教育巴巴 > 小学教案 > 数学教案 > 六年级 >

2021年六年级下册数学教案

时间: 晓晴2 六年级

数学是一切科学的基础,一切重大科技进展无不以数学息息相关。没有了数学就没有电脑、电视、航天飞机,就没有今天这么丰富多彩的生活。今天小编在这给大家整理了一些2021年六年级下册数学教案,我们一起来看看吧!

2021年六年级下册数学教案

2021年六年级下册数学教案1

教学目标:

1、理解反比例的意义。

2、能根据反比例的意义,正确判断两种量是否成反比例。

3、培养学生的抽象概括能力和判断推理能力。

教学重点:

引导学生理解反比例的意义。

教学难点:

利用反比例的意义,正确判断两种量是否成反比例。

教学过程:

一、复习铺垫

1、成正比例的量有什么特征?

2、下表中的两种量是不是成正比例?为什么?

二、自主探究

(一)教学例1

1.出示例1,提出观察思考要求:

从表中你发现了什么?这个表同复习的表相比,有什么不同?

(1)表中的两种量是每小时加工的数量和所需的加工时间。

教师板书:每小时加工数和加工时间

(2)每小时加工的数量扩大,所需的加工时间反而缩小;每小时加工的数量缩小,所需的加工时间反而扩大。

教师追问:这是两种相关联的量吗?为什么?

(3)每两个相对应的数的乘积都是600.

2.这个600实际上就是什么?每小时加工数、加工时间和零件总数,怎样用式子表示它们之间的关系?

教师板书:零件总数

每小时加工数×加工时间=零件总数

3.小结

通过刚才的研究,我们知道,每小时加工数和加工时间是两种相关联的量,每小时加工数变化,加工时间也随着变化,每小时加工数乘以加工时间等于零件总数,这里的零件总数是一定的。

(二)教学例2

1.出示例2,根据题意,学生口述填表。

2.教师提问:

(1)表中有哪两种量?是相关联的量吗?

教师板书:每本张数和装订本数

(2)装订的本数是怎样随着每本的张数变化的?

(3)表中的两种量有什么变化规律?

(三)比较例1和例2,概括反比例的意义。

1.请你比较例1和例2,它们有什么相同点?

(1)都有两种相关联的量。

(2)都是一种量变化,另一种量也随着变化。

(3)都是两种量中相对应的两个数的积一定。

2.教师小结

像这样的两种量,我们就把它们叫做成反比例的量,它们的关系叫做反比例关系。

3.如果用字母x和y表示两种相关联的量,用k表示它们的积一定,反比例关系可以用一个什么样的式子表示?

教师板书: xy =k(一定)

三、课堂小结

1、这节课我们学习了成反比例的量,知道了什么样的两种量是成反比例的量,也学会了怎样判断两种量是不是成反比例。在判断时,同学们要按照反比例的意义,认真分析,做出正确的判断。

2、通过今天的学习,正比例关系和反比例关系有什么相同点和不同点?

四、课堂练习

完成教材43页做一做

五、课后作业

练习七6、7、8、9题。

六、板书设计

成反比例的量 xy=k(一定)

每小时加工数×加工时间=零件总数(一定)

每本页数×装订本数=纸的总页数(一定)

2021年六年级下册数学教案2

教学目标:

1、在具体情境中,通过“画一画”的活动,初步认识正比例图象。

2、会在方格纸上描出成正比例的量所对应的点,并能在图中根据一个变量的值估计它所对应的变量的值。

3、利用正比例关系,解决生活中的一些简单问题。

教学重点:目标1、2。

教学难点:目标2、3。

教学过程:

活动一;判断下面的量是否成正比例关系?

1、 每行人数一定,总人数和行数。

2、 长方形的长一定,面积和宽。

3、 长方体的底面积一定,体积和高。

4、分子一定,分母和分数值。

5、长方形的周长一定,长和宽。

6、一个自然数和它的倒数。

7、正方形的边长与周长。

8、 正方形的边长与面积。

9、 圆的半径与周长。

10、 圆的面积与半径。

11、什么样的两个量叫做成正比例的量?

活动二:探索一个数与它的5倍之间的关系。

1、求出一个数的5倍,在书上表格填写。

2、判断一个数的5倍和这个数有怎样的关系?

小结:一个数和它的5倍之间具有正比例关系。

3、请观察横轴表示什么?纵轴表示什么?然后,根据上表说说各点表示的含义。

4、连接各点,你发现了什么?

5、 利用书上的图,把下表填完整。

找一找这组数据在统计图上的位置,读出未知数据再算一算,比较两次结果。

活动三:试一试。

1、在下图中描点,表示第20页两个表格中的数量关系。

2、思考;连接各点,你发现了什么?

发现:所描的点都在同一条直线上。

活动四:练一练。

1、 圆的半径和面积成正比例关系吗?为什么?

2、 乘船的人数与所付船费为:(数据见书上)

(1)将书上的图补充完整。

(2)说说哪个量没有变?

(3)乘船人数与船费有什么关系?

(4) 连接各点,你发现了什么?

3、回答下列问题:

(1)圆的周长与直径成正比例吗?为什么?

(2) 根据右图,先估计圆的周长,再实际计算。

(3) 直径为5厘米的圆的周长估计值为( ),实际计算值为( )。

(4) 直径为15厘米的圆的周长估计值为( ),实际计算值为( )。

4、把下表填写完整。试着在第一题的图上描点,并连接各点,你发现了什么?(表格见书上)

2021年六年级下册数学教案3

一、 引

1、引入课题

师: 这节课我们一起来探究学习“观察与探究”(板书课题)

2、出示学习目标

本节课我们的学习目标是:(课件出示)

让学生尝试用图表示成反比例的量之间的关系,利用图进一步认识反比例。

渗透事物之间都是相互联系和发展变化的观点,初步渗透函数思想。

二、学加导

师:明确了目标,请同学们借助自学指导来完成目标。

自学指导:自学课本27页,完成所提出的问题,并说说自己的想法。(先自学4分钟,然后小组交流1分钟。)

(一)学生自学:(先学)

师:好,开始。先自学2分钟,然后小组交流3分钟。

(二)汇报交流:(后教)

小组汇报,全班总结。

三、巩固练习

(一)学生自学:(先学)

(1)长方形面积一定,长与宽成反比例吗?为什么?|

(2)这节课我们用图表表示成反比例的量之间的关系。

用x、y表示面积为24cm2的长方形相邻的两条边长,它们的变化关系如下表。

1.观察表格,根据数据在方格纸上画出这8个长方形。

2.把图中的点用平滑的曲线依次连起来。

3.长和宽是怎样变化的?有什么规律?长扩大,宽缩小,相对应的长和宽的乘积是24。

(二)交流订正:(后教)

1.更正

师:学完后,在小组内进行交流。(有错的在小组中说错的原因,不会的优生讲解。)

2.讨论

集体订正。(学困生先说,优生纠正,学困生再说)

四、全课小结

师:同学们这节课已接近尾声,回顾本节课,你有什收获?

2021年六年级下册数学教案4

教学目标:

1、结合具体情境,体会生活中存在着大量互相依赖的变量;

2、在具体情境中,尝试用自己的语言描述两个量之间的关系。

教学过程:

一、创设情境、导入新课

1、师:生活中有哪些变化的现象?这些现象可以用数学的方法表示吗?

(学生已经完成“课前准备”,选择几个学生回答)

2、师:在生活中,很多事物在发生变化。如:人的年龄、身高、体重在变,我国的人均收入、生产总值等等都在变化,象这样的会变化的量,我们都称为变量。

3、师:象这样的例子很多,今天我们就来学习“变化的量”。

设计意图:学生预习后直接导入新课,加深对“变化的量”的认识,寻找生活中的量的认识,引起新课的学习积极性。本环节的课前准备是要学生独立完成。

二、进行新课,掌握变量。

1、请独立完成导学案的“学一学”。

2、师:小组交流刚才的自主学习的内容。并确定中心发言人。

3、小组进行自我展示。

(1)小明的体重变化情况表。

学生谈群学体会:人的年龄和体重是相关联的两个量,人的体重随着年龄的变化而变化。

教师小结。我发现(体重)随(年龄)的增加而增加。

设计意图:课本呈现出第一幅情景图,表格的形式让学生更加清晰的了解年龄与体重的变化,能够回答问题,发现年龄与体重的变化情况,小明的体重随年龄的变化,学生先观察然后回答问题。

(2)沙漠之舟

师:骆驼被称为“沙漠之舟”,它的体温随时间的变化而发生较大的变化。(课件出示:出示骆驼体温随时间的变化统计图。)

A、从图中你知道了什么信息?

B、一天中,骆驼体温是多少?最低是多少?

C、一天中,在什么时间范围内骆驼的体温在上升?在什么时间范围内骆驼的体温在下降?

D、第二天8时骆驼的体温与前一天8时的体温有什么关系?

E、每天骆驼的体温总是怎样变化的?

教学意图:通过教学第二幅情景图,认识有关沙漠之舟的基本知识,拓宽学生的课外知识面。读懂统计图,回答问题,通过问题,发现规律。这是本环节的教学目标,学生对于折线统计图的认识已有基础。

3、蟋蟀与气温的关系

A、出示蟋蟀叫的次数与气温之间关系的情境图。

B、你能用式子表示这个近似关系吗?

生:气温h=t÷7+3。

C、理解式子中量的变化。

师:如果蟋蟀叫了7次,这时的气温大约是多少?

如果蟋蟀叫了14次,这时的气温大约是多少?

如果蟋蟀叫了28次呢?

你能发现蟋蟀叫的次数与气温之间是怎样变化的?

小结:通过举例我们可以发现一个量随另一个量变化而变化,这些量就是变化的量。

教学意图:这环节学生理解蟋蟀的叫声用关系式表示,大多学生通过书上的文字提示,都可以完成关系式,个别不行的,就个别辅导。

三、课堂巩固,加深理解。

1.说一说,一个量怎样随另一个量变化。

(1)一种故事书每本3元,买书的总价与书的本数。

(2)一个长方形的面积是24平方厘米,长方形的长与宽。

2、小明到商店买练习簿,每本单价2元,购买的总数x(本)与总金额y(元)的关系式,可以表示为: 。

设计意图:我在这一课的练习设计上,没有太多的练习量,反而注重巩固课本上的练习。由难到易,重质不重量,希望通过补充练习提高后进生的课堂参与度,帮助部分学生的梳理知识。

四、全课小结,谈谈收获。

师:在生活中还有很多象这样相关联的两个变量,一个量总是随着另一个量的变化而变化,谁还能举出一些这样的例子?

2021年六年级下册数学教案5

教学目标:

1、使学生了解表示成正比例的量的图象特征,并能根据图象解决相关简单问题。

2、通过练习,巩固对正比例意义的认识。

3、情感、态度与价值观:初步渗透函数思想。

重点难点:

能根据数量关系式或图象判断两种量是否成正比例。

教学准备:

投影仪。

教学过程:

一、新课讲授

教学第46页内容。

教师出示表格(见书),依据表中的数据描点。(见书)

师:从图中你发现了什么?

生:这些点都在同一条直线上。

看图回答问题

①如果铅笔的数量是7支,那么铅笔的总价是多少?②总价是4.0的铅笔,数量是多少?③铅笔的数量是3支,那么铅笔的总价是多少?描出这一对应的点,它们是否在同一直线上?

你还能提出什么问题?有什么体会?

组织学生分小组汇报,学生汇报时可能会说出

①正比例关系的图象是一条经过原点的直线。

②利用正比例图象不用计算,可以由一个量的值,直接找到对应的另一个量的值。

二、练习讲授

1、基本练习。

(1)投影出示教材第49页第1题。

教师引导学生回顾正比例的意义及判断是否成正比例的方法。学生独立完成练习。

教师要求学生从两个方面说明为什么成正比例。a.电是随着用电量的增加而增加;b.电费与用电量的比值总是相等的。

师生共同订正。

(2)投影出示:一列火车1小时行驶90km,2小时行驶180km,3小时行驶270km,4小时行驶360km,5小时行驶450km,6小时行驶540km,7小时行驶630km,8小时行驶720km……

①出示下表,填表。

一列火车行驶的时间和路程

②填表并思考发现了什么?

③教师点拨:随着时间的变化,路程也在变化,我们就说时间和路程是两种相关联的量。(板书:两种相关联的量)

④教师:根据计算你们发现了什么?指出:相对应的两个数的比值固定不变,在数学上叫做一定。

⑤用式子表示它们的关系: 路程÷时间 =速度(一定)。

教师:上节课,我们学习了成正比例的量,下面我们继续学习和练习。

2、指导练习。

(1)完成教材第49页第2题。

(2)完成教材第49页第3题,先由学生独立做,后由老师抽查。在抽查第(1)小题时,多让不同的学生回答。做第(2)小题时应多让学生们交流。第(3)小题汇报时要求说出,你是怎样估计的,上台在投影仪上展示估计的思维过程。

(3)解决教材49页第4题:①投影出示书中的表格,引导学生观察表中的数据。

②组织学生在小组中合作探究。a.动手画一画,指名汇报图象特点。b.组织学生说一说,相互交流。

提示:判断两种量是否成正比例,先要判断它们是不是相关联的量,再判断它们的比值是否一定。

三、课堂作业

1、根据x和y成正比例关系,填写表中的空格。

2、看图回答问题。

(1)在这一过程中,哪个量没变?

(2)路程和时间有什么关系?

(3)不计算,从图中看出4小时行驶多少千米?

(4)7小时行驶多少千米?

课堂小结:

教师:判断两个相关联的量成正比例的三个要素是什么?

通过这节课的学习,你有什么收获?

课后作业:

完成练习册中本课时的练习。

板书设计:

正比例图像

图像:一条过原点的直线。

3285