新课标人教版六年级下册数学教案
六年级数学老师要找准游戏与教学内容的结合开展游戏,使学生在玩中学习,玩中思考,玩中创新。经历了数学教学工作,你知道如何写一篇六年级数学教案?你是否在找正准备撰写“新课标人教版六年级下册数学教案”,下面小编收集了相关的素材,供大家写文参考!
新课标人教版六年级下册数学教案1
教学目标:
1、通过实例,认识扇形统计图,了解扇形统计图的特点与作用。
2、能读懂扇形统计图,从中获取有效信息,体会统计图在现实生活中的作用。
3、提高学生的实际应用能力。
教学重点:
认识扇形统计图,了解扇形统计图的特点与作用。
教学难点:
学生的实际应用能力的提高。
教具准备:
课件
教学过程:
一、复习旧知,引入新知
1、电脑课件呈现下表
种 类 摄入量/克 占总摄入量的百分比
油脂类 50
奶类和豆类 450
鱼、禽、肉、蛋等类 600
蔬菜和水果类 900
谷类 1800
2、电脑课件呈现统计图(或以学生的作品亦可)。
3、引入新知。
二、探索交流,获取新知
1、什么样的统计图是扇形统计图呢?
2、了解扇形统计图特点
3、即时练习。
完成课后的“说一说”。
(1)学生观察课文中的扇形统计图,读一凑统计图中的各类信息。
(2)说一说,你有什么体会。
学生说信息,并计算各种成分的百分比
汇报计算结果,订正
学生发言、交流
学生汇报:条形统计图可以清楚地看到每一种食物的摄入量。
观察,说出获得的信息
根据教师引导说出发现
从扇形统计图中能够清楚地看到各类食物的摄入量占总摄入量的百分之几。
观察数据,发现,说出不同,说出自己的看法
进行计算,订正
三、小结本课学习内容
谈话:这张表是小丽一家三口一天各类食物的摄入量,请你运用条形统计图表示表中的数据。说一说,条形统计图有什么特点?
提问:从条形统计图中,可以清楚地看到每一类食物的摄入量,能看出每一类食物的摄人量占总摄入量的百分之几吗?
揭题,板书课题:扇形统计图。
出示课件一边呈现扇形统计图,一边进行简要讲解,使学生了解扇形统计图是用扇形面积的大小(占圆面积的百分之几)来表示各类数量的多少。(占总摄人量的百分之几)
四、巩固升华
完成课后“试一试”。
1、比较各项活动时间,说一说有什么不同。提出数学问题
2、总时间是多少?各项活动时间可以怎么计算?
3、参照题目,画一个扇形统计图表示自己一天的作息时间,并和同学进行交流。
五、全课小结:你今天有什么收获?还有什么不懂的地方?
板书设计:
扇形统计图
能清楚地反映整体与部分的关系。
新课标人教版六年级下册数学教案2
【学习目标】
1、 认识扇形统计图的特点和作用,能看懂并能简单地分析扇形统计图所反映的情况。
2、养成良好的生活、学习习惯,感受统计的意义和作用。
3、培养逻辑推理和抽象概括的能力。
【学习重难点】
1、重点是看懂并能简单地分析扇形统计图所反映的情况。
2、难点是结合统计图正确进行数据分析,为决策服务。
【学习过程】
一、 导入
1、 调查同学们喜欢什么运动项目?
利用以前学过的知识能不能很
好地表示出这些情况?
2、 收集和整理数据,统计全班最
喜欢的各项运动项目
的人数,制成条形统计图。
二、探索新知
1、复习条形统计图
(1)阅读课本P106,说说从条形统计图中你能得到哪些信息?
(2)想一想:条形统计图有什么特点?还有哪些信息不容易表示出来?
☆友情小提示:条形统计图可以清楚地呈现各种数量的多少。
但是条形统计图不容易看出各部分量与总量的关系
2、自学课本P107,认识扇形统计图。
(1)用整个圆表示什么?用圆内各个扇形的大小表示什么?
(2)从扇形统计图中你可以了解到什么信息?
(3)观察扇形统计图,你还能提什么问题?并认真解答。
3、思考:扇形统计图有什么特点?
☆友情小提示:
扇形统计图可以清楚地呈现各部分数量同总量之间的关系,即百分比或分数比。
4、阅读p109“你知道吗?”,理解内容。
5、想一想我们还学过哪种统计图?举例说明它有什么特点?
☆友情小提示:折线统计图表示数量变化情况。
三、知识应用:独立完成P109第4题,组长检查核对,提出质疑。
四、层级训练:1、巩固训练:①完成P107“做一做” 。
②完成P108练习二十五第1、2题。
2、拓展提高:P109第3题.
五、总结梳理: 回顾本节课的学习,说一说你有哪些收获?
学习心得__________( a.我很棒,成功了; b.我的收获很大,但仍需努力。)
自我展示台:(写出你的发现或见解)
新课标人教版六年级下册数学教案3
教学内容:
教科书第67页例2,第68页课堂活动第2题及练习十五3~5题。
教学目标:
1.联系生活情境进一步了解扇形统计图的特点,会根据扇形统计图前后的变化获取相关的数据和有用的信息。
2.体会数据对决策的作用,体会统计在现实生活中的应用价值。
教学重点:
进一步了解扇形统计图的特点,会根据扇形统计图前后的变化获取相关的数据和有用的信息。
教学难点:
会根据扇形统计图前后的变化进行对比分析。
教学准备:
教具:多媒体课件。
教学过程:
一、复习引入
教师:扇形统计图有什么特点呢?
教师:今天我们将在以前学习知识的基础上来进一步研究扇形统计图。
板书课题:扇形统计图
二、自主探索,学习新知
1.教学例2
(1)先后出示两个统计图。
先出示第一幅扇形统计图。
教师:从这幅图中我们能获得哪些信息?
根据学生的回答在课件中点出相关部分。
教师:这些都是什么时候的数据?
再出示第二幅扇形统计图。
教师:从这幅图中我们又能获得哪些信息?这些又是什么时候的数据?
教师:耕地、森林、果园的面积各是多少平方千米呢?没有改造的荒山还有多少平方千米?请你们算一算。
将两幅图放在一块观察。
教师:看了这两幅扇形统计图,你想说些什么?看看谁的发现最多,最有价值。
学生先独立思考,然后小组内部交流自己的发现(“退耕还林”前与2006年底相比土地的变化情况)。
(2)进一步了解扇形统计图的作用。
教师:刚才同学们在小组内部互相交流了自己的发现,现在哪位同学能代表你们小组进行发言?
请一两位同学相互补充,找到统计图中发生变化的项目。
小结:对比两幅扇形统计图,同学们强调最多的是有许多项目发生了变化。有没有没发生变化的量呢?(课件重点强调:土地总面积没发生改变)也就是两个圆所代表的都是靠山村的土地总面积。
教师引导:结合我们的发现思考:森林面积的增加与荒山面积的减少会给这个村庄带来怎样的变化?如果你是村委会的领导面对2006年底的统计图你又会作哪些思考?
(3)根据扇形统计图解决问题。
教师:观察扇形统计图,你还能提出并解决哪些数学问题?
学生先独立思考并解答,教师巡视找出典型的问题并进行解析。
2.课堂总结
教师:今天我们学习了什么?(扇形统计图)你又有什么收获?
三、课堂活动
教师:刚才我们分析的两个扇形统计图的圆都代表相同的含义——土地总面积,(课件点出“课堂活动”第2题——改变题目增加两个参数——美国、俄罗斯的面积和人口)现在呢?
教师:仔细观察这些统计图,你有哪些发现?
教师引导:重点分析中国人口多耕地少的基本国情。
教师:面对我国人口多耕地少的局面,你会做哪些思考?
四、练习应用,促进发展
1.完成练习十五第3题
出示题中的两幅扇形统计图,引导学生对比。
(1)从两幅统计图中,你获得了哪些信息?
(2)算一算:从1996年到2006年,工业用地、居住用地、绿化用地分别增加或减少了多少平方千米?
学生独立计算,教师巡视,抽几个学生上台板演,集体评议。
(3)议一议:你对这种变化有什么看法?
2.完成练习十五第4,5题
新课标人教版六年级下册数学教案4
教学目标:
1、 让学生知道什么是圆的周长。
2、 理解并掌握圆周率的意义和近似值。
3、 初步理解和掌握圆的周长计算公式,能正确计算圆的周长。
4、 培养和发展学生的空间观念,培养学生抽象概括能力和解决简单的实际问题能力。
5、 通过了解祖冲之在圆周率方面所作的贡献,渗透爱国主义思想。
6、 培养学生的观察、比较、分析、综合及动手操作能力。
教学重点:
理解和掌握圆的周长的计算公式。
教学难点:
对圆周率的认识。
教学准备:
1、 学生准备直径为5厘米、6厘米、7厘米的圆片各一个,有圆面的物体各一个,线,直尺,每组准备一只计算器。
2、 教师准备图片。
教学过程:
一、激情导入
1、 动物王国正在举行动物运动会可热闹了,想不想去看一看?
2、 一只小山羊和一只梅花鹿分别在圆形和正方形跑道上赛跑,大家猜一猜最后谁跑的路程远?
二、探究新知
(一) 复习正方形的周长,猜想圆的周长可能和什么有关系。
1、 由比较两种跑道的长短,引出它们的周长你会算吗?(如果学生谈到角或线的形状,就顺势导:正方形是由4条这样的线段围成的,圆是由一条圆滑的曲线围成的。)
2、 (生答正方形的周长)追问:你是怎么算的?(生答正方形的周长=边长×4师板书c=4a)那你们说说正方形的周长和它的边长有什么关系?(4倍,1/4)(师,正方形的周长总是它边长的4倍,这是一个固定不变的数。)
3、 圆的周长能算吗?如果知道了计算的公式能不能算?看来很有必要研究研究圆的周长的计算方法,下面我们就一起研究圆的周长。(板书课题:圆的周长)
4、 猜想:你觉得圆的周长可能和什么有关系?
(二) 测量验证
1、 教师提问:你能不能想出一个好办法来测量它的周长呢?
① 生1:把圆放在直尺边上滚动一周,用滚动的方法测量出圆的周长。师生合作演示量教具的周长。
② 用绳子在圆上绕一周,再测量出绳子的长短,得到这个圆的周长。
2、①学生动手测量,验证猜想。 学生分组实验,并记下它们的周长、直径,填入书中的表格里。
②观察数据,对比发现。
提问:观察一下,你发现了什么呢?(圆的直径变,周长也变,而且直径越短,周长越短;直径越长,周长越长。圆的周长与它的直径有关系。)
3、 比较数据,揭示关系
正方形的周长是边长的4倍,那么,圆的周长秘直径之间是不是也存在着固定的倍数关系呢?猜猜看,圆的周长可能是直径的几倍?
学生动手计算:把每个圆的周长除以它的直径的商填入书中表格的第三列。
提问:这些周长与直径存在几倍的关系,(3倍多一些),最后师生共同总结概括出,圆的周长总是直径的3倍多一些,板书:3倍多一些。到底是三倍多多少呢?引导学生看书。
(三) 介绍圆周率
1、 师:任意一个圆的周长都是它直径的三倍多一些,这是一个固定不变的数,我们把它叫做圆周率,用字母∏来表示,用手指写一写。
2、 圆周率是怎样发现的,请同学们看课本小资料,讲述并对学生进行德育教育。
3、 小结:早在1500年前,祖冲之把圆周率算到了3.1415926和3.1415927之间,比外国人早了整整一千年,这是中华民族对世界数学史的巨大贡献,今天,同学们自己动手也发现了这一规律,老师相信同学们当中将来也会有成为像祖冲之一样伟大的科学家,根据需要,我们一般保留两位小数。
圆的周长总是它直径的3倍多一点。刚才我们是怎样计算的?两个数相除又可说成是两数的比,所以这个结果就是圆周长与它直径的比值。我们把圆的周长和直径的比值叫做圆周率,用字母“∏”表示。这个比值是固定的,而我们现在得到的结果有差异主要是测量工具及测量方法有误差造成的。那圆周率的数值到底是多少呢?说说你知道了什么?(强调∏≈3.14,在说的时候要注意是近似值,写和算的时候要按准确值计算,用等号。)
(四) 推导公式
1、 到现在,你会计算圆的周长吗?怎样算?
2、 如果用c表示圆的周长,表示d直径,字母公式怎样写?(板书:c=∏d)就告诉你直径,你能求圆的周长吗?圆的周长是它直径的∏倍,是一个固定不变的数。
3、 知道半径,能求圆的周长吗?周长是它半径的多少倍?
三、运用公式解决问题
1、 一张圆桌面的直径是0.95米,求它的周长是多少米?(得数保留两位小数)
2、 花瓶最大处的半径是15厘米,求这一周的长度是多少厘米?花瓶瓶口的直径是16厘米,求花瓶瓶口的周长是多少厘米?花瓶瓶底的直径是20厘米,求花瓶瓶底的周长是多少厘米?
3、 钟面直径40厘米,钟面的周长是多少厘米?
4、 钟面分针长10厘米,它旋转一周针尖走过多少厘米?
5、 喷水池的直径是10米,要在喷水池周围围上不锈钢栏杆2圈,求两圈不锈钢总长多少米?
四、课堂小结
通过这节课的学习你想和大家说点什么?
这节课,同学们大胆猜想圆的周长可能和什么关系、有怎样的关系,然后进行科学的验证,发现了圆的周长的计算方法,你们正在走一条科学的研究之路,希望你们能坚持不懈的走下去。
新课标人教版六年级下册数学教案5
教学内容:
课本第57——58页“扇形统计图“。
教学目标:
1、通过实例,认识扇形统计图,了解扇形统计图的特点与作用。
2、能读懂扇形统计图,从中获取有效信息,体会统计图在现实生活中的作用。
3、提高学生的实际应用能力。
教学重点:
认识扇形统计图,了解扇形统计图的特点与作用。
教学难点:
学生的实际应用能力的提高。
教具准备:
课件
教学过程:
一、复习旧知,引入新知
1、电脑课件呈现下表
种 类 摄入量/克 占总摄入量的百分比
油脂类 50
奶类和豆类 450
鱼、禽、肉、蛋等类 600
蔬菜和水果类 900
谷类 1800
2、电脑课件呈现统计图(或以学生的作品亦可)。
3、引入新知。
二、探索交流,获取新知
1、什么样的统计图是扇形统计图呢?
2、了解扇形统计图特点
3、即时练习。
完成课后的“说一说”。
(1)学生观察课文中的扇形统计图,读一凑统计图中的各类信息。
(2)说一说,你有什么体会。
学生说信息,并计算各种成分的百分比
汇报计算结果,订正
学生发言、交流
学生汇报:条形统计图可以清楚地看到每一种食物的摄入量。
观察,说出获得的信息
根据教师引导说出发现
从扇形统计图中能够清楚地看到各类食物的摄入量占总摄入量的百分之几。
观察数据,发现,说出不同,说出自己的看法
进行计算,订正
三、小结本课学习内容
谈话:这张表是小丽一家三口一天各类食物的摄入量,请你运用条形统计图表示表中的数据。说一说,条形统计图有什么特点?
提问:从条形统计图中,可以清楚地看到每一类食物的摄入量,能看出每一类食物的摄人量占总摄入量的百分之几吗?
揭题,板书课题:扇形统计图。
出示课件一边呈现扇形统计图,一边进行简要讲解,使学生了解扇形统计图是用扇形面积的大小(占圆面积的百分之几)来表示各类数量的多少。(占总摄人量的百分之几)
四、巩固升华
完成课后“试一试”。
1、比较各项活动时间,说一说有什么不同。提出数学问题
2、总时间是多少?各项活动时间可以怎么计算?
3、参照题目,画一个扇形统计图表示自己一天的作息时间,并和同学进行交流。
五、全课小结:你今天有什么收获?还有什么不懂的地方?
板书设计:
扇形统计图
能清楚地反映整体与部分的关系。
数学教学方案。相关文章: