教育巴巴 > 小学教案 > 数学教案 > 六年级 >

六年级数学下册探索规律教案

时间: 新华 六年级

六年级数学老师要全面而深刻地把握好人与数学的关系,让数学喷射出缤纷的色彩。所有的六年级数学老师都必须知道如何写六年级数学教案,你也来写一篇和我们分享吧。你是否在找正准备撰写“六年级数学下册探索规律教案”,下面小编收集了相关的素材,供大家写文参考!

六年级数学下册探索规律教案篇1

教学目标:

1、知识与技能:联系生活实际,引导学生认识一些常见的百分率,理解这些百分率的含义,并通过自主探究,掌握求百分率的一般方法,会正确地求生活中常见的百分率,依据分数与百分数应用题的内在联系,培养学生的迁移类推能力和数学的应用意识。

2、过程与方法:引导学生经历探索、发现、交流等丰富多彩的数学活动过程,自主建构知识,归纳出求百分率的方法。

3、数学思考:使学生学会从数学的角度去认识世界,逐步形成“数学的思维”习惯。

4、情感、态度与价值观:让学生体会百分率的用处及必要性,感受百分率来源于生活,体验百分率的应用价值。

教学重点:

理解百分率的含义,掌握求百分率的方法。

教学难点:

探究百分率的含义。

教学用具:

PPT课件

教学过程:

一、复习导入(8分)

1、出示口算题,1分钟,并校正题目。

2、小结学生所提问题,并指名口头列式。

3、将问题中的“几分之几”改为“百分之几”,引学生分析、解答。

4、小结:算法相同,但计算结果的表示方法不同。

5、说明:我们把做对题目占总题数的百分之几叫做正确率;那么做错的题目占总题数的百分之几叫做错误率。这些统称为百分率。导入新课,揭示目标。

6、口算比赛:(1分钟)(见课件)

7、根据口算情况,提出数学问题。

(做对的题目占总题数的几分之几?做错的题目占总题数的几分之几?)

8、尝试解答修改后的问题。

9、比较:“求一个数是另一个数的几分之几”与“求一个数是另一个数的百分之几”的问题在解法上有什么相同点和不同点?

10、举一些生活中的百分率,明确目标,进入新课的学习:(1)知道达标率、发芽率、合格率等百分率的含义。(2)学习求百分率的方法,会解决求百分率的问题。

二、设问导读(9分)

1、说明达标率的含义。

2、板书达标率的计算公式,并说明除法为什么写成分数的形式?

3、组织学生以4人小组讨论。

4、巡回指导书写格式。阅读例题,思考下面的问题

(1)什么叫做达标率?

(2)怎样计算达标率?

(3)思考:公式中为什么要“×100%”呢?

(4)尝试计算例1的达标率。

三、质疑探究(5分)

1、在展示台上展示学生写出的百分率计算公式。

2、要求学生认真计算,并对学生进行思想教育。

1、生活中还有哪些百分率?它们的含义是什么?怎样求这些百分率?

2、求例1(2)中的发芽率。

四、巩固练习(14分)

1、指名口答,组织集体评议,再次引学生巩固百分率的含义。

2、对每一道题都要让学生分析、理解透彻,并找出错误原因。

3、出示问题,指导学生书写格式,并强调

4、解决问题要注意:看清求什么率?找出对应的量。

5、引学生比较、发现:这些百分率和100%比较,大小怎样?哪些百分率可能超过100%?

6、引学生观察、发现:出勤率+缺勤率=1.

五、加强巩固

1、说说下面百分率各表示什么意思。(1颗星)

(1)学校栽了200棵树苗,成活率是90%。

(2)六(1)班同学的近视率达14%。

(3)海水的出盐率是20%。

2、判断。(2颗星)

(1)学校上学期种的105棵树苗现在全部成活,这批树苗的成活率为105%。( )

(2)六年级共有54名学生,今天全部到校,今天六年级学生的出勤率为54%。( )

(3)把25克盐放入100克水中,盐水的含盐率为25%。

(4)一批零件的合格率为85%,那么这批零件的不合格率一定是15%。 5、工厂加工了105个零件,合格率达100%,则这批零件有100个合格。

3、解决问题(3颗星)

(1)我班有27名同学,上学期期末测试中,有24人优秀,那么我们班成绩的优秀率是多少?27名同学全部合格,合格率是多少?

(2)六(1)班今天有48人到校,有2人缺席,求出勤率。

(3)要求,以2人小组互查,每人练习一道题,口头列式。1、王大爷在荒山上植树,一共植了125棵,有115棵成活。这批树的成活率约是多少?

(4)王师傅加工的300个零件中有298个合格,合格率是多少?

课堂总结:

(1分)突出“关键点”。谈谈本节课的收获。

六年级数学下册探索规律教案篇2

教学目标:

1、在初步认识圆柱的基础上理解圆柱的侧面积和表面积的含义,掌握圆柱侧面积和表面积的计算方法,会正确计算圆柱的侧面积和表面积。

2、通过实践操作,在学生理解圆柱侧面积和表面的含义的同时,能解决一些有关实际生活的问题。

教学重点,难点:

掌握圆柱侧面积和表面积的计算方法。

运用所学的知识解决简单的实际问题。

教学过程:

一、引入新课:

前一节课我们已经认识了一个新朋友——圆柱,谁能说说这位新朋友长什么样子以及有什么特征吗?

1.圆柱是由平面和曲面围成的立体图形。

2.圆柱各部分的名称(两个底面,侧面,高)。

3.把圆柱的侧面沿着它的一条高剪开得到一个长方形,这个长方形的长等于圆柱的底面周长、宽等于圆柱的高。

同学们对圆柱已经知道得这么多了,还想对它作进一步的了解吗?今天我们就一起来研究怎样求圆柱的表面积。

二、探究新知:

以前我们学过正方体、长方体的表面积,观察一个长方体,我们是怎么求这个长方体的表面积的呢?(六个面的面积和就是它的表面积)

同学们想一想我们要求圆柱的表面积,那么圆柱的表面积指的是什么?

教师引导,学生讨论结果:圆柱的侧面积加上两个底面的面积就是圆柱的表面积。

板书:(圆柱的表面积=圆柱的侧面积+两个底面的面积)

1.圆柱的侧面积

(1)圆柱的侧面积,顾名思义,也就是圆柱侧面的面积。

(2)出示圆柱的展开图:这个展开后的长方形的面积和圆柱的侧面积有什么关系呢?

(学生观察很容易看到这个长方形的面积等于圆柱的侧面积)

(3)那么,圆柱的侧面积应该怎样计算呢?(引导学生根据展开后的长方形的长和宽与圆柱底面周长和高的关系,可以知道:圆柱的侧面积=底面周长×高)

2.侧面积练习:练习二第5题

学生审题,回答下面的问题:

这两道题分别已知什么,求什么?

小结:要计算圆柱的侧面积,必须知道圆柱底面周长和高这两个条件,有时题里只给出直径或半径,底面周长这个条件可以通过计算得到,在解题前要注意看清题意再列式。

3. 理解圆柱表面积的含义.

(1)让学生把自己制作的圆柱模型展开,观察一下,圆柱的表面由哪几个部分组成?(通过操作,使学生认识到:圆柱的表面由上下两个底面和侧面组成。)

(2)圆柱的表面积是指圆柱表面的面积,也就是圆柱的侧面积加上两个底面的面积。

公式:圆柱的表面积=圆柱的侧面积+底面积×2

4.尝试练习。

(1)求下面各圆柱的侧面积。

①底面周长2.5分米,高0.6分米。

②底面直径8厘米,高12厘米。

(2)求下面各圆柱的表面积。

①底面积是40平方厘米,侧面积是25平方厘米。

②底面半径是2分米,高是5分米。

5.小结:

在计算圆柱形的表面积时,要根据给定的数据计算各部分的面积。(如:有时候给出的是底面半径,有时是底面直径。)

三、巩固练习。

1.做第14页“做一做”。(求表面积包括哪些部分?)

2. 练习二第6,7题。

四、课后思考。

同学们想一想是不是所有的圆柱在计算表面积时都可以用

公式:圆柱的表面积=圆柱的侧面积+底面积×2来计算呢?

六年级数学下册探索规律教案篇3

认识负数

教学目标:

1.使学生在现实情境中初步认识负数,了解负数的作用,感受运用负数的需要和方便。

2.使学生知道正数和负数的读法和写法,知道0既不是正数,又不是负数。正数都大于0,负数都小于0。

3.使学生体验数学和生活的密切联系,激发学生学习数学的兴趣,培养学生应用数学的能力。

教学重点:初步认识正数和负数以及读法和写法。

教学难点:理解0既不是正数,也不是负数。

教学具准备:多媒体课件、温度计、练习纸、卡片等。

教学过程:

一、游戏导入(感受生活中的相反现象)

1、游戏:我们来玩个游戏轻松一下,游戏叫做《我反 我反 我反反反》。游戏规则:老师说一句话,请你说出与它相反意思的话。

①向上看(向下看)②向前走200米(向后走200米)③电梯上升15层(下降15层)。

2、下面我们来难度大些的,看谁反应最快。

①我在银行存入了500元(取出了500元)。②知识竞赛中,五(1)班得了20分(扣了20分)。

③10月份,学校小卖部赚了500元。(亏了500元)。④零上10摄氏度(零下10摄氏度)。

说明什么是相反意义的量(意义正好相反)

3、谈话:周老师的一位朋友喜欢旅游, 11月下旬,他又打算去几个旅游城市走一走。我呢,特意帮他留意了一下这几个地方在未来某天的最低气温,以便做好出门前衣物的准备。下面就请大家一起和我走进天气预报。(天气预报片头)

二、教学例1

1、认识温度计,理解用正负数来表示零上和零下的温度。

课件出示地图:点击南京出示温度计和南京的图片。首先来看一下南京的气温。

这里有个温度计。我们先来认识温度计,请大家仔细观察:这样的一小格表示多少摄氏度呢?5小格呢?10小格呢?

B、现在你能看出南京是多少摄氏度吗? (是0℃。)你是怎么知道的?(那里有个0,表示0摄氏度)。

(2)上海的气温:上海的最低气温是多少摄氏度呢?(在温度计上拨一拨)拨的时候是怎样想的呢?(在零刻度线以上四格)

指出:上海的气温比0℃要高,是零上4摄氏度。(教师结合课件,突出上海的气温在零刻度线以上)。

(3)了解首都北京的最低气温:北京又是多少摄氏度呢?与南京的0℃比起来,又怎样了呢?(比南京的0℃要低)你能用一个手势来表示它和0℃的关系吗?(对,北京的气温比0度低,是零下4摄氏度)你能在温度计上拨出来吗?

(4)比较:“4℃”和“—4℃”的意义相同吗?有什么不同?(不一样,一个在0℃以上,一个在0℃以下)。

① 上海的气温比0℃高,是零上4摄氏度,我们可以记作+4℃,读作正四摄氏度,写的时候先写一个正号(指出是正号不是加号,意义和读法都不同了)再写一个4(板书),大家跟我一起来比划一下。+4也可以直接写成4,把正号省略了。所以同学们所说的4℃也就是+4℃。(板书)

负号能不能省略不写?为什么?

② 北京的气温比0℃低,是零下4摄氏度。我们可以用-4℃来表示零下4摄氏度(板书-4)。跟老师一起来读一下。写的时候可以先写一个负号(指出是负号不是减号)再写一个4就可以了,同桌互相比划一下。

(5)小结:通过刚才对三个城市的温度的了解,我们知道记录温度时,以0℃为界线,用象+4或4这些数可以来表示零上温度,用-4这样的数可以表示零下温度。

2、试一试:学生看温度计,写出各地的温度,并读一读。(写在卡片上)

3、听一段中央台的天气预报,将你听到城市的最低和温度记录下来。

4、小结:通过刚才的学习,我们得出:以零摄氏度为界线,零上温度用正几或直接用几来表示,零下温度用负几来表示。

三、学习珠峰、吐鲁番盆地的海拔表达方法(P4第2题)

1、同学们你们知道吗?世界第一高峰——珠穆朗玛峰从山脚到山顶,气温相差很大,这是和它的海拔高度有关的。最近经国家测绘局公布了珠峰的最新海拔高度。老师把有关网页带来了。(课件出现网页,上面有简单的文字介绍)。谁来读一读这段介绍。

2、今天老师还带来一张珠穆朗玛峰的海拔图,请看。(课件动态地演示珠穆朗玛峰的海拔图)。从图上,你看懂了些什么?

3、我们再来看新疆的吐鲁番盆地的海拔图。(动态演示吐鲁番盆地的海拔情况)。

你又能从图上看懂些什么呢?(引导学生交流,回答珠穆朗玛峰比海平面高8844.43米;吐鲁番盆地比海平面低155米)。

4、珠穆朗玛峰比海平面高,吐鲁番盆地比海平面低。大家再想想:你能用一种简单的方法来记录一下这两个地方的海拔吗?

(1)交流:珠穆朗玛峰的海拔可以记作:+8844.43米或8844.43米。

吐鲁番盆地的海拔可以记作:-155米。(板书)

(2)小结:以海平面为界线,+8844.43米或8844.43米这样的数可以表示海平面以上的高度,-155米这样的数可以表示海平面以下的高度。

四、小组讨论,归纳正数和负数。

1、通过刚才的学习,我们收集到了一些数据(课件显示)我们可以用这些数来表示零上温度和零下温度,还可以表示海平面以上的高度和海平面以下的高度。那么你们观察一下这些数,它们一样吗?你们想帮它们分分类吗?

2、学生交流、讨论。

3、指出:因为+8844.43也可以写成8844.43米,所以有正号和没正号都可以归于一类。提出疑问:0到底归于哪一类?(引导学生争论,各自发表意见)

① 如果都同意分三类的,老师可以出难题:我觉得0可以分在4它们一类啊,你们怎么来说服我?

② 如果有学生发表分三类的,有的分两类的,可以引导他们互相争论。

4、小结:什么是正数、负数?

师:(结合图)我们从温度计上观察,以0℃为界限线,0℃以上的温度用正几表示,0℃以下的温度用负几表示。同样,以海平面为界线,高于海平面的高度我们用正几来表示,低于海平面我们用负几表示。0是正负数的分界点,把正数和负数分开了,它谁都不属于。但对于正数和负数来说,它却必不可少。我们把以前学过的,象+4、16、3/8、0.5、+8844.43等这样的数叫做正数;象-4、-155等这样的数我们叫做负数;而0既不是正数,也不是负数。(板书)这节课我们就和大家一起来认识正数和负数。(板书:认识正数和负数)

五、联系生活,巩固练习

1.练习一第2、3题

2.你知道吗:水沸腾时的温度是____。 水结冰时的温度是____。 地球表面的最低温度是 。

3.讨论生活中的正数和负数

(1)存折:这里的-800表示什么意思?(以原来的钱为标准,取出了800元记作-800;存入了1200元记作1200元,还可以记作+1200元)

(2)电梯:这里的1和-1表示什么意思?(以地平面为界线,地平面以上一层我们用1或+1来表示,-1就表示地下一层)。老师现在要到33层应该按几啊?要到地下3层呢?

六、课堂小结

这节课我们一起认识了正数和负数。在我们的生活中,零摄氏度以上和零摄氏度以下,海平面以上和海平面以下,得分与失分等都具有相反的意义,我们都可以用正数和负数来表示。

六年级数学下册探索规律教案篇4

教学目标:

知识目标:组织学生通过画一画、折一折、观察体验圆的特征,认识圆的各部分名称,理解在同一个圆内直径与半径的关系。

能力目标:让学生了解、掌握画圆的多种方法,初步学会用圆规画圆;

转变学生学习的方式,培养学生观察、分析、概括等思维能力和初步的空间观念。

德育目标:让学生养成在交流、合作中获得新知的习惯。

教学重点:探索出圆各部分的名称、特征及关系。

教学难点:通过动手操作体会圆的特征。

教具准备:硬币、线绳、图钉、铅笔头、圆规、课件。

教学过程:

一、创设情境、激发兴趣:

1、创设情境

师:同学们,你们喜欢运动会吗?老师今天给你们带来了一场紧张而又激烈的塞车运动。看,它们已经来到了起跑线上,一号、二号、三号谁将会成为最后的冠军,请同学们大胆预测。

师:让我们把掌声献给冠军,送给一号车手。同学们预测的很好,那么一号的赛车为什么成为了最后的冠军呢?

生:因为一号的赛车,轮子是圆的。

师:其它的车手为什么会比一号的赛车慢呢?

生:因为它们的轮子是方形,是三角形,有棱有角的。

2、联系生活、举例说明

师:你在生活中,哪些物体上还有圆?指名学生回答日常生活中含有圆的物体。

师:圆在我们的生活中是无处不在的,汽车作为现代工业化的产物,正是因为装上了圆形的轮子,不仅极大的方便了我们的生活出行,也大大提高了社会生产效率;家庭用的圆形套装餐具,满足我们审美需求的同时,也更让我们味口大开,看来圆在我们的生活中的确很重要。下面就让我们对圆作更进一步的认识吧!揭示课题:圆的认识

二、自主探索,初步体验:

1、第一次自主探索画一画。

师:你能创造出一个任意大小的圆吗?

生:能。

师:同学们真有自信,下面就请同学们前后四人小组为单位,可以利用学具袋中老师给大家准备的工具,也可以自己想办法去创造圆,比一比看哪个小组想到的方法最多?

学生进行小组合作,分工创造圆。

生:进行小组反馈。

教师注意将各种方法进行概括分类,学生可能会出现的答案有①利用硬币或其它圆形轮廓描圆;②利用图钉和线画圆;③用圆规画圆;④用圆形物体用力在纸上压印圆;⑤线一头系上重物旋转形成圆……

师:这么多的方法都能创造出圆,那么这些方法有什么缺点吗?

学生说一说各种画法的缺陷:(1、利用圆形轮廓描和印圆,方便但圆的大小固定。2、线画圆,比较麻烦但可以画很小的圆也可以画很大的圆。3、旋转形成圆不能留下痕迹。4、圆规画圆,方便且一定大小的圆都能画)

师:那你认为这么多方法中用什么画圆最科学最方便?

生:用圆规画圆最方便。

2、第二次尝试画一画-----用圆规画圆。

师:那请同学们用圆规自已尝试画一个圆。

没有画成功的同学把图案展示,我们愿意帮助你寻找原因。

生:(1、画移位的,2、重新画又找不到位置的,)如:问为什么会移位,为什么会找不到原来的位置?

学生回答问题的原因,教师边示范边讲解:所以画圆的时候要先确定位置,点上一点,把钢针戳在点上,用手捏住圆规的头,岔开圆规两脚的开口,将圆规略微倾斜一点,旋转一周,一个圆就画好了。请大家也一起试试看。(板书:定点、定长、旋转一周)

师:学生根据老师的讲解独立画圆。

师:大家画的圆的位置都一样吗?

生:不一样。

师:为什么会不一样?

生:因为刚针戳的位置不一样,(或点的位置不一样)

师:看来这个点能决定圆的位置,(板书:能决定圆的位置)

师:请同桌再互相比较一下你们刚才画的圆大小完全一样吗?

生:不一样。

师:为什么会不一样?

生:因为我们圆规的开口大小不一样。

生:圆规的两脚开得越大,所画的圆也就越大,圆规两脚间的距离能决定圆的大小。(师板书:能决定圆的大小)

师:那请同学们把圆规两脚间的距离定为3厘米,来画一个圆,并用剪刀将你所画的圆剪下来。三、认识圆各部分名称及探究其特征:

六年级数学下册探索规律教案篇5

教学内容:

教科书第67页例2,第68页课堂活动第2题及练习十五3~5题。

教学目标:

1.联系生活情境进一步了解扇形统计图的特点,会根据扇形统计图前后的变化获取相关的数据和有用的信息。

2.体会数据对决策的作用,体会统计在现实生活中的应用价值。

教学重点:

进一步了解扇形统计图的特点,会根据扇形统计图前后的变化获取相关的数据和有用的信息。

教学难点:

会根据扇形统计图前后的变化进行对比分析。

教学准备:

教具:多媒体课件。

教学过程:

一、复习引入

教师:扇形统计图有什么特点呢?

教师:今天我们将在以前学习知识的基础上来进一步研究扇形统计图。

板书课题:扇形统计图

二、自主探索,学习新知

1.教学例2

(1)先后出示两个统计图。

先出示第一幅扇形统计图。

教师:从这幅图中我们能获得哪些信息?

根据学生的回答在课件中点出相关部分。

教师:这些都是什么时候的数据?

再出示第二幅扇形统计图。

教师:从这幅图中我们又能获得哪些信息?这些又是什么时候的数据?

教师:耕地、森林、果园的面积各是多少平方千米呢?没有改造的荒山还有多少平方千米?请你们算一算。

将两幅图放在一块观察。

教师:看了这两幅扇形统计图,你想说些什么?看看谁的发现最多,最有价值。

学生先独立思考,然后小组内部交流自己的发现(“退耕还林”前与2006年底相比土地的变化情况)。

(2)进一步了解扇形统计图的作用。

教师:刚才同学们在小组内部互相交流了自己的发现,现在哪位同学能代表你们小组进行发言?

请一两位同学相互补充,找到统计图中发生变化的项目。

小结:对比两幅扇形统计图,同学们强调最多的是有许多项目发生了变化。有没有没发生变化的量呢?(课件重点强调:土地总面积没发生改变)也就是两个圆所代表的都是靠山村的土地总面积。

教师引导:结合我们的发现思考:森林面积的增加与荒山面积的减少会给这个村庄带来怎样的变化?如果你是村委会的领导面对2006年底的统计图你又会作哪些思考?

(3)根据扇形统计图解决问题。

教师:观察扇形统计图,你还能提出并解决哪些数学问题?

学生先独立思考并解答,教师巡视找出典型的问题并进行解析。

2.课堂总结

教师:今天我们学习了什么?(扇形统计图)你又有什么收获?

三、课堂活动

教师:刚才我们分析的两个扇形统计图的圆都代表相同的含义——土地总面积,(课件点出“课堂活动”第2题——改变题目增加两个参数——美国、俄罗斯的面积和人口)现在呢?

教师:仔细观察这些统计图,你有哪些发现?

教师引导:重点分析中国人口多耕地少的基本国情。

教师:面对我国人口多耕地少的局面,你会做哪些思考?

四、练习应用,促进发展

1.完成练习十五第3题

出示题中的两幅扇形统计图,引导学生对比。

(1)从两幅统计图中,你获得了哪些信息?

(2)算一算:从1996年到2006年,工业用地、居住用地、绿化用地分别增加或减少了多少平方千米?

学生独立计算,教师巡视,抽几个学生上台板演,集体评议。

(3)议一议:你对这种变化有什么看法?

2.完成练习十五第4,5题

27668