教育巴巴 > 小学教案 > 数学教案 > 五年级 >

5年级数学下册第3单元教案

时间: 新华 五年级

在数学教学中,引导学生变换形式,不断满足学生的好奇心是重要的措施。五年级数学教师的教学工作离不开五年级数学教案,五年级数学教案是他们进行教学活动的保障。你是否在找正准备撰写“5年级数学下册第3单元教案”,下面小编收集了相关的素材,供大家写文参考!

5年级数学下册第3单元教案篇1

教学内容:

人教版小学数学教材五年级上册第95页主题图、96页例3、第96页“做一做”,

教学目标:

1、知识与技能:通过观察、猜想、操作等数学活动,推导出梯形的面积计算公式。发展空间观念和推理能力渗透转化的数学思想方法。并能进一步体会利用转化的方法解决问题

2、过程与方法:能正确地应用公式计算梯形的面积,并能解决生活中一些简单的实际问题。

3、情感态度与价值观:让学生自我展示、自我激励,体验成功,在不断尝试中激发求知欲,陶冶情操。培养学生探索精神和合作精神,获得数学学习的乐趣。

教学重点:

掌握梯形面积的计算公式,并会用公式解决实际问题。

教学难点:

理解梯形面积公式推导方法的多样化,体会转化的思想。

考点分析:

会用梯形面积公式解决实际问题。

教学方法:

游戏引入——新知讲授——巩固总结——练习提高

教学用具:

课件、多组两个完全相同的梯形。

教学过程:

一、提出问题(课件出示教材第95页的主题图)。

教师:同学们在图中发现了什么?

教师:车窗玻璃的形状是梯形。怎样求出它的面积呢?

二、通过旧知迁移引出新课。

教师:同学们还记得平行四边形和三角形的面积怎么求吗?

1、指名能说出平行四边形面积公式及三角形面积公式。并能简要说出面积公式推导过程。

2、课件出示平行四边形面积、及三角形面积公式推导的过程,教师揭示转化方法:拼合法、割补法

3、教师:前面我们学习了平行四边形的面积,又学习了三角形的面积,请同学们想一想,我们能用学过的方法推导出梯形的面积计算公式吗?

三、揭示课题;

根据学生的回答,引出新课,梯形的面积。

板书课题--梯形的面积。

四、新知探究

1、师:根据前面的学习,我们把要研究的图形转化成已学过的平面图形,就能找到求图形面积的计算方法,今天我们要研究的梯形面积,可以怎样转化呢?下面我们就来实践操作一下吧。

2、请同学们打开学具袋,看看里面的梯形有什么特点?

生:各种梯形,每种两个,每种梯形颜色一样。

教师提出要求

①选择自己喜欢的梯形把它拼成我们学过的图形

②想一想,拼成怎样的图形,利用怎样的方法拼成的?

③它们的高与梯形的高有怎样的关系,它们的底与梯形的上、下底有怎样的关系?它们的面积与梯形的面积有着怎样的联系?

④先独立思考后小组交流

生小组合作探究。师巡视指导,引导学生注意把转化前后图形各部分之间的关系找准。

3、(出示课件)现在画面展示的是两个完全相同的梯形重叠在一起,哪个小组能说一说刚才你们将其拼成了什么图形?是怎样拼的?各小组推选1人向全班汇报过程与结果。(教师逐一配以课件演示。)

师引导得出如下几种推导思路:(师边利用课件演示边讲解)

思路一:用两个完全一样的梯形拼成一个平行四边形,得出拼成的平行四边形的面积是梯形面积的2倍,平行四边形的高与梯形的高相等,平行边四边形的底等于梯形的上底与下底之和,从而推出

梯形面积=(上底+下底)×高÷2

思路二:把梯形剪成一个平行四边形与一个三角形,梯形的面积等于一个平行四边形面积与一个三角形面积之和,从而推出

梯形的面积 =上底×高+(下底-上底)×高÷2

=(上底+下底)×高÷2

思路三:沿梯形的一条对角线剪开,把梯形分割成两个三角形。得出梯形的面积等于两个三角形面积之和,从而推出

梯形的面积 =上底×高÷2+下底×高÷2

=(上底+下底)×高÷2

教师引导学生对以上的推导结果进行比较,最后得出“梯形面积=(上底+下底)×高÷2”。

师:如果上底用字a来表示,下底用b来表示,高用h来表示,那么梯形面积公式用字母公式可表示为什么?学生用字母表示出梯形的面积计算公式:S=(a+b)h÷2

五、巩固提升

1、(出示课件),三峡水电站全景图及第89页例3并读题。同时出示水电站的横截面的简图(梯形)。提问,实际求什么?

S =(a+b)h÷2

=(36+120)×135÷2

=156×135÷2

=10530(㎡)

2、计算下面图形的面积,你发现了什么?

六、总结结课

1、这节课你学到了什么?要计算梯形的面积,必须要知道几个条件?还要注意什么?

2、我们是怎样得出梯形面积的公式的?

(二)教师总结

今天我们利用转化的思想推导出了梯形的面积计算公式,并会用梯形的面积计算公式解决生活中的实际问题。

板书设计:

梯形面积=(上底+下底)×高÷2

梯形的面积 =上底×高+(下底-上底)×高÷2

=(上底+下底)×高÷2

梯形的面积 =上底×高÷2+下底×高÷2

=(上底+下底)×高÷2

5年级数学下册第3单元教案篇2

教学内容:人教版五年级下册第四单元第一课时《分数的产生和意义》。

学情分析:在学习这部分内容之前学生在三年级上学期的学习中,已经借助操作、直观,初步认识了分数,知道了分数的各部分的名称,会读、写简单的分数,会比较分数大小还会简单的同分母分数加、减法。

教学设想:本节课的教学,单位“1”和分数单位这两个概念非常重要,应从直观到抽象,由个别到一般,用利操作、讨论、交流等形式展开小组学习,适当展开概念的形成过程,帮助学生在过程中获得者得感悟,自己构建这些概念的意义。

教学目标:

1、在学生原有分数知识基础上,使学生知道分数的产生,理解分数的意义,知道分子、分母和分数单位的含义。

2、经历认识分数意义的过程,培养学生的抽象、概括能力。

3、利用操作、讨论、交流等形式展开小组学习,培养学生的合作探究能力,培养质疑和验证科学知识的能力。

教学重点:明确分数和分数单位的意义,理解单位“1”的含义。

教学难点:对单位“1”的理解。

教具和学具:卷尺、四张长方形白纸、四条一米长的绳子、若干个小立方体和一捆绘画笔。

教学过程:

一、创设情景,温故引新。

1、师:我们已经初步认识了分数。(板书:分数)谁来说几个分数?(板书:如1/4)你知道分数各部分的名称吗?(板书):师:那你们知道分数是怎样产生的吗?

二、教学分数的产生。

2、能根据成语说出下面的分数吗?

一分为二( ) 七上八下( ) 百里挑一( ) 十拿九稳( )

1、请一个学生用米尺测量黑板的长,说一说,用“米”做单位,看看测量的结果能不能用整数表示。那剩下的不足一米怎么记?

2、在古代,人们就已经遇到了这样的问题。(师用一根打了结的绳子演示古人测量的情况)。课件呈现情境图,介绍分数的起源和发展历史。

3、总结:在测量、分物的时候,可能得不到整数的结果,需要用一种新的数表示——分数表示。所以分数是人类为了适用实际需要而产生的。

4、在我们的日常生活中,为了平均分配一些东西,也常常会遇到不能用整数表示的情况。比如两个小朋友平分一个橘子、一块月饼、一块饼干等,每人分到的能用整数表示吗?用什么分数表示?

三、教学分数的意义。

师:下面老师要先考考大家,你能举例说明1/4的含义吗?(投影出示题目,学生口答)

出示一个1/4的正方形的阴影部分。

师:阴影部分可以用什么分数表示?它表示什么意思?

2、师:下列图中的阴影部分能用1/4表示吗?为什么?

如生说可以,则问:你为什么觉得可以用1/4表示呢?生说理由。

(强调一定要平均分)(板书:平均分)

3、动手操作,探索新知。

(1)操作。

师:现在我给每一个小组都提供了四种材料,一张长方形纸、一条一米长的绳子、6个小立方体,4根绘画笔。下面请每组根据这四种一样的材料,通过折一折、画一画、分一分等方法,创造出几个不同的分数。

学生动手操作,教师巡视。

(2)交流

师:谁愿意上来说一说,你得到了哪些分数?这个分数是怎样得到的?

小组交流。

(3)认识单位“1”。

师:利用这四种材料,同学们创造出了好多分数。刚才在表示这些分数时,我们都是把哪些东西来平均分的?

生:一张长方形纸、一米长的绳子、6个小立方体、4根绘画笔平均分。

师:象把一张长方形纸平均分,我们可以称之为把一个物体平均分

(课件显示:一个物体)

把一米长的绳子平均分,我们可以称之为把一个计量单位平均分。(课件显示:一个计量单位)

把6个小方块、4根绘画笔平均分,我们又可以称之为把一些物体平均分。(课件显示:一些物体)

师小结:一个物体、一些物体等都可以看做一个整体,把这个整体平均分成若干份,这样的一份或几份都可以用分数来表示。(课件显示)

师:(投影出示):我们可以把这3只象看作一个整体吗?

我们可以把这6颗草莓看作一个整体吗?这4只老虎呢?

我们还可以把哪些物体也看成一个整体呢?(学生举例。)

师:象这样的一个物体、一个计量单位、一个整体,我们可以用自然数“1”来表示,通常把它叫做单位“1”,( 课件显示)强调说明:①单位“1”不仅可以指一个物体、一个计量单位,也可以是很多物体组成的一个整体。如:一个苹果、一枝铅笔、一个计量单位、一堆煤、一仓库粮食等等,把什么平均分,就应把什么看做单位“1”。②单位“1”和自然数“1”的区别:自然数1是一个数,只表示一个具体事物。如:一个人、一本书、一间房子……它是自然数的计数单位。而单位“1”不仅可以表示某一个具体事物,还可以表示一堆、一群……它表示被平均分的整体。

概括分数的意义:把单位“1”平均分成若干份,表示这样的一份或几份的数,叫做分数。

(4)理解分子分母的意义。

师:通过刚才的学习,大家知道了分数的意义,请同学们想一下,这个“若干份”是分数中的什么?(分母,表示平均分的份数)“这样的一份或几份”是分数中的什么?(分子,表示取的份数)

(5)师:接下来我想出几道题来考考大家,你们愿不愿意接受挑战?

①把这个文具盒里的所有铅笔平均分给2个同学,每个同学得到这盒铅笔的几分之几?

生:1/2

②师:为什么可以用1/2来表示?

③师:如果把这盒铅笔平均分给5个同学,每个同学得到这盒铅笔的几分之几呢?

如果把这盒铅笔平均分给10个同学,每个同学得到这盒铅笔的几分之几呢?

如果把这盒铅笔平均分给50个同学,每个同学得到这盒铅笔的几分之几呢?2个同学得到这盒铅笔的几分之几?

如果把这盒铅笔平均分给100个同学,每个同学得到这盒铅笔的几分之几呢?10个同学得到这盒铅笔的几分之几呢?

④师:现在这个文具盒里有6支铅笔,把它平均分给2个同学,每个同学得到的铅笔能用1/2表示吗?是几支铅笔?

⑤如果我再增加2支铅笔,把8支铅笔平均分给2个同学,每个同学得到的铅笔还能用1/2表示吗?是几支铅笔?为什么同样是1/2,铅笔的支数不一样?

师:因为一个整体表示的具体数量不同,所以同样是1/2,铅笔的支数不一样。

四、教学分数单位。

师:整灵敏有计数单位个、十、百、千、万……分数是否也有计数单位呢?它的计数单位又是怎样规定的?

显示:把单位“1”平均分成若干份,表示其中一份的数叫做分数单位。

师:也就是说分数单位是由一个分数的分母决定的,分母是几,它的分数单位就是几分之一。(师举例说明后,并说出几个分数让学生回答,后再让学生自己举例说明)

加强练习,深化概念。

练习:

1、35 表示把( )平均分成( )份,表示这样的( )份,它的分母是( ),表示( );分子是( ),表示( )。

2、67 的分数单位是( ),有( )个这样的分数单位。

3、说出每个分数的意义。

(1)五(1)班的三好生人数占全班的29 。

(2)一节课的时间是23 小时。

4、课本练习十一第9题。

5、判断(对的打“√”,错的要“×”)。

(1)一堆苹果分成4份,每份占这堆苹果的14 ( )

(2)把5米长的绳子平均分成7段,每段占全长的57 ( )

(3)14个19 是914 ( )

(4)自然数1和单位“1”相同。( )

五、小结。

今天这节课我们学习了?你有哪些收获?

5年级数学下册第3单元教案篇3

教学目标:

1.使学生在具体情境中认识列、行的含义,知道确定第几列、第几行的规则,初步理解数对的含义,会用数对表示具体情境中物体的位置。

2.使学生经历由具体的座位抽象成用列、行表示的平面图的过程,提高抽象思维能力,发展空间观念。

3.使学生体验数学与生活的密切联系,进一步增强用数学的眼光观察生活的意识。

教学过程:

一、情境引入

1、谈话:我们每个学期都要召开家长会,如果是你爸爸来参加家长会了,你用什么方法告诉他你在教室里的位置呢?

2、指名学生汇报,预设回答:(①我坐在第一组第二张桌子;②我坐在教室中间的位置;③我坐在第五行靠墙的位置)教师对学生的回答一一点评

指出:要确定自己的位置,一个条件是不够的,至少需要两个条件。

3、谈话:今天我就要学习一种简洁、新颖的方法来确定位置,想知道是什么方法吗?

二、教学新课

1、教学例1

(1)出示例题图,提问:这是某个班级的座位图,从图中你看出了什么?

学生回答后继续追问:谁能说说小军的位置?

预设回答:(小军坐在第4竖排第三个;小军坐在第三横排的第4个)

指导学生数的时候是从哪向哪数。

提问:如果我们不知道小军的位置,听了刚才同学的发言,能顺利地找到小军的位置吗?

谈话:这些方法都是正确的,但是你觉得用这样的方法描述小军的位置有什么不足之处吗?

预设回答(不够清楚,比较麻烦)

(2)用数对表示位置。

出示抽象图,谈话:我们把刚才例题图转化为抽象图,你还能找到小军的位置吗?

第5行 ○ ○ ○ ○ ○ ○

第4行 ○ ○ ○ ○ ○ ○

第3行 ○ ○ ○ ○ ○ ○

第2行 ○ ○ ○ ○ ○ ○

第1行 ○ ○ ○ ○ ○ ○

第 第 第 第 第 第

1 2 3 4 5 6

列 列 列 列 列 列

谈话:实际上,在确定位置时,竖排叫列,确定第几列一般从左往右数;

横排叫行,确定第几行一半从前往后数(指图板书)。

小军位置是第几列第几行?(从左向右数第4列,从前向后数第3行)

像这样的位置我们可以用一个数对来表示(4,3)

让学生说说对(4,3)的理解

小结:(4,3)表示第4列,第3行,这样的数对包含两个数,第一个数表示第几列,第二个数表示第几行,两个数之间用逗号隔开,外面加上小括号。

(3)用数对表示位置。

课件出示问题:在抽象图中找出第2列第4行的位置,用数对表示是什么?

指名学生回答,让其他学生点评

继续出示问题:( 6,5 )在上图中表示第几列第几行的位置。

指名学生回答,让其他学生点评

回到例1教学用图,谈话:小军还有几个好朋友,你能用数对表示出他们的位置吗?

指名学生回答,并让他们说出表示什么

2、情境教学

(1)谈话:我们刚才学习了用数对来表示位置,那么家长会之前你能这个方法告诉你家长的位置吗?我们规定从讲台开始,从前向后分别为第一行、第二行……;从教室的门开始,老师的方向从左向右分别为第一列、第二列……。请大家每个人都想想自己的位置怎么用数对表示。

(2)同桌互相交流,说说自己位置表示的数对

(3)指名学生说说自己的位置和表示的数对,然后点评

(4)活动:出示数对,请相应的同学起立 (1,4) (4,3) (2,2) (5,1) (7,5) (9,6)

点评:为什么

2.完成“练一练”。

(1)学生在书上完成1.2题。

你能找到第2列第4行的位置吗?有数对怎样表示?

(2)(5,5)表示什么呢?是图上的哪个圈?

两个“5”表示的意思一样吗?

三、巩固练习

1.完成练习三第1题。

教室里的座位共有几列几行呢?第1列第1行是哪个同学的座位?用数对怎样表示你能说说自己的座位在第几列第几行吗?用数对怎样表示?

在小组中互相说说,并互相指其他座位说数对。

2.完成练习三第2题。

在实际生活中,也经常用数对确定位置。

你能悦纳嘎数对表示这四块瓷砖的位置吗?

追问:第3列的两块瓷砖有什么共同特点吗?

第4行的两块瓷砖用数对表示位置时,写出的两个数对有什么相同的地方?

同一列的两块瓷砖,数对中的第一个数相同;

同一行的瓷砖,数对中的第二个数相同。

3.完成第3题。

(1)独立完成用数对表示每一块花砖的位置。

(2)在小组中交流花砖位置的排列有什么规律?

(3)汇报交流结果。

四、课堂总结

通过今天的学习,你有什么收获?你认为学习用数对确定位置的方法对你以后有什么指导作用呢?

板书设计:

用数对确定位置

竖排叫列,横排叫行。

数对中的第一个数表示第几列,第二个数表示第几行;

两个数之间用逗号隔开,两个数的外面用小括号括起来。

31508