教育巴巴 > 小学教案 > 数学教案 > 五年级 >

五年级上册数学书教案

时间: 新华 五年级

五年级数学老师应该在课堂中提高学生的学习兴趣,异常要注重知识与现实的社会现象和生活紧密结合。五年级数学教案对数学教师的工作具有积极的影响,能够帮助他们提升教学质量。你是否在找正准备撰写“五年级上册数学书教案”,下面小编收集了相关的素材,供大家写文参考!

五年级上册数学书教案篇1

教学目标

1.理解和掌握约分的方法.

2.掌握最简分数的概念.

教学重点

掌握约分的方法.

教学难点

训练学生很快看出分子、分母的公约数,并能够准确判断约分的结果是不是互质数.

教学步骤

一、铺垫孕伏.

1.根据分数的基本性质填空

2.求下面各组数的最大公因数:

二、探究新知.

(一)教学1.最简分数

分子和分母只有公因数1,像这样,分子和分母只有公因数1的分数叫做最简分数。(分子和分母是互质数的分数叫做最简分数)

做一做1.下面的分数哪些是最简分数?

2.把上下两行相等的两个分数用线连起来。

(二)教学2.

分组讨论:结合分数的基本性质,怎样24/30化简?

(1)分母30、分子24有公约数2,先用公约数2去除分子、分母

(板书: )

(2)15和12还有公约数3

(板书: )

教师明确:分子和分母是互质数就不能再化简了,这种过程叫约分.

引导学生总结归纳出约分的意义.

板书:把一个分数化成和它相等,但分子和分母都比较小的分数,叫做约分。

反馈练习.

(1)、把下面各分数化为最简分数。

(2)、下面哪些分数没有化成最简分数?请把它们化成最简分数。

(3)把桃子放入相应的篮子里

三、全课小结.

通过今天的学习,谈谈你学到了哪些新知识?

四、随堂练习.

1.回答.

(1)判断下面哪些分数是最简分数,并说出为什么?

(2)观察下面每个分数的分子和分母,哪些有公约数2?哪些有公约数5?哪些有公

约数3?

2.下面哪些分数没有约成最简分数?

五、布置作业.

把下面各分数约分.

五年级上册数学书教案篇2

教学设想:本节课的教学,单位“1”和分数单位这两个概念非常重要,应从直观到抽象,由个别到一般,用利操作、讨论、交流等形式展开小组学习,适当展开概念的形成过程,帮助学生在过程中获得者得感悟,自己构建这些概念的意义。

教学目标:

1、在学生原有分数知识基础上,使学生知道分数的产生,理解分数的意义,知道分子、分母和分数单位的含义。

2、经历认识分数意义的过程,培养学生的抽象、概括能力。

3、利用操作、讨论、交流等形式展开小组学习,培养学生的合作探究能力,培养质疑和验证科学知识的能力。

教学重点:明确分数和分数单位的意义,理解单位“1”的含义。

教学难点:对单位“1”的理解。

教具和学具:卷尺、四张长方形白纸、四条一米长的绳子、若干个小立方体和一捆绘画笔。

教学过程:

一、创设情景,温故引新。

1、师:我们已经初步认识了分数。(板书:分数)谁来说几个分数?(板书:如1/4)你知道分数各部分的名称吗?(板书):师:那你们知道分数是怎样产生的吗?

二、教学分数的产生。

2、能根据成语说出下面的分数吗?

一分为二()七上八下()百里挑一()十拿九稳()

1、请一个学生用米尺测量黑板的长,说一说,用“米”做单位,看看测量的结果能不能用整数表示。那剩下的不足一米怎么记?

2、在古代,人们就已经遇到了这样的问题。(师用一根打了结的绳子演示古人测量的情况)。课件呈现情境图,介绍分数的起源和发展历史。

3、总结:在测量、分物的时候,可能得不到整数的结果,需要用一种新的数表示——分数表示。所以分数是人类为了适用实际需要而产生的。

4、在我们的日常生活中,为了平均分配一些东西,也常常会遇到不能用整数表示的情况。比如两个小朋友平分一个橘子、一块月饼、一块饼干等,每人分到的能用整数表示吗?用什么分数表示?

三、教学分数的意义。

师:下面老师要先考考大家,你能举例说明1/4的含义吗?(投影出示题目,学生口答)

出示一个1/4的正方形的阴影部分。

师:阴影部分可以用什么分数表示?它表示什么意思?

2、师:下列图中的阴影部分能用1/4表示吗?为什么?

如生说可以,则问:你为什么觉得可以用1/4表示呢?生说理由。

(强调一定要平均分)(板书:平均分)

3、动手操作,探索新知。

(1)操作。

师:现在我给每一个小组都提供了四种材料,一张长方形纸、一条一米长的绳子、6个小立方体,4根绘画笔。下面请每组根据这四种一样的材料,通过折一折、画一画、分一分等方法,创造出几个不同的分数。

学生动手操作,教师巡视。

(2)交流

师:谁愿意上来说一说,你得到了哪些分数?这个分数是怎样得到的?

小组交流。

(3)认识单位“1”。

师:利用这四种材料,同学们创造出了好多分数。刚才在表示这些分数时,我们都是把哪些东西来平均分的?

生:一张长方形纸、一米长的绳子、6个小立方体、4根绘画笔平均分。

师:象把一张长方形纸平均分,我们可以称之为把一个物体平均分

(课件显示:一个物体)

把一米长的绳子平均分,我们可以称之为把一个计量单位平均分。(课件显示:一个计量单位)

把6个小方块、4根绘画笔平均分,我们又可以称之为把一些物体平均分。(课件显示:一些物体)

师小结:一个物体、一些物体等都可以看做一个整体,把这个整体平均分成若干份,这样的一份或几份都可以用分数来表示。(课件显示)

师:(投影出示):我们可以把这3只象看作一个整体吗?

我们可以把这6颗草莓看作一个整体吗?这4只老虎呢?

我们还可以把哪些物体也看成一个整体呢?(学生举例。)

师:象这样的一个物体、一个计量单位、一个整体,我们可以用自然数“1”来表示,通常把它叫做单位“1”,(课件显示)强调说明:①单位“1”不仅可以指一个物体、一个计量单位,也可以是很多物体组成的一个整体。如:一个苹果、一枝铅笔、一个计量单位、一堆煤、一仓库粮食等等,把什么平均分,就应把什么看做单位“1”。②单位“1”和自然数“1”的区别:自然数1是一个数,只表示一个具体事物。如:一个人、一本书、一间房子……它是自然数的计数单位。而单位“1”不仅可以表示某一个具体事物,还可以表示一堆、一群……它表示被平均分的整体。

概括分数的意义:把单位“1”平均分成若干份,表示这样的一份或几份的数,叫做分数。

(4)理解分子分母的意义。

师:通过刚才的学习,大家知道了分数的意义,请同学们想一下,这个“若干份”是分数中的什么?(分母,表示平均分的份数)“这样的一份或几份”是分数中的什么?(分子,表示取的份数)

(5)师:接下来我想出几道题来考考大家,你们愿不愿意接受挑战?

①把这个文具盒里的所有铅笔平均分给2个同学,每个同学得到这盒铅笔的几分之几?

生:1/2

②师:为什么可以用1/2来表示?

③师:如果把这盒铅笔平均分给5个同学,每个同学得到这盒铅笔的几分之几呢?

如果把这盒铅笔平均分给10个同学,每个同学得到这盒铅笔的几分之几呢?

如果把这盒铅笔平均分给50个同学,每个同学得到这盒铅笔的几分之几呢?2个同学得到这盒铅笔的几分之几?

如果把这盒铅笔平均分给100个同学,每个同学得到这盒铅笔的几分之几呢?10个同学得到这盒铅笔的几分之几呢?

④师:现在这个文具盒里有6支铅笔,把它平均分给2个同学,每个同学得到的铅笔能用1/2表示吗?是几支铅笔?

⑤如果我再增加2支铅笔,把8支铅笔平均分给2个同学,每个同学得到的铅笔还能用1/2表示吗?是几支铅笔?为什么同样是1/2,铅笔的支数不一样?

师:因为一个整体表示的具体数量不同,所以同样是1/2,铅笔的支数不一样。

四、教学分数单位。

师:整灵敏有计数单位个、十、百、千、万……分数是否也有计数单位呢?它的计数单位又是怎样规定的?

显示:把单位“1”平均分成若干份,表示其中一份的数叫做分数单位。

师:也就是说分数单位是由一个分数的分母决定的,分母是几,它的分数单位就是几分之一。(师举例说明后,并说出几个分数让学生回答,后再让学生自己举例说明)

加强练习,深化概念。

练习:

1、35表示把()平均分成()份,表示这样的()份,它的分母是(),表示();分子是(),表示()。

2、67的分数单位是(),有()个这样的分数单位。

3、说出每个分数的意义。

(1)五(1)班的三好生人数占全班的29。

(2)一节课的时间是23小时。

4、课本练习十一第9题。

5、判断(对的打“√”,错的要“×”)。

(1)一堆苹果分成4份,每份占这堆苹果的14()

(2)把5米长的绳子平均分成7段,每段占全长的57()

(3)14个19是914()

(4)自然数1和单位“1”相同。()

五、小结。

今天这节课我们学习了?你有哪些收获?

五年级上册数学书教案篇3

【教学目标】

1.使学生通过观察、猜想、验证、理解并掌握3的倍数的特征。

2.引导学生学会判断一个数能否被3整除。

3.培养学生分析、判断、概括的能力。

【重点难点】

理解并掌握3的倍数的特征。

【复习导入】

1.学生口述2的倍数的特征,5的倍数的特征。

2.练习:下面哪些数是2的倍数?哪些数是5的倍数?

324 153 345 2460 986 756

教师:看来同学们对于2、5的倍数已经掌握了,那么3的倍数的特征是不是也只看个位就行了?这节课,我们就一起来研究3的倍数的特征。

板书课题:3的倍数的特征。

【新课讲授】

1.猜一猜:3的倍数有什么特征?

2.算一算:先找出10个3的倍数。

3×1=3 3×2=6 3×3=9

3×4=12 3×5=15 3×6=18

3×7=21 3×8=24 3×9=27

3×10=30……

观察:3的倍数的个位数字有什么特征?能不能只看个位就能判断呢?(不能)

提问:如果老师把这些3的倍数的个位数字和十位数字进行调换,它还是3的倍数吗?(让学生动手验证)

12→21 15→51 18→81 24→42 27→72

教师:我们发现调换位置后还是3的倍数,那3的倍数有什么奥妙呢?

(以四人为一小组、分组讨论,然后汇报)

汇报:如果把3的倍数的各位上的数相加,它们的和是3的倍数。

3.验证:下面各数,哪些数是3的倍数呢?

210 54 216 129 9231 9876

小结:从上面可知,一个数各位上的数字之和如果是3的倍数,那么这个数就是3的倍数。(板书)

4.比一比(一组笔算,另一组用规律计算)。

判断下面的数是不是3的倍数。

3402 5003 1272 2967

5.“做一做”,指导学生完成教材第10页“做一做”。

(1)下列数中3的倍数有 。

14 35 45 100 332 876 74 88

①要求学生说出是怎样判断的。

②3的倍数有什么特征?

(2)提示:①首先要考虑谁的特征?(既是2又是5的倍数,个位数字一定是0)

②接着再考虑什么?(最小三位数是100)

③最后考虑又是3的倍数。(120)

【课堂作业】

完成教材第11~12页练习三的第4、6、7、8、9、10、11题。

【课堂小结】

同学们,通过今天的学习活动,你有什么收获和感想?

【课后作业】

完成练习册中本课时练习。

3的倍数的特征

一个数各位上的数字之和是3的倍数,那么这个数就是3的倍数。

教学3的倍数的特征时,教师要注意学生的自主探索过程,通过猜一猜、算一算、想一想、验一验、比一比等教学环节,循序渐进地让学生参与到学习中来,但教师在想一想这个环节中要进行适当点拨、引导,这样效果更明显。

28434