教育巴巴 > 小学教案 > 数学教案 > 五年级 >

五年级下册数学顶鼎教案

时间: 新华 五年级

所有五年级数学老师都应该采取灵活多变的教学手段,开展多样化的游戏教学与参与式教学。经历了数学教学工作,你知道如何写一篇五年级数学教案?你是否在找正准备撰写“五年级下册数学顶鼎教案”,下面小编收集了相关的素材,供大家写文参考!

五年级下册数学顶鼎教案篇1

教学内容:

人教版小学数学教材五年级上册第95页主题图、96页例3、第96页“做一做”,

教学目标:

1、知识与技能:通过观察、猜想、操作等数学活动,推导出梯形的面积计算公式。发展空间观念和推理能力渗透转化的数学思想方法。并能进一步体会利用转化的方法解决问题

2、过程与方法:能正确地应用公式计算梯形的面积,并能解决生活中一些简单的实际问题。

3、情感态度与价值观:让学生自我展示、自我激励,体验成功,在不断尝试中激发求知欲,陶冶情操。培养学生探索精神和合作精神,获得数学学习的乐趣。

教学重点:

掌握梯形面积的计算公式,并会用公式解决实际问题。

教学难点:

理解梯形面积公式推导方法的多样化,体会转化的思想。

考点分析:

会用梯形面积公式解决实际问题。

教学方法:

游戏引入——新知讲授——巩固总结——练习提高

教学用具:

课件、多组两个完全相同的梯形。

教学过程:

一、提出问题(课件出示教材第95页的主题图)。

教师:同学们在图中发现了什么?

教师:车窗玻璃的形状是梯形。怎样求出它的面积呢?

二、通过旧知迁移引出新课。

教师:同学们还记得平行四边形和三角形的面积怎么求吗?

1、指名能说出平行四边形面积公式及三角形面积公式。并能简要说出面积公式推导过程。

2、课件出示平行四边形面积、及三角形面积公式推导的过程,教师揭示转化方法:拼合法、割补法

3、教师:前面我们学习了平行四边形的面积,又学习了三角形的面积,请同学们想一想,我们能用学过的方法推导出梯形的面积计算公式吗?

三、揭示课题;

根据学生的回答,引出新课,梯形的面积。

板书课题--梯形的面积。

四、新知探究

1、师:根据前面的学习,我们把要研究的图形转化成已学过的平面图形,就能找到求图形面积的计算方法,今天我们要研究的梯形面积,可以怎样转化呢?下面我们就来实践操作一下吧。

2、请同学们打开学具袋,看看里面的梯形有什么特点?

生:各种梯形,每种两个,每种梯形颜色一样。

教师提出要求

①选择自己喜欢的梯形把它拼成我们学过的图形

②想一想,拼成怎样的图形,利用怎样的方法拼成的?

③它们的高与梯形的高有怎样的关系,它们的底与梯形的上、下底有怎样的关系?它们的面积与梯形的面积有着怎样的联系?

④先独立思考后小组交流

生小组合作探究。师巡视指导,引导学生注意把转化前后图形各部分之间的关系找准。

3、(出示课件)现在画面展示的是两个完全相同的梯形重叠在一起,哪个小组能说一说刚才你们将其拼成了什么图形?是怎样拼的?各小组推选1人向全班汇报过程与结果。(教师逐一配以课件演示。)

师引导得出如下几种推导思路:(师边利用课件演示边讲解)

思路一:用两个完全一样的梯形拼成一个平行四边形,得出拼成的平行四边形的面积是梯形面积的2倍,平行四边形的高与梯形的高相等,平行边四边形的底等于梯形的上底与下底之和,从而推出

梯形面积=(上底+下底)×高÷2

思路二:把梯形剪成一个平行四边形与一个三角形,梯形的面积等于一个平行四边形面积与一个三角形面积之和,从而推出

梯形的面积 =上底×高+(下底-上底)×高÷2

=(上底+下底)×高÷2

思路三:沿梯形的一条对角线剪开,把梯形分割成两个三角形。得出梯形的面积等于两个三角形面积之和,从而推出

梯形的面积 =上底×高÷2+下底×高÷2

=(上底+下底)×高÷2

教师引导学生对以上的推导结果进行比较,最后得出“梯形面积=(上底+下底)×高÷2”。

师:如果上底用字a来表示,下底用b来表示,高用h来表示,那么梯形面积公式用字母公式可表示为什么?学生用字母表示出梯形的面积计算公式:S=(a+b)h÷2

五、巩固提升

1、(出示课件),三峡水电站全景图及第89页例3并读题。同时出示水电站的横截面的简图(梯形)。提问,实际求什么?

S =(a+b)h÷2

=(36+120)×135÷2

=156×135÷2

=10530(㎡)

2、计算下面图形的面积,你发现了什么?

六、总结结课

1、这节课你学到了什么?要计算梯形的面积,必须要知道几个条件?还要注意什么?

2、我们是怎样得出梯形面积的公式的?

(二)教师总结

今天我们利用转化的思想推导出了梯形的面积计算公式,并会用梯形的面积计算公式解决生活中的实际问题。

板书设计:

梯形面积=(上底+下底)×高÷2

梯形的面积 =上底×高+(下底-上底)×高÷2

=(上底+下底)×高÷2

梯形的面积 =上底×高÷2+下底×高÷2

=(上底+下底)×高÷2

五年级下册数学顶鼎教案篇2

教材分析

可能性是学习数学四个领域中“统计与概率”中的一部分,“统计与概率”中的统计初步知识学生在之前的学习已经涉及,但概率知识对于学生而言还是一个全新的概念,它是学生以后学习有关知识的基础。本单元主要教学内容是事件发生的不确定性和可能性,并能知道事件发生的可能性是有大小的。教学关键是如何让学生把对“随机现象”的丰富的感性认识升华到理性认识。

学情分析

五年级学生已经具备了一定的生活经验和统计知识,对现实生活中的确定现象和不确定现象已经有了初步的了解,并有一定的简单分析和判断能力,但学生只是初步的感知这种不确定事件,对具体的概念还没有深入地理解和运用。根据学生的年龄特点和生活经验,教师做出适当引导,学生就会进行正确的分析和判断的。所以教材选用学生熟悉的现实情境引入学习内容,设计了多种不同层次的、有趣的活动和游戏,激发了学生的学习兴趣,使其感受到数学就在自己的身边,体会数学学习与现实的联系,为学生自主探索、合作学习创造机会。

教学中,教师要利用这些情境让学生积极地参与到学习活动中,让学生在具体的操作活动中进行独立思考,使学生在大量观察、猜测、试验与交流的过程中,经历知识的形成过程,逐步丰富对不确定现象及可能性大小的体验。

教学目标

知识技能:使学生初步体验有些事件的发生是确定的,有些事件的发生是不确定的。能列出简单试验所有可能发生的结果,知道事件发生的可能性的大小。

数学思考:培养学生简单的逻辑推理、逆向思维和与人交流思考过程的能力。

问题解决:能由一些简单事件发生的可能性大小逆推比较事件多少。

情感态度:通过本单元的学习使学生感受到生活中处处有数学,并能够运用可能性的知识解决生活中的问题,逐渐对统计与可能性知识产生兴趣,培养学生学习数学的兴趣。

教学重点:会用“可能”“不可能”“一定”描述事件发生的可能性。能够列出简单试验中所有可能发生的结果,知道可能性是有大小的。

教学难点:能根据可能性的大小判断物体数量的多少。

课时安排:3课时

1.可能性………………………………2课时

2.掷一掷………………………………1课时

课 时 教 案

课题: 第四单元:可能性(1) 第 课时 总序第 个教案

课型: 新授 编写时间: 年 月 日 执行时间: 年 月 日

教学内容:教材P44例1及教材练习十一第1、2、3、4题。

教学目标:

知识与技能:学生初步体验有些事件发生是确定的,有些则是不确定的。

过程与方法:学生通过亲身体验,在观察、交流、动手、思考、验证的过程中探索新知。

情感、态度与价值观:培养学生的表达能力和逻辑推理能力。

教学重点:体验事件发生的等可能性。

教学难点:会用“可能”、“不可能”正确地描述事件发生的可能性。

教学方法:采用游戏教学法,将教学情境真实地搬到现实生活当中,让学生在游戏中,真实地参与中积累与学习知识。

教学准备:师:多媒体、抽签卡纸、盒子、彩色球、铅笔。生:棋子。

教学过程

一、情境引入

1.导入:今天老师给大家带来一个小小的礼物,猜一猜是什么?

让学生猜一猜,学生猜可能是文具,可能是玩具,可能是书….

2.师揭题:学生说的这些都是有可能发生的事情,在数学上都是些不确定性事件。这节课我们就来研究事件发生的可能性。(板书课题:可能性)

3.出示谜语:小黑人儿细又长,穿着木头花衣裳。画画写字它全会,就是不会把歌唱。 学生可能会说:铅笔。

师追问:确定吗?让学生肯定回答一定是铅笔或确定是铅笔。

4.出示奖品铅笔,并说明这是奖励表现秀的学生的,希望大家都能努力。

二、互动新授

1.引入:下周班会,老师想组织大家表演节目,每个人都有机会表演。但节目形式不能重复,每个类型只能有一个节目,大家讨论一下,我们应该怎样确定每一个同学演什么节目呢?

组织小组讨论,大部分同学会想到用抽签的方法来决定。

2.活动:出示三张卡片,上面分别写上唱歌、跳舞、朗诵,找同学上来抽一张,引导学生先思考一下,会抽到什么?

学生会想到:可能是唱歌,可能是跳舞,也可能是朗诵。这三种情况都有可能。

师小结:每位同学表演节目类型是一件不确定的事件,有三种可能的结果。

3.抽签指生抽一张。(以抽到跳舞为例)

师引导:如果再找一名同学来抽签,可能会抽到什么?

生可能回答:可能是唱歌,也可能是朗诵。

引导学生质疑:有没有可能会抽到跳舞?

指生回答:不可能,因为剩的两张签里没有跳舞。

找生抽一张,验证学生的猜测是否正确。

(以学生抽到的是朗诵为例)

4.引导:最后只剩一张了,你们能猜一猜这一张可能是什么吗?

生可能会回答:一定是朗诵,因为只剩下朗诵这张卡片了。

5.师小结:刚才在猜测会抽到什么节目时,第一次同学们用的词是“可能”,第二次同学们用的词是“不可能”,第三次用的是“一定”。一般事情的发生都有“可能”“不可能”“一定”三种情况,当然,不同情况下,它们有时也会发生变化。(板书:可能 不可能 一定)

三、巩固拓展

1.完成教材第45页“做一做”。

出示:两个盒子,一号盒子放的全部是红棋子,二号盒子放的有红棋子和绿棋子。

引导学生先说一说,哪个盒子里一定能摸出红棋子?哪个盒子里可能会摸出绿棋子?哪个盒子里不可能摸出绿棋子?等问题。

让学生在小组内组织摸一摸活动,并验证,再集体汇报。

2.完成教材第47页“练习十一”第1题。

让学生说一说,并说明理由。

3.完成教材第47页“练习十一”第2题。

先让学生自主连一连,教师发彩色球让学生验证摸一摸,再说一说为什么这么连。

4.说一说:教师引导学生用“一定”“可能”“不可能”等词语说说自己生活中一些事件发生的可能性。

四、课堂小结

师:这节课你们学了什么知识?有什么收获?

引导归纳:

1.判断事件发生的可能性的几种情况:可能、不可能、一定。

2.能结合实际情况对一些事件进行判断。其中“不可能”和“一定”是能够在完全确定的情况下做出的判断,而“可能”是在不能确定的情况下做出的判断,它通常包含经常、偶尔两种情况。

作业:教材练习第47页第3、4题。

板书设计:

可能性(1)

可能(不能确定)

可能性 不可能

(完全确定)

一定

课题: 第四单元:可能性(2) 第 课时 总序第 个教案

课型: 新授 编写时间: 年 月 日 执行时间: 年 月 日

教学内容:教材P45~46例2、例3及练习十一第5、8题。

教学目标:

知识与技能:让学生知道事件发生的可能性是有大小的。

过程与方法:进一步学习比较多种结果事件可能性的大小方法:先得出结果总数,再看哪种结果在总数占的比例多。

情感、态度与价值观:培养学生的动手操作、归纳和判断能力。

教学重点:会比较两种结果事件的可能性大小。

教学难点:能根据可能性的大小逆向思考比较事件数量的多少。

教学方法:游戏教学法;自主探索、合作交流。

教学准备:多媒体、盒子、彩色棋子。

教学过程

一、复习引入

1.出示:(1)用合适的语言描述下面事件发生的可能性。

①太阳( )从东边落下。②明天( )考试。

③冬天( )会下雪。 ④掷一枚硬币( )正面朝上。

(2)盒子里有3个红棋子和1个黄棋子,任意摸一个可能是什么颜色的棋子?为什么?引导学生说出,可能是红棋子也可能是黄棋子。因为盒子里面既有红色棋子也有黄色棋子。

质疑:你觉得摸到哪种颜色的棋子最有可能呢?为什么?

引导学生思考,在小组内交流讨论。学生可能会说,红色棋子摸到最有可能,因为盒子里红棋子比黄棋子多。

2.导出课题:看来事件发生的可能性是有大有小的。今天这节课咱们就来研究事件发生的可能性的大小。(板书课题:可能性的大小)

二、互动新授

1.体验可能性有大有小。

出示教材第45页例2情境图。

(1)引导:在盒子里有红色和蓝色两种棋子,任意摸出一个棋子,可能是什么颜色?(可能是红色,也可能是蓝色。)

(2)(继续出示情境图做实验部分)有一个小组做了一次实验,他们摸出一个棋子,记录它的颜色,然后放回去摇匀再摸,重复20次,同学们观察他们摸完20次后的结果是怎样的?(摸出红色的多,蓝色的少。)

(3)追问:这说明了什么?

(摸到红棋子的可能性比较大,蓝棋子的可能性小。)

(4)质疑:假如再摸一次的话,摸出哪种颜色棋子的可能性大?(红色),那是不是一定能摸到红色呢?

(不一定,因为蓝色摸到的可能性虽小也有可能会摸到。)

2.动手操作。

(1)每个小组都有一个盒子,里面都装有红色和蓝色两种棋子,请小组仿照教材的实验,自己摸一摸,并由小组长记录结果。

小组操作结束后,汇报记录结果,并根据结果说一说你盒子里哪种颜色的棋子多。并追问:每个小组的统计结果都一样吗?

指名小组汇报,对不同结果的小组进行比较。

(2)引导学生思考:通过刚才的操作,你发现可能性的大小与什么有关?

引导学生小结:与在总数中所占数量的多少有关,在总数中占的数量越多,摸到的可能性就越大,占的数量越少,摸到的可能性也就越小。(板书)

(3)让学生举出生活中的例子:如抽奖、买彩票等。并由此对学生进行正确的思想教育。

3.出示教材第46页例3。

(1)先让学生观察出示的记录结果,再指名回答例题中的问题。

(从试验记录可以看出,一组摸了20次,摸出黄球5次,摸出红球15次,摸出黄球的次数少于红球的次数。另一组摸了20次,摸出黄球 4次,摸出红球16次,摸出黄球的次数少于摸出红球的次数。

八个小组一共摸到红球123次,摸到黄球37次,摸到红球的次数比摸到黄球的次数多。也就是说,从盒子里摸出红球的可能性大在,黄球的可能性小。因此,我们可以判断出:盒子里红球多,黄球少)

(2)引导小结方法:当可能性的大小与数量相关时,在总数中所占数量越多,可能性越大,所占数量越少,可能性就越小。

三、巩固拓展

1.完成教材第45页“做一做”。

先让学生自主思考,小组交流,再汇报。并说出为什么这么想。

引导学生总结:在总数中占的颜色多的可能性大,占的颜色少的可能性小。可以进一步渗透“公平”的思想与画法。

2.完成教材第46页“做一做”第1题。

先让学生观察从图中能得到的信息,再说一说。

(盒子里红色的棋子多,黄色的棋子少)

引导学生运用可能性大小的逆向思考:从可能性的大小可以推想数量的多少吗?(让学生动手操作,小组合作,并记录结果。)

四、拓展小结

师:这节课你们学了什么知识?有什么收获?

引导归纳:1.事件发生的可能性有大有小。2.在总数中占的数量越多,摸到的可能性就越大,占的数量越少,摸到的可能性也就越小。3.摸到的可能性大的说明在总数中占的数量多,摸到的可能性小的说明在总数中占的数量少。

作业:教材练习第47~48页练习十一第5、8题。

板书设计:

可能性(2)

大←→数量多

可能性

小←→数量少

五年级下册数学顶鼎教案篇3

教学设想:本节课的教学,单位“1”和分数单位这两个概念非常重要,应从直观到抽象,由个别到一般,用利操作、讨论、交流等形式展开小组学习,适当展开概念的形成过程,帮助学生在过程中获得者得感悟,自己构建这些概念的意义。

教学目标:

1、在学生原有分数知识基础上,使学生知道分数的产生,理解分数的意义,知道分子、分母和分数单位的含义。

2、经历认识分数意义的过程,培养学生的抽象、概括能力。

3、利用操作、讨论、交流等形式展开小组学习,培养学生的合作探究能力,培养质疑和验证科学知识的能力。

教学重点:明确分数和分数单位的意义,理解单位“1”的含义。

教学难点:对单位“1”的理解。

教具和学具:卷尺、四张长方形白纸、四条一米长的绳子、若干个小立方体和一捆绘画笔。

教学过程:

一、创设情景,温故引新。

1、师:我们已经初步认识了分数。(板书:分数)谁来说几个分数?(板书:如1/4)你知道分数各部分的名称吗?(板书):师:那你们知道分数是怎样产生的吗?

二、教学分数的产生。

2、能根据成语说出下面的分数吗?

一分为二()七上八下()百里挑一()十拿九稳()

1、请一个学生用米尺测量黑板的长,说一说,用“米”做单位,看看测量的结果能不能用整数表示。那剩下的不足一米怎么记?

2、在古代,人们就已经遇到了这样的问题。(师用一根打了结的绳子演示古人测量的情况)。课件呈现情境图,介绍分数的起源和发展历史。

3、总结:在测量、分物的时候,可能得不到整数的结果,需要用一种新的数表示——分数表示。所以分数是人类为了适用实际需要而产生的。

4、在我们的日常生活中,为了平均分配一些东西,也常常会遇到不能用整数表示的情况。比如两个小朋友平分一个橘子、一块月饼、一块饼干等,每人分到的能用整数表示吗?用什么分数表示?

三、教学分数的意义。

师:下面老师要先考考大家,你能举例说明1/4的含义吗?(投影出示题目,学生口答)

出示一个1/4的正方形的阴影部分。

师:阴影部分可以用什么分数表示?它表示什么意思?

2、师:下列图中的阴影部分能用1/4表示吗?为什么?

如生说可以,则问:你为什么觉得可以用1/4表示呢?生说理由。

(强调一定要平均分)(板书:平均分)

3、动手操作,探索新知。

(1)操作。

师:现在我给每一个小组都提供了四种材料,一张长方形纸、一条一米长的绳子、6个小立方体,4根绘画笔。下面请每组根据这四种一样的材料,通过折一折、画一画、分一分等方法,创造出几个不同的分数。

学生动手操作,教师巡视。

(2)交流

师:谁愿意上来说一说,你得到了哪些分数?这个分数是怎样得到的?

小组交流。

(3)认识单位“1”。

师:利用这四种材料,同学们创造出了好多分数。刚才在表示这些分数时,我们都是把哪些东西来平均分的?

生:一张长方形纸、一米长的绳子、6个小立方体、4根绘画笔平均分。

师:象把一张长方形纸平均分,我们可以称之为把一个物体平均分

(课件显示:一个物体)

把一米长的绳子平均分,我们可以称之为把一个计量单位平均分。(课件显示:一个计量单位)

把6个小方块、4根绘画笔平均分,我们又可以称之为把一些物体平均分。(课件显示:一些物体)

师小结:一个物体、一些物体等都可以看做一个整体,把这个整体平均分成若干份,这样的一份或几份都可以用分数来表示。(课件显示)

师:(投影出示):我们可以把这3只象看作一个整体吗?

我们可以把这6颗草莓看作一个整体吗?这4只老虎呢?

我们还可以把哪些物体也看成一个整体呢?(学生举例。)

师:象这样的一个物体、一个计量单位、一个整体,我们可以用自然数“1”来表示,通常把它叫做单位“1”,(课件显示)强调说明:①单位“1”不仅可以指一个物体、一个计量单位,也可以是很多物体组成的一个整体。如:一个苹果、一枝铅笔、一个计量单位、一堆煤、一仓库粮食等等,把什么平均分,就应把什么看做单位“1”。②单位“1”和自然数“1”的区别:自然数1是一个数,只表示一个具体事物。如:一个人、一本书、一间房子……它是自然数的计数单位。而单位“1”不仅可以表示某一个具体事物,还可以表示一堆、一群……它表示被平均分的整体。

概括分数的意义:把单位“1”平均分成若干份,表示这样的一份或几份的数,叫做分数。

(4)理解分子分母的意义。

师:通过刚才的学习,大家知道了分数的意义,请同学们想一下,这个“若干份”是分数中的什么?(分母,表示平均分的份数)“这样的一份或几份”是分数中的什么?(分子,表示取的份数)

(5)师:接下来我想出几道题来考考大家,你们愿不愿意接受挑战?

①把这个文具盒里的所有铅笔平均分给2个同学,每个同学得到这盒铅笔的几分之几?

生:1/2

②师:为什么可以用1/2来表示?

③师:如果把这盒铅笔平均分给5个同学,每个同学得到这盒铅笔的几分之几呢?

如果把这盒铅笔平均分给10个同学,每个同学得到这盒铅笔的几分之几呢?

如果把这盒铅笔平均分给50个同学,每个同学得到这盒铅笔的几分之几呢?2个同学得到这盒铅笔的几分之几?

如果把这盒铅笔平均分给100个同学,每个同学得到这盒铅笔的几分之几呢?10个同学得到这盒铅笔的几分之几呢?

④师:现在这个文具盒里有6支铅笔,把它平均分给2个同学,每个同学得到的铅笔能用1/2表示吗?是几支铅笔?

⑤如果我再增加2支铅笔,把8支铅笔平均分给2个同学,每个同学得到的铅笔还能用1/2表示吗?是几支铅笔?为什么同样是1/2,铅笔的支数不一样?

师:因为一个整体表示的具体数量不同,所以同样是1/2,铅笔的支数不一样。

四、教学分数单位。

师:整灵敏有计数单位个、十、百、千、万……分数是否也有计数单位呢?它的计数单位又是怎样规定的?

显示:把单位“1”平均分成若干份,表示其中一份的数叫做分数单位。

师:也就是说分数单位是由一个分数的分母决定的,分母是几,它的分数单位就是几分之一。(师举例说明后,并说出几个分数让学生回答,后再让学生自己举例说明)

加强练习,深化概念。

练习:

1、35表示把()平均分成()份,表示这样的()份,它的分母是(),表示();分子是(),表示()。

2、67的分数单位是(),有()个这样的分数单位。

3、说出每个分数的意义。

(1)五(1)班的三好生人数占全班的29。

(2)一节课的时间是23小时。

4、课本练习十一第9题。

5、判断(对的打“√”,错的要“×”)。

(1)一堆苹果分成4份,每份占这堆苹果的14()

(2)把5米长的绳子平均分成7段,每段占全长的57()

(3)14个19是914()

(4)自然数1和单位“1”相同。()

五、小结。

今天这节课我们学习了?你有哪些收获?

五年级下册数学顶鼎教案篇4

【教学内容】

教科书第65页例4。

【教学目标】

1.通过教学,使学生理解最简分数和约分的意义,掌握约分的方法。

2.培养学生应用所学数学知识解决问题的能力。

【教学重点】

归纳、概括出最简分数的概念及约分的方法。

【教学难点】

能正确地对分数进行约分。

【教学过程】

一、复习导入

1.提问:你能很快找出下面各组数的最大公因数吗?

9和1815和217和94和2420和2811和13

2.提问:你是怎样找出两个数的最大公因数的?求两个数的最大公因数有几种情况?

教师引导学生回顾小结:求两个数的最大公因数时,有两种特殊情况:一种是两个数成倍数关系,较小的数就是两个数的最大公因数;另一种是两个数的公因数只有1,它们的最大公因数就是1。

二、探究新知

1.出示例4:把2430化成分子和分母比较小且分数大小不变的分数。

(1)学生先尝试,引导学生想出多种方法进行约分。

方法一:用分子、分母的公因数,逐次去除分子和分母。

2430=24÷230÷2=12151215=12÷315÷3=45

方法二:用分子、分母的最大公因数,分别去除分子和分母。

2430=24÷630÷6=45

(2)教师:怎样进行约分?

引导学生概括出方法:用分子和分母的最大公因数(1除外)去除。

(3)指出:像这样,把一个分数化成和它相等,但分子和分母都比较小的分数,叫做约分。(板书)

约分时还可以怎样写呢?请同学们自学教科书第65页的例4。试着自己写一写。学生汇报约分的写法,教师板书。

2.教师:45的分子和分母有什么关系?(学生观察后汇报:45的分子和分母只有公因数1。)

教师指出:分子和分母只有公因数1,这样的分数叫做最简分数。(强调约分时,要约成最简分数)

三、课堂小结

教师引导学生小结:本节课我们学习了什么叫最简分数和怎样约分。在约分时,可以用分子和分母的公因数分别去除分子和分母,直到约成最简分数为止;也可以直接用分子和分母的最大公因数去除分数的分子和分母,得到最简分数。用第二种方法比较简便,但是,必须要能看出分子和分母的最大公因数。

【板书设计】

约分

2430=24÷230÷2=12151215=12÷315÷3=452430=24÷630÷6=45

把一个分数化成和它相等,但分子和分母都比较小的分数,叫做约分。

分子和分母只有公因数1,这样的分数叫做最简分数。

【教学反思】

本节课的内容是约分,它是分数的基本性质的直接运用,与公因数、最大公因数等概念密切相关。在本课教学中,我关注学生探究活动的空间,体现“以学生发展为本”的原则,积极调动学生的学习情感,让学生在解决问题、比较计算结果的过程中认识最简分数,理解最简分数的含义,引导他们在活动中通过观察、判断、比较、归纳等方式,经历数学概念的形成过程。

29524