教育巴巴 > 小学教案 > 数学教案 > 四年级 >

四年级数学教案范文

时间: 沐钦 四年级

四年级数学教案怎么写?由于我们教学面对的是一个个活生生的有思维能力的学生,又由于每个人的思维能力不同,对问题的理解程度不同,常常会提出不同的问题和看法,教师又不可能事先都估计到。下面是小编为大家带来的四年级数学教案范文七篇,希望大家能够喜欢!

四年级数学教案范文

四年级数学教案范文【篇1】

学习内容:P61页例5

学习目标:通过合作探究,总结出小数点位置的移动引起小数大小的变化规律。

学习重难点:小数点位置的移动引起小数大小的变化规律

一、【知识链接】

1、小数的性质是什么?

2、怎样比较小数的大小?

3、比较下列每组数的大小。

0.54○0.5402.8○2.8003.26○32.66.19○61.9

小结:一个小数在它的末尾添上0或者去掉0,小数的大小没有变,是因为没有移动小数点的位置;小数点的位置移动了,小数的大小也发生了变化。

二、【自主学习】

自学课本第61页例5,回答问题:

①0.009米=()毫米

②0.09米=()毫米

③0.9米=()毫米

④9米=()毫米

三、【合作探究】

1、从上往下观察,从0.009米变成0.09米,小数点向移动了位,即长度由毫米变成了毫米,长度到原数的倍。因此,小数点向移动一位,小数就到原数的倍。同理,比较①和③,小数点向移动了位,即长度由毫米变成了毫米,长度到原数的倍。比较①和④,小数点向移动了位,即长度由毫米变成了毫米,长度到原数的倍。

从下往上观察,小数点的位置依次向移动一位、两位、三位,这个数就到原数的、、。

2、练习:4.5的小数点向左移动一位是(),向右移动两位是()

0.305的小数点向右移动()是3.05,向左移动()是0.0305,向()移动()是305,向()移动()是30.5。

3、小结:小数点移动要牢记:右移,左移。移动一(二、三……)位是扩大(或缩小)10(100、1000……)倍,位数不够用补位。

四、【拓展延伸】

原数扩大还是缩小由什么决定?移动的位数决定什么?

五、【课堂小结】

小数点向右移动一位、两位、三位……,这个数就到原数的、、……。小数点向左移动一位、两位、三位……,这个数就到原数的、、……。

六、【课堂检测】

1、填空

(1)把6.2扩大()倍是62。

(2)把59缩小到它的()是0.59。

(3)0.28去掉小数点得(),原数扩大了()倍。

(4)73.21变为0.7321,原数就()。

2、判断

(1)、0.8的小数点向右移三位,原来的数就缩小到了它的1/1000()

(2)、3.69扩大1000倍是36.9。()

(3)、把一个数缩小到它的1/10,就要把这个数的小数点向左移动一位。()

四年级数学教案范文【篇2】

教学目标:

1、知识目标:引导学生初步理解小数的性质;能运用小数的性质正确地化简小数和改写小数。

2、能力目标:激发学生积极主动的探究精神,培养学生归纳、分析的能力。

3、情感目标:培养学生爱学数学的情感。

教学重点:

理解小数的末尾添上“0”或去掉“0”,小数的大小不变的道理。并正确运用这一性质解决相关问题。

教学难点

掌握在小数部分什么位置添“0”去“0”,小数大小不变。

教具准备:

学习纸“小魔术”纸卡多媒体课件

课时:1课时

教学过程:

一、情景导入(小魔术)

1.师:同学们,第一次给你们上课,作为礼节,我给大家表演个魔术——数字的变化。看这是数字1?等会你们一起小声喊:1,2,3,大,老师就可以把这个数变大了。信不信?

生:1,2,3,大。

师:把1变成10,10和1比扩大了10倍,……

2.老师还有一个数0.1,我们再来试一试。

引起学生的冲突:到底变大了吗?

(设汁意图:是把枯燥的数学知识贯穿在小学生喜闻乐道的游戏中,引发学生的学习兴趣,点燃他们求知欲望的火花,从而进入的学习状态,为主动探究新知识聚集动力。)

这节课,我们就来研究小数末尾“0”对小数的大小的影响。也就是我们今天要学习内容——小数的性质。

二、探求新知

1.师:0.1米、0.10米、0.100米,他们到底会不会相等呢?

师:请拿出你的学习纸把第一题完成。

汇报:请学生上台展示。填空、比较发现一样,从而得出0.1米=0.10米=0.100米。

教学中让学生说说你是怎样找出0.1米、0.10米、0.100米。

(0.1米是一位小数,它的计数单位是1/10,有1个1/10,也就是说0.1米=1/10米,把1米平均分成10分,1份就是1分米。所以0.1米=1分米。

0.10米是两位小数,它的计数单位是1/100,有10个1/100,也就是说0.10米=10/100米,把1米平均分成100分,1份就是1厘米,10份是10厘米。所以0.10米=10厘米。

0.100米是三位小数,它的计数单位是1/1000,有100个1/1000,也就是说0.100米=100/1000米,把1米平均分成1000分,1份是1毫米,100份就是100毫米。所以0.100米=100毫米。)

因为1分米=10厘米=100毫米所以0.1米=0.10米=0.100米

师:0.1米=0.10米=0.100米(板书)这三个长度是一样的,都是以“米”为单位,我们就可以把数抽象出来0.1=0.10=0.100。

(设计意图:这样,学生根据小数的意义,主动从“0.l米、0.10米、0.100米”出发研究问题。在问题得以解决的过程中,学生锻炼了运用已有知识解答新问题的能力,培养了运用数学知识的意识)。

仔细观察这组小数,你有什么发现?

生:小数的末尾添上“0”,小数的大小不变。

师:同学们的眼光真锐利。小数的末尾添上“0”,小数的大小不变。我现在有个疑问,其它的小数也有这样的特点吗?

师:现在请同学们翻开学习纸,根据方格图,自己想一组小数把它表示出来。

学生操作,交流汇报。

课件展示。

(教师在学习研究中要加强指导)

2.师:现在请同学们观察上面的题目中的小数,你能说出几组和它们类似的小数吗?

学生说说。

师:能说出这么多组,你们一定发现了什么规律吧?(交流,汇报)

总结:小数的末尾添上“0”或去掉“0”,小数的大小不变。

(设计意图:这样教学,把静态的知识结论转化动态的求知过程,让学生真正成为学习的主人,对所学的内容理解深刻,记忆牢固。同时,还培养了学生归纳概括事物本质属性的能力。)

3.联系生活,再现新知:还有同学们在商场看到货物的标价如:这样写,不但没有改变小数的大小,而且让顾客很清楚地知道是几元几角几分。

(二)小数性质的应用

1.教学例2

师:现在我们认识了小数的性质,那么应用小数的性质,我们可以根据需要对小数进行改写。

电脑演示:化简下面的小数。0.70=105.0900=

教学0.70=0.7

问:①你是怎样化简的?(根据小数的性质,去掉小数末尾的“0”就可以把小数化简)

②0.70与0.7它们的大小不变,但意义相同吗?

(不同,0.70表示70个1/100,0.7表示7个1/10)

教学105.0900=105.09

问:小数里的其他“0”可以去掉吗?为什么?(不可以,大小改变。师要强调末尾)

2.教学例3

电脑演示:不改变数的大小,把下面各数写成三位小数。

0.2=4.08=3=

师:你是如何把它改写成三位小数的?(根据小数的性质,在小数的末尾添上“0”小数的大小不变)

师:3如何改写成三位小数?这个小数点不点的话可以吗?

注意:A、在小数的末尾添“0”。

B、当这个数是整数时,在整数个位的右下角点上小数点,再添“0”。

师:应用小数性质时,应注意什么?(小数、末尾)

三、巩固练习

课本59页的做一做。2、开火车的形式回答59页的做一做。

问:你是怎样化简和改写这些数的?

四、全课小节

1.这节课你学到了什么?

小数的末尾添上“0”或去掉“0”,小数的大小不变。

2、我们是怎样探索小数的性质的?

在整数的末尾添上或去掉0,整数的大小发生了很大的变化,而在小数的末尾添上或去掉0,小数的大小却不变,但是通过在小数的末尾添上或去掉0,我们就给一个小数找到了许多大小不变的朋友,0就是这样一个奇妙的数字。其实,数学王国里有许多奇妙的现象,等着我们不断去探索、发现。

板书:小数的性质

小数末尾“0”对小数的大小的影响

小数的末尾添上“0”或去掉“0”,小数的大小不变。

0.1米=0.10米=0.100米

0.1=0.10=0.100

四年级数学教案范文【篇3】

教学内容:

人教版小学数学四年级下册第八单元《数学广角--植树问题》

教材分析:

植树问题是人教版四年级下册数学广角的内容,教材将植树问题分为几个层次:两端都栽、两端不栽、环形情况以及方阵问题等。其侧重点是:在解决植树问题的过程中,向学生渗透一种在数学学习上、研究问题上都很重要的数学思想方法化归思想,通过现实生活中一些常见的实际问题,让学生从中发现一些规律,抽取出其中的数学模型,然后再用发现的规律解决生活中的一些简单实际问题,同时使学生感悟到应用数学模型解题所带来的便利。本课的教学,并非只是让学生会熟练解决与植树问题相类似的实际问题,而是把解决植树问题作为渗透数学思想方法的一个学习支点。借助内容的教学发展学生的思维,提高学生一定的思维能力。

学情分析:

从学生的思维特点看,四年级学生仍以形象思维为主,但抽象思维能力也有了初步的发展,具备了一定的分析综合、抽象概括、归类梳理的数学活动经验。这部分内容放在这个学段,说明这个内容本身具有很高的数学思维和很强的探究空间,既需要教师的有效引领,也需要学生的自主探究。

教学目标:

1.知识与技能性:利用学生熟悉的生活情境,通过动手操作的实践活动,让学生发现间隔数与植树棵数之间的关系。 了解同一直线上植树问题的三种基本情况,能阐述不同情况下棵数与间隔数的关系。通过小组合作、交流,使学生能理解间隔数与植树棵数之间的规律。 能够借助图形,利用规律来解决简单植树的问题。

2.过程与方法:进一步培养学生从实际问题中发现规律,应用规律解决问题的能力。 渗透数形结合的思想,培养学生借助图形解决问题的意识。 培养学生的合作意识,养成良好的交流习惯。

3.情感态度与价值观 :通过实践活动激发热爱数学的情感,感受日常生活中处处有数学、体验学习成功的喜悦。

教学重点:

引导探究、发现两端都栽时棵数与间隔数之间关系。

教学难点:

运用棵数与间隔数之间的关系,解决逆向思维的实际问题。

教学方法:

植树问题虽然是日常生活中常见的生活现象,但对四年级的学生还是有很大的难度。美国教育家杜威说过:教育不是告知和被告知的事情,而是学生主动性建设的过程。因此教学中我让学生在动手实践中找方法--在方法中找规律在规律中学应用。

教学过程:

一、创设情境,引入课题

1.我以学生的小手为载体引入本课

【以学生身体的一部分为游戏主体,充分调动学生的参与积极性,利用学生的表现欲望和爱玩的天性,使学生对要学的内容产生好奇心理,顺利解决植树问题中的间隔含义,同时让学生在生活实例和亲身实践中,直观地感受一一对应的数学思想。】

2.3月12日植树节对学生进行环境教育。

通过创设生动有趣的情境,激发学生的求知欲望,顺利过渡到第二个环节。

二、探索规律建立模型

先出示引例:同学们在全长20米的小路一边植树,每隔5米栽一棵(两端要栽),一共需要多少棵树苗?

指导学生读题

1.从题目你们知道了什么?(说一说)

2.题目中每隔5米栽一棵是什么意思?

3.题目中有什么地方要提醒大家的吗?(一边,两端要栽)

4.一共需要多少棵树苗?你能自己想办法找到问题答案吗?有困难的同学可以借助线段图画一画。

5.交流。

6.反馈。

(1)请你们两人把你们的方法写到黑板上展示给大家看看,好吗?

(2)学生分别说想法。使学生明确:间隔数+1=棵数。

三、巩固练习实际应用

在这一环节我还原例1,让学生解决

四、回顾整理反思提升

1、我会填,让学生现一次巩固总长,棵数,间隔数之间的关系。研究两端都种的情况。如果路长是10米、15米、25米、30米,每隔5米种一棵(两端都种),各要种多少棵树呢?先想一想,再用一条线段表示小路画一画,验证一下! 每隔5米种一棵(两端都种) 路长(米) 画一画 间隔数 棵数

每隔5米种一棵(两端都种)

路长(米) 画一画 间隔数 棵数

(1)反馈交流:可以种几棵?你是怎么种的?

(2)观察比较表格中的数据,有什么发现?小组内交流自己的发现。

(3)全班交流汇报,引导学生概括规律(板书规律)。

两端都种时: 棵数=间隔数+1

间隔数=总长间隔

2、我会算,设计两旁都要栽的练习。出示119页做一做

3、智力大比拼,通过两端都要栽的情况顺理成章地使其明白另外两种植树问题。联系生活,完善建构。

(1)感知植树问题的三种模型。

看课件三种情况。(两端种、两端都不种、一端不种)

(2)想一想,生活中有类似这样的植树问题吗?请举例说一说!

课件出示例2(两端不种)

【数学来源于生活,而又服务于生活。在学生初步感知植树问题基础上,引出另外不同的种法,创设与学生的生活环境和知识背景密切相关的、学生感兴趣的、以便能更好的理解与植树问题有关的生活题型,让学生在具体生活中理解数学现象,并运用规律解决形式各异的生活问题,使学生深深地体会到数学的价值与魅力。】

4、应用模型,解决问题(植树问题并不只是与植树有关,生活中海油许多现象和植树问题相似。)如

(1)垃圾箱问题. 为净化环境,公园沿一条600米长的小路一侧设置垃圾箱,每隔30米放一个(路的一头不放),一共需要多少个垃圾箱?

(2)一根木头长10米,要把它平均分成5段。每锯下一段需要8分钟,锯完一共要花多少分钟?

(3)学校召开秋季运动会,在笔直的跑道一旁插彩旗。跑道全长100米,每隔2米插一面(两端都要插)。需要多少面彩旗?

(4)在全长2000米的街道两旁安装路灯(两端也要装)。每隔50米安一座,一共要安装多少座路灯? 指名读题,引导学生理解题意后独立解题。教师追问思考过程。

(5)园林工人沿公路一侧植树,每隔6米种一棵,一共种了36棵,从第1棵到最后一棵的距离是多远?

(6)广场上的大钟5时敲响5下,8秒敲完。12时敲12下,需要多长时间? 【练习紧扣中心,拓展情境,让学生运用规律独立解决简单的实际问题,。这样不但巩固了新知,而且完成了建构,更重要的是训练了学生的多向思维。】

五、回顾整理反思提升

1、谈谈这节课的收获。

【如此设计是基于学生的思维状态,引导学生说说对这部分内容的学习收获,进一步深入总结,给学生留有回味和发展的空间。】

2、只要我们细心观察,生活中还有更多更有挑战性的问题等着我们去解决,比如小朋友们排队,如果排成个圈儿,棵数与间隔数之间会藏着怎样的秘密呢?就留给大家课后去思考吧!

四年级数学教案范文【篇4】

教学目标:

1、掌握较大数的估算方法,能对生活中具体事物的数量用不同的方法进行估算,发展学生的数学思维。

2、能与同伴交流自己的估算方法,在交流活动中培养学生倾听、欣赏、互助的良好的学习品格,形成积极、主动的估算意识。教学重难点:重点:掌握、归纳一些估算的方法。难点:能正确、灵活、合理地对具体数据进行估算。

教学过程:

一、创设情境,提出问题。

这是一台家庭用的体重称,它的称重范围是0——120千克。请同学们估计一下,这台称一次最多能称出几位同学的体重?其实生活中有的时候并不需要精确的计算,只要大致估算出结果就可以解决问题了。今天我们要继续学习估算的本领。

1、课件出示:北京20__奥运主会场图。

2、提出问题:知道这是什么建筑物吗?课前老师布置同学们去查询有关北京奥运会主会场的一些数据,查到了吗,谁来说说?十万个座位是怎样一个概念,你们能想象出来吗?出示体育场的俯视效果图、内部效果图。想一想,这里的十万个座位是怎样安排的?

二、合作交流、解决问题。

1、出示课本P36页体育场看台图。同学们对体育场看台的座位安排已经有了基本的认识。这里还有一个体育场图,请同学们认真观察后,根据这个体育场的特点及看台座位的排列情况,估一估这个体育场的看台大约有多少个座位。

2、要求:(1)独立思考,估算整个体育场座位数;(2)汇报交流,说一说自己估算的方法和估算的结果。

3、交流汇报。哪位同学愿意第一个汇报?你估算的结果是多少?能不能说说你是怎样思考的?引导学生评价。

4、尝试练习。课件呈现P36页“估一估”。小青的座位票是28看台的22排32座,这是体育场最后一个看台,也是最后一排最末的座位。如果每个看台的座位数相同,你能估计出这个体育场的座位数吗?

(1)要求:独立思考、估算,有困难的可以和同学交流解决。

(2)交流反馈,学生评价。

三、归纳小结。

以上我们学习了什么?是用什么方法估算体育场座位数的?对,这节课我们学习的就是用乘法估算较大的数,这是估算时常用的一种方法。其实估算的方法是多种多样的,在解决具体问题的过程中,要学会应用不同的方法对不同的数据进行估算。

四年级数学教案范文【篇5】

教学目标:

1.学生在解决问题的过程中发现并理解乘法分配律,初步了解乘法分配律的应用。

2.学生在发现乘法分配律的过程中,发展比较、分析、抽象和概括的能力,增强用符号表达数学规律的意识,进一步体会数学与生活的联系。

3.学生感受数学规律的确定性和普遍适用性,获得发现数学规律的愉悦感和成功感,增强学习的兴趣和自信。

教学重难点:

发现并理解乘法分配律。

教学准备:挂图、小黑板。

教学流程:

一、创设情境,导入新课。

师生谈话,引入主题图:老师准备为参加学校排球操比赛的五位同学去购买衣服。

看看买什么衣服好看呢。

二、自主探索,合作交流。

1.出示:买5件夹克衫和5条裤子,一共要付多少元?

师问你打算怎样算?

生口答师板书:

(65+45)×565×5+45×5

请学生分别说清两道算式的含义。

2.师问猜想一下,这两道算式的结果会怎样?

要验证我们的算式是否正确,应该用什么方法?

生计算,个别板演。

证明这两道算式的结果是相等的。

中间应用“=”接连。

3.生读算式(65+45)×5=65×5+45×5

师问等号两边的算式有什么相同和不同?

生同桌说一说,并汇报。

4.这两道算式相等是一种巧合还是有规律的呢?

出示:(2+10)×6=2×6+10×6

(5+6)×3=5×3+6×3

师问中间可以用“=”来连接吗?

5.小组讨论:这三组等式左边有什么特点?

右边有什么特点?

生汇报。

6.师问你能写出具有这样规律的等式吗?

生独立写一写,个别板书。

7.师问你能想出一道等式,可以把我们今天学习的所有具有这种规律的等式都包括在内吗?

生写一写,个别板演。

8.揭题:乘法分配律

(a+b)×c=a×c+b×c

9.师总结两个数的和乘一个数,等于这两个数分别去乘这一个数,再把两次乘得的积相加。

三、巩固练习,拓展应用。

想想做做:

1.在口里填上合适的数,在○里填上运算符号。

(42+35)×2=42×口+35×口

27×12+43×12=(27+口)×口

15×26+15×14=口○(口○口)

72×(30+6)=口○口○口○口

强调:乘法分配律,可以正着用,也可以反着用。

2.横着看,在得数相同的两个算式后面画“√”

(28+16)×728×7+16×7

15×39+45×39(15+45)×39

74×(20+1)74×20+74

40×50+50×9040×(50+90)

3.算一算,比一比,每组中哪一道题的计算比较简便。

(1)64×8+36×825×17+25×3

(64+36)×825×(17+3)

让学生体会乘法分配律可以使计算简便。

4.用两种不同的方法计算长方形菜地的周长,并说说它们之间的联系。

生独立完成并汇报。

5.你能根据下图列出两

道综合算式吗?

上面的两道算式能组成一个等式吗?

四、全课小结

师问今天你有什么收获?和你的小伙伴说一说。

五、课堂作业

《补充习题》第26页。

四年级数学教案范文【篇6】

教学内容:

乘法分配律是小学四年级学生比较难理解与叙述的定律。如何使学生掌握得更好,记得更牢?我想学生自己获得的知识要比灌输得来的记得更牢。因此我在一开始设计了一个购物的情境,让学生在一个宽松愉悦的环境中,走进生活,开始学习新知。

教学目标:

1、让学生在解决实际问题的过程中发现乘法分配律;通过计算说理,理解乘法分配律。

2、让学生在发现规律的过程中,发展比较、分析、抽象和概括的能力,增强用符号表达数学规律的意识,进一步体会数学与生活的联系。

3、培养学生联系现实问题主动参与探索、发现和概括规律的学习态度,感受数学规律的确定性和普遍适用性,获得发现数学规律的愉悦感和成功

感,增强学习的兴趣和自信。

教学重、难点:

发现并理解乘法分配律。

教具准备:

多媒体课件一套。

教学过程

一、创设问题情境

谈话:这学期,我们学校鼓号队又增加了新成员,辅导员柳老师正在为他们准备服装呢!(课件出示商店场景)

二、展开探索过程

1、初步感知。

提问:仔细观察,从图中你获得了哪些信息?

学生列式后交流反馈解题思路,并借助图形加深学生对两种解题思路的体会。

提问:猜一猜,这两种方法的计算结果会怎么样?

计算验证:算一算,来证明你的猜想是正确的。

板书等式:(30+25)x4=30x4+25x4

2、类比展开。

(1)出示图形,让学生说说你想到了什么?你能用两种方法求出6套衣服一共要付多少元吗?板书:(30+25)x6=30x6+25x6

(2)除了把长方形看成上衣,梯形看成裤子,把它们看成6套衣服,还可以看成什么?

要求6套课桌椅多少元,你准备怎么解决?

板书:(100+60)x6=100x6+60x6

3、体验感悟。

(1)类似这样的等式还有吗?你能写出第4组吗?

学生举例后,挑3组板书。

(2)提问:这3组算式相等吗?怎么证明?(计算、乘法的意义)

同桌互相检查刚才写的算式是否相等。

(3)交流:介绍你写成功的经验

引导:你是怎么根据左边的算式写出右边的算式的?

4、提示规律。

(1)提问:像这样的等式能写完吗?

(2)用自己喜欢的方式表达所发现的规律,在小组里交流。展示。

板书:(a+b)xc=axc+bxc

(3)板书:乘法分配律

让学生用自己的语言说说这个字母式子表示什么,师小结。

三、巩固内化

1、在□里填上合适的数,在○里填上运算符号。

(42+35)×2=42×□+35×□

27×12+43×12=(27+□)×□

15×26+15×14=□○(□○□)

学生独立填写,指名报答案,全班共同校对。指出后两题是乘法分配律的逆向应用。

出示:72x(30+6)= 齐说答案。

出示:(25—12)x4= 可能等于什么?怎样才能确认?你能联想到什么?小结。

2、横着看,在得数相同的两个算式后面画“√”。

(48+52)×13 48×13+52×13 □

40×5+2×5 5×(40+2) □

75×(19+1) 75×19+75 □

40×50+50×90 40×(50+90) □

27×(16+30) 27×16+30 □

独立完成,小组讨论为什么有的是相同的,有的是不相同的。指名报答案,说说第三组两道算式为什么是相等的?第四组的两道算式为什么不相等?怎样改一下能使它们相等?

出示打“√”的算式,如果让你计算的话,你更愿意计算哪边的式子呢?为什么?小结:有时应用乘法分配律可以使计算简便。

四、总结回顾

通过今天这节课的学习,你有什么收获?

五、布置作业

1、必做题:想想做做第5题。

2、选做题:如果把乘法分配律中“两个数的和”换成“3个数的和”、“4个数的和”或“更多个数的和”,结果还会不会不变?用合适的方试着进行验证。

四年级数学教案范文【篇7】

一、教学目标

1.在具体的情境中,让学生自主探索出比较小数大小的方法,能正确地比较两个小数的大小以及将几个小数按大小顺序排列。

2.在比较小数大小的过程中,发展学生的推理能力。

3.通过小数比较大小,使学生初步感悟到数学知识的内在联系。

二、教材分析

教材创设了少年演讲比赛的情境,设计了三个问题,第一个问题是比较郑强和李明两个同学“谁的得分高”。在比较9.87 和9.90哪个数大时,学生可能会有不同的想法。有的学生联系生活经验可以得到9.90分比9.87分高,最后可以引导学生从数位来思考,两个数的整数部分相同,就看十分位,十分位上大的那个数就大,所以9.87<9.90。

第二个问题是比较三人的得分情况,张华的得分是9.96分,要比较郑强、李明、张华的成绩,就需将三个同学的得分按顺序排列起来,首先要让学生看清楚是按从大到小排列还是小到大排列,再让学生说一说是怎样比的。使学生体会到先比较整数部分,整数部分大的那个数大;整数部分相同就要看十分位,十分位上大的那个数大;十分位上相同,就要看百分位,百分位上大的那个数大。

第3个问题“王平可能是多少分呢?”是进一步让学生理解小数的大小,确定其范围。

三、学校及学生状况分析

我校是一所乡镇小学,学生大部分来自农村,只有极少数学生来自于乡镇企事业单位。我校实施新课程改革已是第四个年头,新的教材,新的理念,新的教学方法,使孩子们养成了良好的学习习惯,敢于提出问题,敢于相互质疑,大胆进行小组合作交流,自主探索,自主学习。学生活泼可爱,思维灵活,敢说敢做,既有着农村孩子特有的淳朴与耿直,又有着良好的合作和创新意识。只要是贴近孩子生活的实际的学习材料和内容,他们都会表现出浓厚的学习兴趣。

四、教学过程。

(一)创设情境,激发兴趣。

师:同学们,你们看过歌手大奖赛吗?

生:看过。

师:一场比赛结束后,你最关心的是什么?

生1:我最想知道谁得了第一。

生2:我一般最想知道我喜欢的那个选手得了第几名。

生3:我最想知道他们的名次情况。

……

(二)合作探索,解决问题。

师:我调查到在一次歌手大奖赛中,郑强和李明两名选手的最后成绩是这样的,请大家看!(出示图片)

郑强:9.87分;李明:9.90分。

1.提出问题。

师:根据图中的信息,你能提出什么数学问题?

生1:郑强和李明谁得了冠军?

生2:郑强和李明谁的得分高一些?

生3:他俩相差多少分?

……

2.大胆猜测。

师:同学们提出的问题都很好!他俩相差多少分这个问题,我们以后的学习中再来解决,而我们这一节课主要来解决像同学们提出的郑强和李明谁的得分高,谁的得分低这样的问题。那么他们谁的分高一些呢?   生1:李明的分高。

生2:我也认为李明的分高一些。

生3:对!和我的看法一样。

……(学生你一言我一语的在谈论)

3.合作探究,解决问题。

师:你们都认为李明的分高一些,你是怎样想出来的?请大家自己先判断一下,然后再在小组内说一说你的想法。

(学生活动,教师参与。)

汇报交流。

生1:我们小组的同学都认为是9.90大一些,我们可以先看9.87和9.90的整数部分,都是“9”,没法比,我们又比下一位“9”和“8”9比8大,所以我们就认为9.90比9.87大一些。

生2:我们小组同意他们的想法,我们能说的更明白,在以前我们学习整数比较大小时,都是从位比起,所以我们认为小数也是从位比起,假如位同样大,那么我们就再比下一位,就这样依次往下比。

生3:我们小组认为在比较小数大小的时候,应该先比较整数部分,假如整数部分同样大就再比较小数部分……

师:同学们说的都很有道理,就像大家所说的,通常我们在比较两个小数的大小时,先看它们的整数部分,整数部分大的那个数就大;整数部分相同的,十分位上的数大的那个数就大;十分位上的数也相同的,百分位上的数大的那个数就大;……

师:那你们认为小数与整数比较大小时有什么相同和不同的地方呢?请大家独立思考后在小组内互相说一说。

生1:我们认为都是从位比起。

生2:整数要先数一数位数的多少,位数多的那个数就大,而小数有小数部分,不能比位数的多少。……

师:大家说得棒极了!在比较小数大小时是从位比起,按照数位顺序一位一位地比,这一点与整数大小的比较方法是相同的,比到能分出大小就不再往下比了;小数比较大小与整数比较大小还有不同的地方,整数比较大小当整数位数不同时,位数多的那个数就大,而小数比较大小与位数的多少无关,是要按照数位顺序从高位到低位依次比较。

师:张华的得分是9.96分,同学们能将郑强、李明、张华的得分按顺序排列起来吗?

( )>( )>( )

(1)学生独立完成,小组交流。

(2)全班反馈。

1组:我们先比整数部分,整数部分相同,再比较小数部分,十分位上两个是9,一个是8,是8的最小,再比较9.90和9.96的百分位,9.90的百分位是0,9.96的百分位是6,所以9.96,也就是(9.96 )>(9.90 )>( 9.87 )

(三)应用拓展。

1.排顺序。

师:在这次比赛中王平的表现要比张华差一些,比李明好一些,请大家猜一猜,评委会给王平多少分呢?请你将这三个同学的得分按顺序排列起来。   生1:我猜可能是9.95分,因为9.95比9.90大,比9.96小。学生投影展示:9.96>9.95>9.90。

生2:我猜可能是9.93分,9.93也比9.90大,同时也比9.96分小。学生投影展示:9.96>9.93>9.00。

生3:我猜也可能是9.905分。学生投影展示:9.96>9.905>9.90。

师:大家的想法都很好,王平的分数还可以是多少分呢?

生4:老师,我有个不一样的答案!我认为比李明高一些,而比比张华低一些的小数有无数个。

(此时大部分学生有点疑惑)

师:为什么?说说你的看法。

生4:我认为只要个位和十分位上都保证是“9”,然后小数十分位上的数大于0而小于6,千分位和后边的可以任意的添数,就都比9.90多,比9.96小,这样的数可以有无数个。

(众生鼓掌,同意他的想法。)

师:你的这个发现真了不起!老师也为你的出色表现感到自豪!

2.找朋友。

教师举起写有“13.21”的卡片。

师:请大家在卡片上任意写一个小数,找比我大的朋友在哪里?

(学生写好后,部分学生举起手中的卡片对照。)

生:比您大的朋友在这里是……

师:大家可以在组内玩这个找朋友的游戏,请小组的同学先自己写好一个小数,然后比一比谁写的大,谁写的小,并说一说你是怎样比的。

(学生活动)

3.猜一猜。

师:同学们,我买了一本书是7元左右,请大家猜一猜是多少?

生1:比7.20元少吗?

师:对!

生2:比7.10元少吗?

师:不对!

生3:是7.15元吗?

师:对了!

师:你还想玩这个游戏吗?

生(齐):想!

师:请大家在小组内玩一玩,小组的同学可以轮流当裁判。

……

(四)总结、评价。

师:在这节课中,你有什么收获或感受?

生1:我学会了正确的比较两个小数的大小和三个小数的大小,还能给他们排顺序。

生2:我学会了怎样比较小数的大小。我感觉自己在这节课中的表现还可以,我很高兴。

生3:我又学到了一些关于小数的知识,我感觉很快乐。

32534