北师大数学五年级下册教案
小学阶段学习数学就是在以后的数学、物理、化学等学科在做准备,没有了前者的基础作用,后者这个建筑物就不可能拔地而起。 这次小编给大家整理了北师大数学五年级下册教案,供大家阅读参考,希望大家喜欢。
北师大数学五年级下册教案1
教学要求①使学生进一步理解整除的意义。②使学生掌握整除、约数与倍数的概念,以及它们之间的相互依存关系,渗透辨证唯物主义思想。③培养学生抽象概括与观察思考的能力。
教学重点约数和倍数的意义
教学难点理解除尽和整除,约数和倍数等概念间的联系和区别。
教学过程
一、创设情境
1、计算下面三组题。
(1)23÷7=(2)6÷5=(3)15÷3=
11÷3=1.8÷3=24÷2=
2、观察并回答。
(1)上面哪个算式中的第一个数能被第二个数整除?
(2)在什么情况下,才可以说“一个数能被另一个数整除”?
(3)如果用整数a表示被除数,整数b(b≠0)表示除数,可以怎样说?(让学生看教材第49页关于“整除”的一段话)
3、思考:我们在说一个数能被另一个数整除时,必须具备哪几个条件?
①被除数、除数都是整数,除数不等于0
明确三点②商必须是整数缺一不可
③商的后面没有余数
4、除尽与整除的区别与联系。
(1)像6÷5=1.21.8÷3=0.6我们只能说第一个数能被第二个数。
(2)除尽被除数和除数(不等于0),不一定是整数,商是有限小数,没有余数。
整除被除数和除数(不为0)都是整数,商是整数,没有余数。(三整无余)
师:一个数能被另一个数整除表示的是两个整数之间的一种关系,它们还有另一种关系,这就是我们今天要学习的约数和倍数关系(板书课题:约数和倍数的意义)
二、探索研究
1.小组学习约数和倍数的意义。
(1)让学生看教材第50页有关约数和倍数的一段话。
(2)小组讨论:两个数在什么情况下才有约数和倍数关系?“约数和倍数是相互依存的”是什么意思?
(3)在复习的第1题中,请你指出哪个数是哪个数的倍数,哪个数是哪个数的约数?为什么?
(4)倍与倍数意义一样吗?
如:15是3的倍数,表示15能被3整除。
1.5是0.3的5倍,5倍表示1.5除以0.3的商。
(5)注意事项。让学生看教材第50页的注意。
三、课堂实践
1.做教材第51页的“做一做”。
2.做练习十一的第1题。
3.做练习十一的第2题。
4.做练习十一的第3题。
5.做练习十一的第4题。
60的约数有。
6的倍数有。
四、课堂小结
学生小结今天学习的内容。
课后反思:
给学生以丰富的材料,让他们在感性认识的基础上,通过主动的探索学习掌握概念。
北师大数学五年级下册教案2
教学内容:
教材第P50—51页“体积单位的换算”
教学目标:
1.结合实际活动,认识体积,容积单位之间的进率,会进行体积,容积单位之间的换算。
2.在观察、操作的过程中,发展空间观念。
教学重难点:
1.结合实践活动,认识体积、容积单位之间的进率,会进行体积、容积单位之间换算。
2.在观察、操作的过程中,发展空间观念。
教学过程:
一、创设情境激趣揭题
1.展示问题:
①常用的长度单位有那些?相邻两个单位间的进率是多少?
②常用的面积单位有那些?相邻两个单位间的进率是多少?顺式导入新课。
2.板书课题。
二、扶放结合探究新知
1.探究立方分米和立方厘米之间的进率。师出示一个棱长1分米和1厘米的正方体、提出问题。
2.探究立方分米和立方厘米之间的进率。
3.出示例题:“体积单位的改写”
4.学生交流后,引导学生小结。
三、反馈矫正落实双基
1.出示教材P51第一题
2.教材第51页“练一练”的第2题。
3.教材第51页“练一练”的第3题。
四、小结评价布置预习
1.引导学生进行全课小结。
2.布置课外预习:教材P54-55:有趣的测量。
北师大数学五年级下册教案3
一 教学内容
最小公倍数(一)
教材第88 、89 页的内容及第91 页练习十七的第1 、2 题。
二 教学目标
1 .理解两个数的公倍数和最小公倍数的意义。
2 .通过解决实际问题,初步了解两个数的公倍数和最小公倍数在现实生活中的应用。
3 .培养学生抽象、概括的能力。
三 重点难点
理解两个数的公倍数和最小公倍数的意义。
四 教具准备
多媒体课件,学生操作用长方形纸片(长3Cm ,宽2Cm )与方格纸。
五 教学过程
(一)导入
前面,我们通过研究两个数的因数,掌握了公因数和公因数的知识。今天,我们来研究两个数的倍数。
(二)教学实施
1 .在数轴上标出4 、6 的倍数所在的点。
拿出老师课前发的画有两条直线的纸。
在第一条直线上找出4 的倍数所在的点,画上黑点。在第二条直线上找出6 的倍数所在的点,圈上小圆圈。
2 .引入公倍数。
( l )学生汇报,多媒体课件出现两条数轴,并根据学生报的数,仿效出现黑点和小圆圈。
( 2 )观察:从4 和6 的倍数中你发现了什么?
( 3 )学生回答后,多媒体课件演示两条数轴合并在一起,闪现12 和21 。
( 4 )我们发现:有些数既是4的倍数,又是6 的倍数,如果让你给这些数起个名,把它们叫做4 和6 的什么数呢?(板书:公倍数)
说说看,什么叫两个数的公倍数?
3 .用集合图表示。
如果让你把4 的倍数、6 的倍数、4 和6 的公倍数填在下面的图中,你会填吗?试试看。同桌两人可以讨论一下。
4 .引人最小公倍数。
学生汇报后问:
( 1 )为什么三个部分里都要添上省略号?
( 2 ) 4 和6 的公倍数还有哪些?有没有公倍数?
( 3 )有没有最小公倍数?4 和6 的最小公倍数是几?(板书:最小公倍数)
4 的倍数 6 的倍数
4和6的功倍数
5.引出例1。
前面学习公因数和公因数时,我们研究了用正方形地砖铺地的实际问题。今天,我们再来研究一个用长方形墙砖铺成正方形的实际问题出示例1 。
( 1 )操作探究。
学生任意选择操作方式。
① 用长方形学具拼正方形。
② 在印有格子的纸上面画出用长方形墙砖拼成的正方形。边操作、边思考:拼成的正方形边长是多少?与长方形墙砖的长和宽有什么关系?
( 2 )反馈并揭示意义。
① 请选用第一种操作方式的学生上来演示拼的过程,并说一说拼出的正方形边长是多少。老师根据学生的演示板书正方形边长,如6dm
② 请选第二种操作方式的学生汇报,老师让多媒体课件闪现边长为6dm 、12dm … … 的正方形,
③ 正方形边长还有可能是几?你是怎样知道的?
④ 观察所拼成的边长是6dm 、12dm 、18dm … 的正方形与墙砖的长3dm 、宽2dm 的关系。体会正方形的边长正好是3 和2 的公倍数,而6 是这两个数的最小公倍数。
思考:两个数的公倍数与最小公倍数之间有什么关系?(最小公倍乘2乘3 …就是这两个数的其他公倍数。)
⑤阅读教材第88 、89 页的内容,进一步体会公倍数和最小公倍数的实际意义。
6 .运用新知识,解决问题。
( 1 )画一画,说一说。
小松鼠一次能跳2 格,小猴一次能跳3 格,它们从同一点往前跳,跳到第几格时第一次跳到同一点,第2 次跳到同一点是在第几格?第3 次呢?
引导学生将本题与例1 比较:内容不同,但数学意义相同,都是求2 和3 的公倍数和最小公倍数。
( 2 )完成教材第89 页的“做一做”。
学生独立思考,写出答案并交流:4 人一组正好分完,说明总人数是4 的倍数;6 人一组正好分完,说明总人数是6 的倍数。总人数在40 以内,所以是求40 以内4 和6 的公倍数。
( 3 )独立完成教材第91 页练习十七的第2 题。
( 4 )完成教材第91 页练习十七的第1 题。
指导学生找到写出两个数的公倍数的简便方法,先找出两个数的最小公倍数,再用最小公倍数乘2 、乘3 .得到其他公倍数
(四)思维训练
本节课我们共同研究了公倍数和最小公倍数的意义,并通过解决铺长方形地砖的问题,了解了两个数的公倍数和最小公倍数在生活中的应用。
北师大数学五年级下册教案4
一、开门见山,直奔主题。
1、 了解新知。
看大屏幕,问:今天我们学习的内容是什么?(板:长方体体积的计算)长方体体积应该怎样计算呢?
(板:长方体体积=长×宽×高)你是怎么知道的?对于长方体的体积你还知道哪些知识?
2、 引发矛盾。
引:知道真不少,那你知道长方体的体积为什么等于长×宽×高吗?看来我们对长方体体积的学习还不太全面,还有些问题。所以对于学习老师想送给大家一句名言,我们一起来看。
3、 渗透学习态度一(出示“学贵有疑,小疑则小进,大疑则大进。——陈宪章”)引:快速地小声读一读,这是清代学者陈宪章的一句话,老师觉得我们学习数学也应该像这句话说的那样勤于思考,经常问自己一个为什么,时常拥有一双发现问题的眼睛。课前没有做到,老师希望接下来我们探索长方体体积由来时能做到,好不好?
设计意图:让学生借助预习(或自学)的力量,直接揭示课题,既符合学生的认知规律,又充分了解到学生学情底数,同时调动了学生学习积极性,为学习新知作好铺垫。最后,在“学贵有疑”的学习态度渗透中,自然的引出下一环节。
二、引导探究,获得新知。
课件(或教具)演示
1、一排一层的长方体。(出示:1立方厘米的小正方体。)
问:这是一个棱长1厘米的小正方体,一起告诉我,它的体积是多少?2个这样的小正方体的体积是多少?3个呢?4个呢?
小结:也就是说由几个1立方厘米的小正方体组成的长方体体积就是几,是这样吗?
2、3排1层的长方体。
再问:我们再来,1排4个1立方厘米的小正方体,2排多少个?3排呢?这么快,你是是怎么做的?
小结:也就是说用每排的个数4×排数3就可以求出这个长方体含有多少个1立方厘米的小正方体,是这样吗?(板:小正方体个数=每排的个数×排数)
3、3排2层的长方体。
再问:这个长方体含有多少个1立方厘米的小正方体,所以它的体积是多少?好我们再来,一层12个1立方厘米的小正方体,2层多少个?这次你是怎么做的?
小结:也就是说在前面的基础上再乘层数2就可以求出这个大长方体含有多少个1立方厘米的小正方体,是这样吗?
4、释疑辅垫。
引:学贵有疑,这里有问题了,为什么前面没有乘层数就求出了1立方厘米的小正方体呢?(引导出前面两个长方体的层数都是1,第一个长方体的排数是1)(板:小正方体个数=每排的个数×排数×层数)
5、数个数验证。
再引:数学是严谨的,用每排的个数×排数×层数求小正方体个数这个方法是否真的可行,下面我们一起来数一数,(课件或教具演示)结果相同吗?说明这个长方体的体积是多少?
6、引导发现。
引:学贵有疑,小疑则小进,大疑则大进,做到这里,对于长方体体积的由来你想到了什么?(注意评价
学生回答:他说的好不好?好在哪?)引导出每排个数相当于长方体的长,排数相当于宽,层数相当于高。
小结:现在大家知道长方体体积为什么等于长乘宽乘高了吗?由公式可以知道求长方体的体积只要知道什么就可以了?
设计意图:借助教具、学具,通过老师的引领,让学生的多种感官都参与到教学活动,在操作中发现规律,为学生创设了良好的思维情境,在头脑中建立长主体体积由来的表象,促使学生形成新的认知结构,突破教学难点,顺利地抽象出长方体体积公式。
过渡:知道了长方体体积公式的由来,老师觉得学习还不能停止,在这里,老师还想送同学们一句名言,一起来看。
三、操作验证、巩固练习。
1、学习态度二。(出示:纸上得来终觉浅,绝知此事要躬行)
引:也来快速地小声读一读,这是宋代诗人陆游的一句诗,它告诉我们从书本上或从别处得来的知识,还需要我们亲自动手实践一下,才能记得牢,理解得透。
2、拼摆计算。
引:现在老师就给大家这个机会,利用1立方厘米的小正方体用计算的方法自已来算一算长方体体积是不是真的等于长×宽×高,请同学们注意要求:
1、以小组为单位来摆,注意分工协作,
2、请填好记录单,注意发现新的问题。开始。
小结:还是那句话:数学是严谨的,通过自己来动手验证得到的知识才是最可信的。
3、学生汇报验证过程。
设计意图:通过学生熟知的陆游诗句,进一步体会数学学习的严谨性,充分相信学生,让学生自己动手,在小组合作中验证新知,再现长方体体积由来的过程,使学生加深“知其所以然”的理解,进而有效地培养学生操作及探究能力。
引:现在长方体体积公式可以确认了吗?它是什么?下面我们就用它来解决一道实际问题。
4、解决问题。(出示例题)先估算体积再独立计算。
5、巩固练习。
引:为了巩固新知,老师还准备了两个小题,还能不能做?
1、练一练第1题。
直接口答列式。
2、练一练第3题。
先谈注意问题再解答。最后拓展此题的古代解法。
3、拓展新知。
引:这是生活中一道典型的求体积的题,实际上它的解法早在2000年前就已经有了,我们来看一看。
(出示:“方自乘,以高乘之既积尺”)这是2000年前我国古代一本数学专著〈九章算术〉的解法,和我们现在的解法一样吗?你觉得我国古代的数学家怎么样?
设计意图:通过不同形式的练习既深化了知识,又培养了学生综合运用所学知识解决简单的实际问题的能力,同时也拓展了学生对古代数学的了解,升华了认知。
四、总结回顾,深化体验。
问:通过这节课学习,你有什么收获?有什么感受?
总结:老师也想通过这节课告诉大家,我们学习,不光要记住知识,还需要经常问问为什么,更需要自己动手验证新知的正确性。最后,我还想送大家一句名言,一起看(出示:天下事有难易乎,为之,则难者亦易矣;不为,则易者亦难矣。人之为学有难易乎?学之,则难者亦易矣;不学,则易者亦难矣。——彭端叔)无论学习还是做事,是没有难和易之分的,只要你去学,你去做,再困难的事也会变得很容易。知难而进是我们的学习态度。
设计意图:“谈收获”是对所学知识部分的整理,“谈感受”是学生情感方面的升华,尤其是“名言”的总结,进一步使学生对今后的生活学习有了概括性引领和提升。
北师大数学五年级下册教案5
教学目标:
1. 知识目标:在长方体、正方体的体积和容积的知识基础上,探索生活中一些不规则物体体积的测量方法,加深对已学知识的理解和深化。
2. 能力目标:经历探究测量不规则物体体积方法的过程,体验“等积变形”的转化过程。获得综合运用所学知识测量不规则物体体积的活动经验和具体方法,培养小组合作精神和问题解决能力。
3. 情感目标:感受数学知识之间的相互联系,体会数学与生活的密切联系,树立运用数学解决实际问题的自信。
教学过程:
一、复习导入
1、复习长(正)方体的体积,体积和容积单位的换算。
2、听故事,曹冲称象(大象的质量转换为石块的质量)\阿基米德的故事(皇冠的体积转换成水的体积)。故事对于我们的这节课学习是不是会有所帮助,有所启发呢?
3、观察(石块\土豆)的形状,与长方体或正方体比较引出不规则物体(并板书)。
故事中的皇冠也是不规则物体吗?
石块和土豆再比较,哪个物体更不规则,指出今天我们就来测量石块的体积。(板书)
二、实验操作,测量石块体积。
1. 拿出桌子下面的测量工具,根据给出的测量工具,各小组想好测量方案,该做哪些工作(分工)。分工协作:
方案一 ,取水,测量底面的长和宽,以及水面的高度,放入石块后再测量水面到达的高度,用底面积乘高度的差就是石块的体积。(注意点:水的量应适中,不要太少也不能太多,刚好能让石块浸没而升高的水又不至于溢出就可以了。)
方案二,取水,在空器中倒满水,然后把石块慢慢放入水中,再将溢出的水倒进量杯中量出水的体积
2. 小组汇报各自做法,老师边听学生汇报边板书。(适量的水:升高部分水的体积相当于石块的体积)(加满的水:溢出的水的体积相当于石块的体积。)
真不错,大家测出了石块的体积,请把水倒回水桶,下面小组交换一下测量工具,重新测量石块的体积,来验证一下测量的结果是否大致相同。
3. 除了上面的两种方案,还有其他的测量方案吗?说说看, 我们班是不是会出现曹冲第二呢?
预设一:小物体---直接有量杯测出体积。
预设二:把石块先放入容器,往容器里加入水,直到水高过石块,测量水的高度,把石块捞出,再次测量水的高度,把容器的底面积乘两次的高度差就是石块的体积。
预设三:当装的水过高时,我们可以把升高的这部分水的体积加水溢出的水的体积也能求出石块的体积。
预设四:有称重的办法求石块的体积,把我们量出的石块称一称,看重多少,再根据这对数据求出任意大小石块的体积。
预设五:用橡皮泥代替水做也可,把石块放入长方体空器,往容器内塞入橡皮泥,直到塞满为止,取出石块,再塞入橡皮泥(压平,测量橡皮泥的高度,把底面积乘容器高度与橡皮泥高度差就是石块的体积。……
三、巩固提高
今天大家的表现真不错,有些方案老师也没能想到。学有所用,学以致用,我们来看看小黑板的题目怎么做。
1. 一个长方体容器,底面长2分米,宽1.5分米,放入一个土豆后水面升高了0.2分米,这个土豆的体积是多少?(生独立完成。)
2. 测量一颗跳珠的体积。
数25粒跳珠,放入一个盛有一定量水的量杯中,根据水面升高的情况测量出水的体积,再算出一颗跳珠的体积。(学生实验并计算出体积)
四、总结提高
通过今天的学习,你有什么收获?(我学会了求石块的体积,我学会了怎样求不规则物体的体积,我学会了把一个物体转换成另一个物体来解决问题的方法。)