”。

【设计意图】

“活动一”全过程教师基本不言语,只用手势或神情来组织教学,给学生一个神秘感,在创设静谧的氛围中静心体会质数与合数的区别。

活动二:讨论质数和合数的特征

1.师:“从这些乘法算式中,你发现了什么?

学情预设:学生有可能说出质数都是奇数;对策:教师指出2是质数、15是合数;

合数可以写出乘法算式;如果不用1,质数无法写出乘法算式。

2.教师擦除“不用1”,学生列出相应的乘法算式,再进一步用因数的个数来探讨质数和合数的概念。

师:观察因数的个数,你又发现了什么?

从乘法算式中,学生很快并能清晰地发现质数只有1和它本身两个因数,而合数则除了1和它本身两个因数外,还有别的因数(至少三个因数)。

3.根据学生回答板书。

4.讨论:“1”是质数还是合数?

学情预设:有的学生可能认为:1有两个因数,一个是1,一个是它本身,1应该是质数;有的学生可能认为:1的本身还是1,所以1应该只有一个因数;有的学生可能认为:1既不是质数也不是合数。

师把板书写完整。

5.小结:谁能用自己的语言说一说什么样的数叫质数?什么样的数叫合数?怎样判断一个数是质数还是合数?

【设计意图】

预留足够的时间让学生经历操作、观察、发现、概念归纳的数学化过程,构建质数和合数概念。并尝试根据因数的个数归纳出质数与合数的概念,学会运用质数和合数的特征进行判断,充分感受到知识之间既有区别,又有联系。

活动三:应用概念寻找或判断质数

1.继续寻找30以内的其它质数。

2.做一做:出示数字卡片:17、22、29、35、37、87、93、96、1,将数字卡片填入质数与合数相应的集合圈里。

3.下面的说法正确吗?说说你的理由。

⑴所有的奇数都是质数。()

⑵所有的偶数都是合数。()

⑶在1、2、3、4、5……中,除了质数以外都是合数。()

⑷两个质数的和是偶数。()

【设计意图】

通过不断的寻找、发现与判断质数的练习中,使学生意识可以用合理的方法来判断,巩固质数与合数特征的认识。

活动四:拓展延伸深化概念

1.你知道他们各是多少吗?(在小组内交流各自的想法后汇报)

⑴两个质数的和是10,积是21,他们各是多少?

⑵两个质数的和是20,积是91,他们各是多少?

⑶最小的质数是?最小的合数是?

2.在括号里填上质数:

8=()+()12=()+()28=()+()

3.数学小阅读:哥德巴赫猜想。

同学们你们知道吗,刚才你们正在尝试解决一道世界难题,做了一件很有价值的事,这个世界难题就是:是不是所有大于2的偶数,都可以写成两个质数的和呢?这个问题是德国数学家哥德巴赫最先提出的,所以被称为哥德巴赫猜想。世界各国的数学家都想攻克这一难题,但至今还未解决。我国数学家陈景润在这一领域已经取得了举世瞩目的成果。

请同学们进行数学小阅读:哥德巴赫猜想。课后,感兴趣的同学们也可以查找相关书籍或上网查阅相关资料。

【设计意图】

在适度拓展中,尝试解决“任何大于2的偶数,都可以写成两个质数的和”的哥德巴赫猜想。在数学小阅读中,让学生了解数学发展的历史,感受数学文化的魅力,同时留有空间,让学生课后探究。

活动五:总结

这节课你有哪些收获?

五年级数学教育教案精选篇7

教学目标:

1.通过复习,使学生能够运用所学知识,采用列方程的方法解答应用题.

2.让学生独立思考,合作交流,确定等量关系,正确用方程解答应用题

3.培养学生利用恰当的方法解决实际问题的能力。

教学重点:

通过复习,使学生弄请已知量与未知量的联系,找出题目中的等量关系.

教学难点:

通过复习,使学生能够准确的找出题目中的等量关系.

教学过程:

一、复习准备.(P107)

1.找出下列应用题的等量关系.

①男生人数是女生人数的2倍.

②梨树比苹果树的3倍少15棵.

③做8件大人衣服和10件儿童衣服共用布31.2米.

④把两根同样的铁丝分别围成长方形和正方形.

( 学生回答后教师点评小结)

我们今天就复习运用题目中的等量关系解题.(板书:列方程解应用题)

二、新授内容

1、教学例3、

(1)、一列客车以每小时90千米的速度从甲站开往乙站,同时有一列货车以每小时75千米的速度从乙站开往甲站,经过4小时相遇,甲乙两站的铁路长多少千米?

①.读题,学生试做.

②.学生汇报(可能情况)

(90+75)×4

提问:90+75求得是什么问题?再乘4求的是什么?

90×4+75×4

提问:90×4与75×4分别表示的是什么问题?

(由学生计算出甲乙两站的铁路长多少千米。)

(2)、甲乙两站之间的铁路长660千米,一列客车以每小时90千米的速度从甲站开往乙站,同时有一列货车以每小时75千米的速度从乙站开往甲站。经过多少小时相遇?

(先用算术方法解,再用方程解)

①、660÷(90+75)=?

②方程

解: 设经过x小时相遇,

(90+75)×x =660 或者, 90×x +75×x =660

让学生说出等量关系和解题的思路

教师小结(略)

(3)、甲乙两站之间的铁路长660千米。一列客车以每小时90千米的速度从甲站开往乙站,同时有一列货车从乙站开往甲站,经过4小时相遇。货车每小时行多少千米?

( 先用算术方法解,再用方程解)

①、(660—90×4)÷4=?

②、方程

解:设货车每小时行x千米

90×4+ 4x = 660 或者(90 + x )×4 = 660

让学生说出等量关系和解题的思路

教师小结(略)

让学生比较上面三道应用题,它们有什么联系和区别?

比较用方程解和用算术方法解,有什么不同?

教师提问:这两道题有什么联系?有什么区别?

三、巩固反馈.(P109---1题)

1.根据题意把方程补充完整.

(1)张华借来一本116页的科幻小说,他每天看x 页,看了7天后,还剩53页没有看.

_____________=53

_____________=116

(2)妈妈买来3米花布,每米9.6元,又买来x千克毛线,每千克73.80元.一共用去139.5元.

_____________=139.5

_____________=9.6×3

(3)电工班架设一条全长x 米长的输电线路,上午3小时架设了全长的21%,下午用同样的工效工作1小时,架设了280米.

_____________=280×3

2.(P110----4题)解应用题.

东乡农业机械厂有39吨煤,已经烧了16天,平均每天烧煤1.2吨.剩下的煤如果每天烧1.1吨,还可以烧多少天?

小结:根据同学们的不同方法,我们需要具体问题具体分析,用哪种方法简便就用哪种方法.

3.思考题.

甲乙两个港相距480千米,上午10时一艘货船从甲港开往乙港,下午2时一艘客船从乙港开往甲港.客船开出12小时后与货船相遇.如果货船每小时行15千米.客船每小时行多少千米?

四、课堂总结.

通过今天的复习,你有什么收获?

五、课后作业.

(P110---5题)不抄题,只写题号。

板书设计:

列方程解应用题

等量关系 具体问题具体分析

例3:一列火车以每小时90千米的速度从甲站开往乙站,同时有一列货车以每小时75千米的速度从乙站开往甲站,经过4小时相遇,甲乙两站的铁路长多少千米。

32951