教育巴巴 > 小学教案 > 数学教案 > 五年级 >

五年级教案数学上册人教版

时间: 新华 五年级

兴趣是调动学生积极思维、探求知识的内在动力,每一个五年级数学老师都应该激发学生的学习兴趣。所有的五年级数学教师都必须知道如何写五年级数学教案,你也来写一篇和我们分享吧。你是否在找正准备撰写“五年级教案数学上册人教版”,下面小编收集了相关的素材,供大家写文参考!

五年级教案数学上册人教版篇1

教学目标:

1.知识与技能:理解公倍数和最小公倍数的含义。

2.过程与方法:经历探索找公倍数的方法,会利用列举法等方法找出两个数的公倍数和最小公倍数。

3.情感态度与价值观:结合生活实际,激发学生学习数学的愿望,培养学生学习数学的乐趣。

教学重点:

理解公倍数和最小公倍数的含义。

教学难点:

掌握找最小公倍数的方法。

教学用具:

课件

教学过程:

一、 复习导入

说出2的倍数有哪些,3的倍数有哪些?

二、 教学公倍数和最小公倍数的含义

(一)探索公倍数

1.观察刚才同学们说的2的倍数和3的倍数,你有什么发现?

2.师生共同观察分析得出公倍数的含义。

(二)探索最小公倍数,引出课题。

三、探索找两个数最小公倍数的方法

(一)找两个数最小公倍数的一般方法

1.列举法

2.分解质因数法

3.短除法

(二)找两个数最小公倍数的特殊方法

1.找出下面几组数的最小公倍数。

7和14   8和24   9和18

5和6   2和7   9和4

2.观察每横数据和结果,你有什么发现?为什么

3.师生共同观察分析得出特殊情况下的特殊方法。

四、巩固练习

课件出示习题。

五、小结:今天你有什么收获?

板书设计:

找最小公倍数

4的倍数有:4、8、12、16、20、24、28… …

6的倍数有:6、12、18、24、30、… …

4和6公倍数有:12、24、… …

最小公倍数: 12

五年级教案数学上册人教版篇2

【教学目标】

1.知道分数是怎样产生的,理解分数的意义,明确分数与除法的关系。

2.认识真分数和假分数,知道带分数是一部分假分数的另一种书写形式,能把假分数化成带分数或整数。

3.理解和掌握分数的基本性质,会比较分数的大小。

4.理解公因数与公因数、公倍数与最小公倍数的意义,能找出两个数的公因数与最小公倍数,能比较熟练地约分和通分。

5.会进行分数与小数的互化。

【重点难点】

1.分数的意义和分数的基本性质。

2.理解单位“1”的含义。

【教学指导】

1.充分利用教材资源,用好直观手段。

本单元教材在加强教学与现实世界的联系上做了不少努力,同时,教材还运用了多种形式的直观图式数形结合,展现了数学概念的几何意义,从而为老师与学生提供了丰富的学习资源。教学时,应充分利用这些资源,发挥形象思维和生活体验对于抽象思维的支持作用。

2.及时抽象,在适当的水平上,构建数学概念的意义。

为了搞好本单元的教学,在加强直观教学的同时,还要重视及时抽象,不能听任学生的认识停留在直观水平上。否则,同样会妨碍学生对所学知识的理解和应用。因此,在充分展开直观教学,让学生获得足够的感性认识的基础上,要不失时机地引导学生由实例、图式加以概括,构建概念的意义。

3.揭示知识与方法的内在联系,在理解的基础上掌握方法。

在本单元中,假分数化为带分数或整数,约分与通分,分数与小数互化的方法,都是必须掌握的。这些方法看似头绪较多,但若归结为基础知识,就是揭示相关知识与方法的联系,就比较容易在理解的基础上掌握方法。以约分与通分为例,它们都是分数基本性质的应用。因此,教学时不宜就方法论方法,而应突出方法的过程,使学生明白操作方法背后的算理,这样就能依靠理解掌握方法,而不是依赖记忆学会操作。

【课时安排】建议共分17课时

1.分数的意义3课时

2.真分数和假分数2课时

3.分数的基本性质2课时

4.约分4课时

5.通分4课时

6.分数和小数的互化2课时

五年级教案数学上册人教版篇3

教学目标:

1.使学生在具体情境中认识列、行的含义,知道确定第几列、第几行的规则,初步理解数对的含义,会用数对表示具体情境中物体的位置。

2.使学生经历由具体的座位抽象成用列、行表示的平面图的过程,提高抽象思维能力,发展空间观念。

3.使学生体验数学与生活的密切联系,进一步增强用数学的眼光观察生活的意识。

教学过程:

一、情境引入

1、谈话:我们每个学期都要召开家长会,如果是你爸爸来参加家长会了,你用什么方法告诉他你在教室里的位置呢?

2、指名学生汇报,预设回答:(①我坐在第一组第二张桌子;②我坐在教室中间的位置;③我坐在第五行靠墙的位置)教师对学生的回答一一点评

指出:要确定自己的位置,一个条件是不够的,至少需要两个条件。

3、谈话:今天我就要学习一种简洁、新颖的方法来确定位置,想知道是什么方法吗?

二、教学新课

1、教学例1

(1)出示例题图,提问:这是某个班级的座位图,从图中你看出了什么?

学生回答后继续追问:谁能说说小军的位置?

预设回答:(小军坐在第4竖排第三个;小军坐在第三横排的第4个)

指导学生数的时候是从哪向哪数。

提问:如果我们不知道小军的位置,听了刚才同学的发言,能顺利地找到小军的位置吗?

谈话:这些方法都是正确的,但是你觉得用这样的方法描述小军的位置有什么不足之处吗?

预设回答(不够清楚,比较麻烦)

(2)用数对表示位置。

出示抽象图,谈话:我们把刚才例题图转化为抽象图,你还能找到小军的位置吗?

第5行 ○ ○ ○ ○ ○ ○

第4行 ○ ○ ○ ○ ○ ○

第3行 ○ ○ ○ ○ ○ ○

第2行 ○ ○ ○ ○ ○ ○

第1行 ○ ○ ○ ○ ○ ○

第 第 第 第 第 第

1 2 3 4 5 6

列 列 列 列 列 列

谈话:实际上,在确定位置时,竖排叫列,确定第几列一般从左往右数;

横排叫行,确定第几行一半从前往后数(指图板书)。

小军位置是第几列第几行?(从左向右数第4列,从前向后数第3行)

像这样的位置我们可以用一个数对来表示(4,3)

让学生说说对(4,3)的理解

小结:(4,3)表示第4列,第3行,这样的数对包含两个数,第一个数表示第几列,第二个数表示第几行,两个数之间用逗号隔开,外面加上小括号。

(3)用数对表示位置。

课件出示问题:在抽象图中找出第2列第4行的位置,用数对表示是什么?

指名学生回答,让其他学生点评

继续出示问题:( 6,5 )在上图中表示第几列第几行的位置。

指名学生回答,让其他学生点评

回到例1教学用图,谈话:小军还有几个好朋友,你能用数对表示出他们的位置吗?

指名学生回答,并让他们说出表示什么

2、情境教学

(1)谈话:我们刚才学习了用数对来表示位置,那么家长会之前你能这个方法告诉你家长的位置吗?我们规定从讲台开始,从前向后分别为第一行、第二行……;从教室的门开始,老师的方向从左向右分别为第一列、第二列……。请大家每个人都想想自己的位置怎么用数对表示。

(2)同桌互相交流,说说自己位置表示的数对

(3)指名学生说说自己的位置和表示的数对,然后点评

(4)活动:出示数对,请相应的同学起立 (1,4) (4,3) (2,2) (5,1) (7,5) (9,6)

点评:为什么

2.完成“练一练”。

(1)学生在书上完成1.2题。

你能找到第2列第4行的位置吗?有数对怎样表示?

(2)(5,5)表示什么呢?是图上的哪个圈?

两个“5”表示的意思一样吗?

三、巩固练习

1.完成练习三第1题。

教室里的座位共有几列几行呢?第1列第1行是哪个同学的座位?用数对怎样表示你能说说自己的座位在第几列第几行吗?用数对怎样表示?

在小组中互相说说,并互相指其他座位说数对。

2.完成练习三第2题。

在实际生活中,也经常用数对确定位置。

你能悦纳嘎数对表示这四块瓷砖的位置吗?

追问:第3列的两块瓷砖有什么共同特点吗?

第4行的两块瓷砖用数对表示位置时,写出的两个数对有什么相同的地方?

同一列的两块瓷砖,数对中的第一个数相同;

同一行的瓷砖,数对中的第二个数相同。

3.完成第3题。

(1)独立完成用数对表示每一块花砖的位置。

(2)在小组中交流花砖位置的排列有什么规律?

(3)汇报交流结果。

四、课堂总结

通过今天的学习,你有什么收获?你认为学习用数对确定位置的方法对你以后有什么指导作用呢?

板书设计:

用数对确定位置

竖排叫列,横排叫行。

数对中的第一个数表示第几列,第二个数表示第几行;

两个数之间用逗号隔开,两个数的外面用小括号括起来。

五年级教案数学上册人教版篇4

教学内容:

教科书第94-96页的例1、例2,以及相应的“试一试”和“练一练”,练习十八第1、2题。

教学目标:

1、使学生联系分数的意义,初步掌握用分数表示具体情境中简单事件发生的可能性的方法,会用分数表示可能性的大小,进一步加深对可能性大小的认识。

2、使学生在学习用分数表示可能性大小的过程中,进一步体会数学知识间的内在联系,感受数学思考的严谨性与数学学习的趣味性。

教学重点:

理解并掌握用分数表示可能性的大小。

教学难点:

在认识事件发生的不确定现象中感受统计概率的数学思想。

教学过程:

一、创设情境,导入新课

师:老师把一个红色乒乓球和一个白色乒乓球放入黑色袋子里,让你摸一摸,它们的可能性相等吗?

生:相等。

师:如果放入两个红球和一个白球,可能性相等了吗?

生:不相等。

师:我们这节课来研究用分数来表示它们的可能性的大小。(板书课题:可能性的大小)

二、自主探索,合作交流

1、教学例1

谈话导入:同学们喜欢打乒乓球吗?如果让你来当裁判,你会用什么方法决定由谁先发球?

出示例1场景图,提问:裁判在做什么?(猜球。场景再现)

师:用猜左右的方法决定由谁先发球公平吗?为什么?

学生讨论后小结:乒乓球可能在左手,也可能在右手,猜对或猜错的可能性是相等的。

指出:用猜左右的方法决定由谁先发球时,每个运动员猜对的可能性都可以用1/2来表示。

师:你是怎样理解这里的1

/

2?

(评析:联系学生的生活实际,在游戏活动中引导学生探索事件发生的可能性,从“猜左右争夺发球权”的活动展开,既有利于激发学生参与学习活动的兴趣,又能激活学生原有的知识经验,使学生围绕这个问题展开思考和交流。)

2、同步练习

拿出装有一个红球和一个白球的袋子,问:从中任意摸出一个球,摸到白球的可能性是几分之几?

生:1

/

2

师:如果口袋里再放入一个红球,任意摸一个,摸到白球的可能性又是几分之几?

生:1

/

3

师:袋子里都只有一个白球,摸到白球的可能性怎么会不同呢?

生:第一次口袋里只有两个球,第二次口袋里有三个球。

追问:如果再往袋里放入一个白球,任意摸一个,摸到的白球的可能性又是几分之几?如果要使摸到白球的可能性是1

/

5,口袋里该怎样放球?

小组讨论,学生汇报:放5个球,其中白球1个。

(评析:通过学生熟悉的摸球活动,引导学生认识到:有几个球,摸到其中一个球的可能性就是几分之一,帮助学生进一步明确表示可能性大小的思考方法。)

3、教学例2

出示例2中的实物图,让学生说说这6张牌各是什么牌,帮助学生区分“红桃”与“黑桃”。

师:把这些牌一下反扣在桌上,从中任意摸一张,摸到红桃A的可能性是几分之几?

讨论后明确:一共有6张牌,红桃A有1张,摸到红桃A的可能性是1

/

6。

一共有6张牌,摸到每张牌的可能性都是1

/

6。

师:你还想提什么问题?

小组讨论交流汇报。

生1:从中任意摸一张,摸到“2”的可能性是几分之几?

生2:摸到方块2的可能性是1

/

6,摸到草花2的可能性是1

/

6,摸到“2”的可能性是1

/

3。

生3:一共有6张牌,“2”有两张,摸到“2”的可能性是2

/

6,也就是1

/

3。

生1:从中任意摸一张,摸到“红桃”的可能性是几分之几?

生2:这6张牌中,红桃有3张,摸到红桃的可能性是3

/

6,也就是1

/

2。

对比练习:红桃A、红桃2、红桃3、黑桃A、黑桃2五张,从中任意摸一张,摸到“红桃”的可能性是几分之几?

请学生自己提问题,自己说可能性。

汇报1:摸到A的可能性是几分之几?

汇报2;摸到红色牌的可能性是几分之几?

汇报3:摸到黑桃3的可能性是几分之几?

(评析:通过讨论使学生明确:从6张牌中任意摸到一张,每一张牌被摸到的可能性都是1/6,从而为解答下面的问题奠定认识基础。教学时,鼓励学生从多个角度进行思考,以促使学生更加透彻地把握问题的实质,丰富学生对基本思考方法的体验。)

4、同步练习

①学生口答第(1)题中的几个问题

②学生讨论:如果指针转动80次,可能有多少次停在红色区域?

指出:由于停在红色区域的可性是1

/

8,所以指针转动80次,可能停在红色区域的次数是80次的1

/

8,也就是10次。

③追问:如果把转盘上的指针转80次,停在红色区域的次数一定是

10次吗?

生:可能是10次,也可能多于或少于10次。

(评析:通过练一练,让学生先用分数表示指针转动后,停在每种颜色区域的可能性,再根据可能性推算指针转动80次,可能停在各种区域的次数。进一步加深对用分数表示的可能性大小的认识。)

三、综合练习,实践运用

1、做练习十八第一题

先让学生根据题意连一连,再指名说说思考的过程。

追问:任意摸一个球,摸到红球的可能性分别是多少?

2、做练习十八第二题

①学生读题后,引导学生列表整理题中的条件。

红色正方体6个面上的数:1、2、3、4、5、6;

绿色正方体6个面上的数:1、1、2、2、3、3;

蓝色正方体6个面上的数:1、2、2、3、3、3。

②组织比较:正方体都是6个面,为什么抛红色正方体,落下后1、2、3朝上的可能性都是1/6,而抛绿色正方体,落下后1、2、3朝上的可能性都是1/3?

③学生完成第(2)小题后,组织比较:抛蓝色正方体,落下后1、2、3朝上的可能性为什么不一样?

3、摸球比赛

师:红球4个,黄球3个,如果摸到红球算老师赢,摸到黄球算你们赢,你们愿意吗?

生:不愿意。

师:为什么?

生:摸到的红球可能性是4

/

7,摸到黄球的可能性是3

/

7,比赛不公平。

(评析:通过练习,让学生判断简单事件发生的可能性,使学生进一步积累用分数表示事件发生的可能性的经验,加深对可能性大小的认识。通过计算可能性的大小判断游戏规则是否公平,让学生用所学知识解决身边的实际问题,有利于学生在解决问题的过程中进一步掌握用分数表示可能性大小的方法,发展数学应用意识。)

总评:在游戏活动中引导学生探索事件发生的可能性,先从“猜左右争夺发球权”的游戏活动展开,既有利于激发学生参与学习活动的兴趣,又能激活学生原有的知识经验,让学生在对可能性定性描述的基础上,有意义地接受“猜对或猜错的可能性都是1

/

2”。然后借助摸牌游戏情境,让学生收集数据,并借助已有的生活经验,自主探索事件发生的可能性是几分之几。并通过练习,进一步体会数学知识间的内在联系,应用学习过可能性的知识解释一些相关的日常生活现象,提出并解决一些简单的实际问题,使学生的数学应用意识有所增强。

27831