教育巴巴 > 小学教案 > 数学教案 > 五年级 >

新人教版五年级数学上册教案

时间: 新华 五年级

在学生自主理解体悟的同时,五年级数学老师应该有意的引导学生发现数学的有趣点。五年级数学教案能够帮助五年级数学教师的教学工作顺利开展,作为五年级数学教师不妨试着写一篇五年级数学教案。你是否在找正准备撰写“新人教版五年级数学上册教案”,下面小编收集了相关的素材,供大家写文参考!

新人教版五年级数学上册教案篇1

教学目标:

1.通过欣赏与设计图案,使同学进一步熟悉已学过的对称、平移、旋转等现象。

2.欣赏美丽的对称图形,并能自身设计图案。

3.同学感受图形的美,进而培养同学的空间想象能力和审美意识。

重点难点:

1.能利用对称、平移、旋转等方法绘制精美的图案。

2.感受图形的内在美,培养同学的审美情趣。

教学准备:幻灯片、课件。

教学过程

一、情境导入

利用课件显示课本第7页四幅美丽的图案,配音乐,让同学欣赏。

二、学习新课

(一)图案欣赏:

1、伴着动听的音乐,我们欣赏了这四幅美丽的图案,你有什么感受?

2、让同学尽情发表自身的感受。

(二)说一说:

1、上面每幅图的图案是由哪个图形平移或旋转得到的?

2.上面哪幅图是对称的?先让同学边观察讨论,再进行交流。

三、巩固练习

(一)反馈练习:

完成第8页3题。

1、这个图案我们应该怎样画?

2、仔细观察这几个图案是由哪个图形经过什么变换得到的?

(二)拓展练习:

1、分别利用对称、平移和旋转创作一个图案。

2、 交流并欣赏。说一说好在哪里?

四、全课总结

对称、平移和旋转知识广泛地应用于平面、立体的建筑艺术和几何图像上,而且还涉和到其它领域,希望同学们平时注意观察,都成为杰出的设计师。

五、安排作业:

教材第9页第5题。

板书设计:

欣赏和设计

图案1 图案2

图案3 图案4

对称、平移和旋转知识有广泛的应用。

新人教版五年级数学上册教案篇2

【教学目标】

1.使学生通过观察、猜想、验证、理解并掌握3的倍数的特征。

2.引导学生学会判断一个数能否被3整除。

3.培养学生分析、判断、概括的能力。

【重点难点】

理解并掌握3的倍数的特征。

【复习导入】

1.学生口述2的倍数的特征,5的倍数的特征。

2.练习:下面哪些数是2的倍数?哪些数是5的倍数?

324 153 345 2460 986 756

教师:看来同学们对于2、5的倍数已经掌握了,那么3的倍数的特征是不是也只看个位就行了?这节课,我们就一起来研究3的倍数的特征。

板书课题:3的倍数的特征。

【新课讲授】

1.猜一猜:3的倍数有什么特征?

2.算一算:先找出10个3的倍数。

3×1=3 3×2=6 3×3=9

3×4=12 3×5=15 3×6=18

3×7=21 3×8=24 3×9=27

3×10=30……

观察:3的倍数的个位数字有什么特征?能不能只看个位就能判断呢?(不能)

提问:如果老师把这些3的倍数的个位数字和十位数字进行调换,它还是3的倍数吗?(让学生动手验证)

12→21 15→51 18→81 24→42 27→72

教师:我们发现调换位置后还是3的倍数,那3的倍数有什么奥妙呢?

(以四人为一小组、分组讨论,然后汇报)

汇报:如果把3的倍数的各位上的数相加,它们的和是3的倍数。

3.验证:下面各数,哪些数是3的倍数呢?

210 54 216 129 9231 9876

小结:从上面可知,一个数各位上的数字之和如果是3的倍数,那么这个数就是3的倍数。(板书)

4.比一比(一组笔算,另一组用规律计算)。

判断下面的数是不是3的倍数。

3402 5003 1272 2967

5.“做一做”,指导学生完成教材第10页“做一做”。

(1)下列数中3的倍数有 。

14 35 45 100 332 876 74 88

①要求学生说出是怎样判断的。

②3的倍数有什么特征?

(2)提示:①首先要考虑谁的特征?(既是2又是5的倍数,个位数字一定是0)

②接着再考虑什么?(最小三位数是100)

③最后考虑又是3的倍数。(120)

【课堂作业】

完成教材第11~12页练习三的第4、6、7、8、9、10、11题。

【课堂小结】

同学们,通过今天的学习活动,你有什么收获和感想?

【课后作业】

完成练习册中本课时练习。

3的倍数的特征

一个数各位上的数字之和是3的倍数,那么这个数就是3的倍数。

教学3的倍数的特征时,教师要注意学生的自主探索过程,通过猜一猜、算一算、想一想、验一验、比一比等教学环节,循序渐进地让学生参与到学习中来,但教师在想一想这个环节中要进行适当点拨、引导,这样效果更明显。

新人教版五年级数学上册教案篇3

l 教学目标:

1、在操作、探究活动中,逐步理解一个整体,建立单位“1”的概念,理解分数的意义。

2、在学习过程中,培养学生的思维能力和应用意识。

3、体会数学与生活的密切联系,进一步增强学好数学的信心。

l 教学重点:

理解单位“1”和分数的意义。

l 教学难点:

理解单位“1”和分数的意义。

l 教学准备:

教具准备:自制教学课件

学具准备:小棒、练习纸

l 设计意图:

《小学数学新课程标准》指出:数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。在课前通过与学生的谈话引出分数后,短短的一句“关于分数,你已经知道了什么”唤起学生已有的知识经验,找到了新知与旧知的链接点,接着又借助媒体教学手段向学生介绍分数的由来,适时渗透了数学文化思想。使学生的思维开始了“起跑”。

作为学生学习的组织者、引导者与合作者,我力求引在核心处,拨在关键处,让学生自主探究、补充概括,借助于课堂这个思维“运动场”,不着痕迹地引导学生理解分数的真正含义。从引导学生“起跑”到“加速”,最后“冲刺”,水道渠成,促使每个学生获得成功的体验。

l 教学过程:

一、谈话导入

1、通过师生之间的谈话引出分数。

2、关于分数,你已经知道了什么?

3、 提出要求:

师:从刚才的表现可以看出__班的同学们都很棒。呆会儿合作时,先听清楚老师的要求再动口说一说、动手做一做,可以吗?

二、分数的产生

1、板书课题

师:课前我们一起聊到了分数,今天这节课我们继续来认识分数。

师:你知道古人是怎样表示分数的吗?让我们一起来看一看。

三、理解分数的意义

1.理解一个整体

(1)、找出各种材料的1/4。

师:今天老师带来了一些材料,你能分别找到它们的四分之一吗?

师:那就请同学们开动脑筋,分一分、涂一涂,找出它们的1/4。

然后同桌之间说一说,你是如何找到它们的1/4的。听明白了吗?

(2)、汇报交流

教师进行规范:

生:我把正方形平均分成4份,这样的一份就是这个正方形的1/4。

生:我是把这条线段平均分成4份,这样的一份就是这条线段的1/4。

突出整体:

师:这里的1/4是如何得到的呢?

生:我把4个苹果平均分成4份,这样的一份就是这个整体的1/4。

师:这是他的想法,还有不同想法吗?

生:把4个苹果看作一个整体,平均分成4份,这样的一份就是这个整体的1/4 。

师:说得不错。只要把这4个苹果看作一个整体,平均分成4份,这样的一份就是这个整体的1/4。

进行知识迁移:

生:我是把8个三角形看作一个整体,平均分成4份,这样的一份就是这个整体的1/4。

(3)小结:

提问:刚才我们在不同的材料里找到了四分之一,找的过程中有什么相同的或不同的地方。

不同点:材料不同。

跟进:但我们都把这些材料看成了一个整体,这个整体可以是一个物体也可以是多个物体。

相同点:都是把这个整体平均分成4份,表示了这样的一份,得到了这个整体的四分之一。

2、理解单位“1”。

(1)深化理解一个整体

学生自主创作:

师:现在,老师为同学们准备了一些小棒。同桌合作,任选一些小棒,分一分、找一找他们的1/4。开始吧。

交流汇报:

师:你用几根小棒表示1/4?你把几根小棒看作一个整体?你能说说这个1/4的含义吗?(多说几个)

师:一根可以用四分之一表示、两根也可以用四分之一表示、三根、四根都可以用四分之一表示。也就是说把什么平均分成4份,每份就可以用1/4进行表示呢?——一个整体

学生说4根小棒、8根小棒,师:4根小棒、8根小棒都可以看作一个整体

(2)揭示单位“1”。

师:说的真好。在数学中,通常把一个整体叫做单位“1”。把单位“1”平均分成4份,这样的一份可以用1/4来表示。(板书单位1)

师:刚才我们通过动手画一画、分一分等方法,深入理解了四分之一的含义。下面我们一起做一个猜数游戏,准备好了吗?

师:如果一个菠萝用三分之一表示,他是把什么看作单位1呢?——果然如此。

师:如果2个橘子用五分之一来表示,她的单位1,又是多少呢?你是怎样想的?

师:同学们真是了不起!已经能很快地找到单位1了。

3.理解分子、分母的含义

(1)、找其他分数

师:刚才我们把4个苹果、8个三角形分别看作单位1,平均分成4份,找到了1/4。现在请你继续观察,还能发现其他的分数吗?

那就请同学们动手涂一涂,用阴影表示出这个分数,并把这个分数写在下方,再和你的同桌说一说这个分数的含义。

(2)、汇报交流

师:谁愿意和大家交流一下你所找到的分数?

生:把4个苹果看作单位1,平均分成4份,这样的2份就是2/4。

(3)比较:

师:在刚才同学们动手涂一涂,写一写的时候,老师发现,有些同学找到了,这几个分数。(课件使用说明:点击课件出现:

师:观察这些分数,你发现了什么?

生:分母都是4

师:为什么分母都是4呢?

生:因为都是平均分成了4份

师:把什么平均分成4份?——单位“1”。

师:要是单位“1”平均分成5份,分母是几呢?——5。平均分成6份——分母就是——6。

师:分母其实就是表示——平均分的份数

师:同学们的观察力可不一般呐。还有什么发现吗?

生:分子各不相同,都差1

师:分母为什么会不一样呢?

生:取的份数不同

师:平均分成4份,取这样的一份就是1,两份就是——2,三份就是——3

师:分子其实就是表示——取的份数

师:同学们不仅观察能力强,分析、概括能力也很出色。

4. 揭示分数的意义。

(1)逐步理解分数的意义

师:我们通过动手分一分,涂一涂等方法已经认识了很多的分数。

现在老师再写一个分数5/9,你能说说它的含义吗?

生:把单位“1”平均分成9份,这样的的5份,就是单位1的5/9。

师:已经会用单位1来说了,真好。谁也愿意来试一试呢?

生:把单位“1”平均分成9份,这样的的5份,就是单位1的5/9。

师:说的真好。如果不是平均分成9份,板书5/( ),那么它的含义是什么呢?

生:把单位“1”平均分成很多份,取这样的5份,就是5/( )。

师:很多份可以是几份?——2份,3份……

师:我们可以用一个词来表示(板书:若干份)

师:如果取的份数也不是5份了,板书( )/( ),那么这个分数的含义是什么呢??

生:把单位“1”平均分成若干份,取这样的若干份,就是( )/( )

师:可以取这样的一份,也可以取这样的……几份。

小结:像同学们所理解的,把单位“1”平均分成若干份,这样的一份或几份都可以用分数来表示。(板书)这就是我们今天所学的分数的意义。我们一起来读一读。

(2)理解分数单位

师:分数和整数一样,也有计数单位。像这样表示其中一份的数我们叫做分数单位。

1/4,2/4,3/4,4/4的分数单位就是——1/4

师:5/9的分数单位?

生:1/9

师:5/99

生:1/99

师:( )/1000

生:1/1000

师:老师都还没说分子呢,你怎么就知道分数单位了?

生:分数单位就是表示一份的数

师:也就是说一个分数的分母是几,这个分数的分数单位就是——几分之一

师:那3/4里有几个这样的分数单位呢?5/9里有几个这样的分数单位呢?

5.总结:今天这节课,我们一起合作学习了什么?你有什么收获?

四、练习巩固。

师:看来同学们的收获还真不少。请同学们在括号里填上适当的分数。

1.填一填

(1)说说3/5的意义

(2)同意吗?

(3)3/8的分数单位是多少?有几个这样的分数单位。

2、点击生活

哪位同学愿意来读一读,并说说其中分数的意义。

(1)、我校五年级学生约占全校学生的1/6

(2)、长江约3/5的水体受到不同程度的污染

师:还有几分之几的水体没受污染呢?

师:受污染水体多还是没受污染的水体多?——怎么想的?

师:有什么想说的?——要保护环境

师:看来同学们很有环保意识。那你希望,长江受污染的水体占长江水体的几分之几呢?

师:大家都有美好的希望,那就让我们拿出实际行动,共同来保护环境。

(3)、姚明的头部高度约占他身高的1/8

师:我们的身体中还蕴藏着很多分数,有兴趣的同学课后可以去查一查资料。

五、总结全课、质疑问难

师:这节课我们学习了什么?你有什么收获?还有什么问题?

新人教版五年级数学上册教案篇4

教学内容:

教材第122 、123 页的内容及第124 、125 页练习二十四的第1-3题。

教学目标:

1、使学生理解众数的含义,学会求一组数据的众数,理解众数在统计学上的意义。

2、能根据数据的具体情况,选择适当的统计量表示数据的不同特征。

3、体会统计在生活中的广泛应用,从而明确学习目的,培养学习的兴趣。

重点难点:

1、重点:理解众数的含义,会求一组数据的众数。

2、弄清平均数、中位数与众数的区别,能根据统计量进行简单的预测或作出决策。

教具准备:

投影。

教学过程:

一、导入

提问:在统计中,我们已学习过哪些统计量?(学生回忆)指出:前面,我们已经对平均数、中位数等一些统计量有了一定的认识。今天,我们继续研究统计的有关知识。

二、教学实施

1、出示教材第122 页的例1 。

提问:你认为参赛队员身高是多少比较合适?

学生分组进行讨论,然后派代表发言,进行汇报。

学生会出现以下几种结论:

( 1)算出平均数是1 . 475 ,认为身高接近1 . 475m 的比较合适。

( 2)算出这组数据的中位数是1 . 485 ,身高接近1 . 485m 比较合适。

( 3)身高是1 . 52m 的人最多,所以身高是1 . 52m 左右比较合适。

2、老师指出:上面这组数据中,1 . 52 出现的次数最多,是这组数的众数。众数能够反映一组数据的集中情况。

3、提问:平均数、中位数和众数有什么联系与区别?

学生比较,并用自己的语言进行概括,交流。

老师总结并指出:描述一组数据的集中趋势,可以用平均数、中位数和众数,它们描述的角度和范围有所不同,在具体问题中,究竟采用哪种统计量来描述一组数据的集中趋势,要根据数据的特点及我们所关心的问题来确定。

4、指导学生完成教材第123 页的“做一做”。

学生独立完成,并结合生活经验谈一谈自己的建议。

5、完成教材第124 页练习二十四的第1 、2 、3 题。

学生独立计算平均数、中位数和众数,集体交流。

三、思维训练

小军对居民楼中8 户居民在一个星期内使用塑料袋的数量进行了抽样调查,情况如下表。

( 1)计算出8 户居民在一个星期内使用塑料袋数量的平均数、中位数和众数。(可以使用计算器)

( 2)根据他们使用塑料袋数量的情况,对楼中居民(共72 户)一个月内使用塑料袋的数量作出预测。

新人教版五年级数学上册教案篇5

教学目标:

1.知识与技能:理解公倍数和最小公倍数的含义。

2.过程与方法:经历探索找公倍数的方法,会利用列举法等方法找出两个数的公倍数和最小公倍数。

3.情感态度与价值观:结合生活实际,激发学生学习数学的愿望,培养学生学习数学的乐趣。

教学重点:

理解公倍数和最小公倍数的含义。

教学难点:

掌握找最小公倍数的方法。

教学用具:

课件

教学过程:

一、 复习导入

说出2的倍数有哪些,3的倍数有哪些?

二、 教学公倍数和最小公倍数的含义

(一)探索公倍数

1.观察刚才同学们说的2的倍数和3的倍数,你有什么发现?

2.师生共同观察分析得出公倍数的含义。

(二)探索最小公倍数,引出课题。

三、探索找两个数最小公倍数的方法

(一)找两个数最小公倍数的一般方法

1.列举法

2.分解质因数法

3.短除法

(二)找两个数最小公倍数的特殊方法

1.找出下面几组数的最小公倍数。

7和14   8和24   9和18

5和6   2和7   9和4

2.观察每横数据和结果,你有什么发现?为什么

3.师生共同观察分析得出特殊情况下的特殊方法。

四、巩固练习

课件出示习题。

五、小结:今天你有什么收获?

板书设计:

找最小公倍数

4的倍数有:4、8、12、16、20、24、28… …

6的倍数有:6、12、18、24、30、… …

4和6公倍数有:12、24、… …

最小公倍数: 12

31141