教育巴巴 > 小学教案 > 数学教案 > 四年级 >

四年级人教版下册数学教案

时间: 新华 四年级

四年级数学教师应该在课堂中培养学生的好奇心,热情鼓励他们进取思考,引导大胆提出疑问。四年级数学教案在四年级数学教师的教学活动中具有重要的地位,你会写四年级数学教案?你是否在找正准备撰写“四年级人教版下册数学教案”,下面小编收集了相关的素材,供大家写文参考!

四年级人教版下册数学教案1

一、 教学目标:

1、 熟练掌握一、二级运算单列式从左到右的运算顺序。

2、 培养学生列综合算式解决实际问题的能力。

3、 感受教学与生活的紧密联系。

二、 教学重点、难点:

1、 同级运算的运算顺序。

2、 发现并总结概括出没有括号的混合运算顺序。

三、 教具、学具准备:

主题图 练习本

四、 教学过程

(一) 创设情境,导入新课

冬天你最喜欢什么运动?(堆雪人、打雪仗、滑冰、滑雪)这节课我们就来了解认识有关滑冰场情况。(出示“冰雪天地”主题图)让学生认真观察图。

根据主题图和提示提出问题。

1、 肯定学生的积极表现,引导学生回顾和本节内容相关的旧知识。

2、 出示信息,多媒体展示问题。

(二) 结合情境,探究新知。

(1)天山滑雪场上午有72人,中午有44人离去,又有85人到来,现在有多少人在滑雪?

A:师:根据信息你能提出什么数学问题?

生:下午有多少人?

生:滑雪场一共有多少人?

师:你能有什么解决办法?

师:引导学生交流,鼓励学生发表自己的看法。

B:给学生一定的思考时间,鼓励学生独立列算式,然后求解,师生共同总结。

C:表扬表现积极的学生,多媒体展示问题二:“冰天雪地”3天接待987人,照这样计算,6天预计接待多少人?

D:请学生先进行独立思考,然后相互讨论。

E:强调算式的多样化,帮助学生理解。例如:问题二中算式987÷3表示6天总共接待的人数,再乘以6表示6天总共接待的人数,他们的现实意义是相同的,所以两种算法都是正确的。

3、 结运算规律,在没有括号的算式里,如果只有加减法或者只有除法,都要从左往右按顺序计算。

4、 请学生做书中的小练习。

(三) 总结与反思,布置思考题

1、 检查学生练习情况,请同学总结本节课的主要内容,教师再做适当补充。

2、 教师进一步强调本节课的重点、难点和关键点。请学生反思自己本节课的学习情况,并谈谈收获和体会。

3、 布置思考题及课后作业。

思考题:

如果一个算式里有加减法,又有乘法,应如何计算?

课后作业:

练习一第1、2、5题


四年级人教版下册数学教案2

教学内容:

P6/例3 P10/例4(含有两级运算或有括号的混合运算)

教学目标:

1. 使学生进一步掌握含有两级运算的运算顺序。

2. 让学生经历探索和交流解决实际问题的过程,感受解决问题的一些策略和方法,

学会用两步计算的方法解决一些实际问题。

3. 使学生在解决实际问题的过程中,养成认真审题、独立思考等学习习惯。

教学过程:

一、主题图引入

观察主题图,找出条件,提出问题。

引导学生观察主题图。从图中你们都看到了什么?能提出什么数学问题?

二、新授

就学生提出的问题,出示例3 星期天,爸爸妈妈带着玲玲去"冰雪天地"游玩,购买门票需要花多少钱?

学生在练习本上解答此问题。

同桌两人说说自己是怎样解答的。

汇报:教师根据学生的汇报进行板书。

(1)24+24+24÷2

=24+24+12

=48+12

=60(元)

24÷2是一张儿童票的价钱,是半价,所以用24÷2,前两个24是爸爸和妈妈的两张成人票的总价。两张成人票加上一张儿童票就是他们购买门票需要多少钱。

(2)24×2+24÷2

=48+12

=60(元)

24×2是爸爸和妈妈两张成人票的总价,玲玲的儿童票用24÷2,再把三张门票的价钱加在一起就是总门票的价钱。

我们用不同的方法解决了同一个问题,这两个综合算式有什么共同特点?

这两个综合算式都是没有括号的,而且算式中有加减法也有乘除法。

这样的综合算式的运算顺序是什么?

学生总结运算顺序。

买3张成人票,付100元,应找回多少钱?

等等。

出示例4 上午冰雕区有游人180位,下午有270位。如果每30位游人需要一名保洁员,下午要比上午多派几名保洁员?

小组讨论,独立完成。

小组内互相说说你是怎样解答的?

汇报。

(1)270÷30-180÷30

=9-6

=3(名)

270÷30算出上午需要派几名保洁员;180÷30算出下午需要派几名保洁员,然后再用减法计算出下午比上午需要多派几名保洁员。

(2)(270-180)÷30

=90÷30

=3(名)

270-180算出下午比上午多出游人多少人,再除以30就算出了下午要比上午多派几名保洁员。

引导学生观察两个算是的不同点,以及运算顺序的不同。

学生进行小结。

教师根据学生的小结进行板书。

三、巩固练习

P7/做一做1、2

P11/做一做(完成书上的后,可以变化条件,如"买2副手套"等等。)

教师在练习的过程中应抓住学生的关键语言进行知识的巩固。

四、作业

P8-9/5-9

板书设计:

四则运算(二)

星期天,爸爸妈妈带着玲玲去"冰雪 上午冰雕区有游人180位,下午有270位。

天地"游玩,购买门票需要花多少钱? 如果每30位游人需要一名保洁员,下午要

(1)24+24+24÷2 (2)24×2+24÷2 比上午多派几名保洁员?

=24+24+12 =48+12 (1)270÷30-180÷30 (2)(270-180)÷30

=48+12 =60(元) =9-6 =90÷30

=60(元) =3(名) =3(名)

运算顺序:在没有括号的算式里,有乘、 运算顺序:算式里有括号,要先算括号里

除法和加、减法,要先算乘、除法。 面的。

课后小结:

四年级人教版下册数学教案3

教学目标

知识与技能:学生掌握除数是整十数除法方法,并能熟练进行计算。

过程与方法:使学生经历笔算除法计算的全过程,帮助学生理解算理。

情感、态度和价值观:培养学生养成认真计算的良好学习习惯。

教学重难点

定商,商的位置。

一、热身运动。

1.看着算式直接报出答案。

60÷20 120÷30 80÷20 360÷40

180÷30 240÷40 420÷60 240÷30

2.括号里能填几?

30×( )<280 20×( )<82 40×( )<278

70×( )<165 30×( )<182 90×( )<620

3.笔算87÷3和427÷6。

4.反馈。结合这两道题说说你是怎么算的。生说师适当板书除法法则。

5.揭题。笔算除法。

二、探究新知

1.出示主题图。说说你从图中了解到哪些数学信息?可以提出什么数学问题?怎样列式?

(1)板书:可以分给几个班?92÷30,口算,估算。

(2)学生尝试笔算。学生自练,师巡视收集学生的各种典型情况。并进行板书。

反馈。

①判断对错。你能告诉老师哪一个竖式是正确的?为什么?另外三个竖式错在哪里?为什么?

②结合小棒图理解算理。

③结合正确的竖式说说92÷30是怎么算的?提问:商为什么写在个位上?

④做一做。30÷10 40÷20 64÷30 85÷40。请四位同学上台板演。

(3)笔算192÷30。

学生列式笔算。

反馈。结合正确的竖式说说:你是怎么算的?商4,你是怎么想的?

(4)比较:在笔算192÷30和92÷30的过程中,有什么相同的地方,有什么不同的地方?

(5)做一做:140÷20 280÷50 565÷80请三生上板演。

2.小结

我们今天学习了什么知识?在笔算除数是两位数的除法时,要注意哪些方面?

三、练习

1.选择其中一组完成计算。

A 82÷30 102÷30 280÷70

B 78÷20 197÷80 364÷40

2.下面的计算对吗?把不对的改正过来。练习十四,第2题。

3.体育用品商店正在搞促销活动:

陈老师原来打算买12只足球,用这些钱现在可以买多少只足球?你还可以提出什么问题?

四、总结

这节课你有哪些收获?

教学设想:

1.计算教学之前还要不要“复习铺垫”呢?

建构主义学习理论认为,学习总是与一定的社会文化背景即“情境”相联系的,在实际情境下进行学习,有利于意义建构。的确,良好的问题情境能有效地激活学生的有关经验、体验。《标准》也非常强调,计算教学时“应通过解决实际问题进一步培养数感,增进学生对运算意义的理解”;“应使学生经历从实际问题中抽象出数量关系,并运用所学知识解决问题的过程”;“避免将运算与应用割裂开来”。

然而,任何事物都不是绝对的。计算教学之前还要不要“复习铺垫”呢?其实,新课前的复习铺垫主要目的,一是为了通过再现或再认等方式激活学生头脑中已有的相关旧知,二是为新知学习分散难点。前者,只要有必要,则无可厚非。问题在于后者,有一些计算教学中,常常有人为了使教学“顺畅”,设计了一些过渡性、暗示性问题,甚至人为设置了一条狭隘的思维通道,使得学生无需探究或者稍加尝试,结论就出来了。这节课,它是在学生学习了多位数乘一位数、除数是一位数的除法的基础上进行教学的。用整十数除整十数、几百几十数的口算,是学习除数是两位数笔算除法的重要基础。为了激活学生头脑中已有的相关旧知,我觉得有必要在课前安排一个复习铺垫的环节。因此我在课前安排了3个小练习:1、看着算式直接报出答案;2、括号里能填几;3、笔算87÷3和427÷6。

2.要注重计算与日常生活的联系。

诚然,计算本身具有抽象性,但其反映的内容又是非常现实的,与人们的生活、生产有着十分密切的联系。新课程注重计算的现实意义,适当让学生在实际情境中通过活动体验、感受和理解运算的意义、来源、现实背景和本质。

《标准》注重了通过实际情境使学生体验、感受和理解运算的意义。在“总体目标”中提出:“经历将一些实际问题抽象为数与代数问题的过程,掌握数与代数的基础知识和基本技能,并能解决简单的问题。”“经历运用数学符号和图形描述现实世界的过程,建立初步的数感和符号感,发展抽象思维。”

3.解决问题与技能形成。

过去计算教学中单调、机械的模仿和大量重复性的过度训练是要不得的,但是,在计算教学时只注重算理理解和解决实际问题,对计算技能形成的过程如蜻蜓点水一带而过,也是不利于培养学生的计算能力的。特别需要指出的是,在学生初步理解算理,明确算法后,不必马上去解决实际问题,因为这时正是计算技能形成的关键阶段,应该根据计算技能形成的规律,及时组织练习。具体地说,可以先针对重点、难点进行专项和对比练习,再根据学生的实际体验,适时缩减中间过程,进行归类和变式练习,最后让学生面对实际问题,掌握相应策略。

四年级人教版下册数学教案4

一、内容和内容解析

1.内容

平行四边形对角线的性质.

2.内容解析

这节课承接了上一节平行四边形的性质:对边相等,对角相等,本节继续研究对角线互相平分的性质,课本先设置一个探究栏目,让学生发现结论,形成猜想,然后利用三角形全等证明这个结论,对角线互相平分是平行四边形的重要性质,在九年级上册“旋转”一章,通过旋转平行四边形,得到平行四边形是中心对称图形和对角线互相平分,学生会有进一步体会.平行四边形是最基本的几何图形,它在生活中有着十分广泛的应用.这不仅表现在日常生活中有许多平行四边形的图案,还包括其性质在生产、生活各领域的实际应用.是中心对称图形的具体化,是以后学习,平行四边形判定的重要依据.

教科书例2是的平行四边形对角线的性质的直接运用,而且涉及勾股定理以及平行四边形面积的计算.

基于以上分析,本节课的教学重点是:平行四边形对角线性质的探究与应用.

二、目标和目标解析

1.目标

(1)探究并掌握平行四边形对角线互相平分的性质.

(2)能综合运用平行四边形的性质解决平行四边形的有关计算问题,和简单的证明题.

2.目标解析

达成目标(1)的标志是:能发现平行四边形对角线互相平分这一结论并形成猜想,会利用三角形全等证明猜想.

达成目标(2)的标志是:能发现平行四边形的边、角、对角线等基本要素间的关系,会运用等量代换等进行线段长、图形面积等的计算,掌握简单的逻辑论证.

三、教学问题诊断分析

本节课在已学习了三角形全等证明,平行四边形定义,平行四边形边、角的性质的基础上,在积累了一定的经验的情况下学习本节课内容.例2是既是巩固平行四边形对角线互相平分的性质,又复习了勾股定理以及平行四边形面积的计算.这些问题常常需要运用勾股定理求平行四边形的高或底.这些问题比较综合,需要灵活运用所学的有关知识加以解决.

基于以上分析,本节课的教学难点是:综合运用平行四边形的性质进行有关的论证和计算.

四、教学过程设计

引言:前面我们研究了平行四边形的边、角这两个基本要素的性质,下面我们研究平行四边形对角线的性质.

1. 引入要素 探究性质

问题1 我们研究平行四边形边、角这两个要素的性质时,经历了怎样的过程?

师生活动:学生回顾我们研究平行四边形边、角这两个要素的性质时经历的过程,并请学生代表回答.

设计意图:回顾研究研究平行四边形边、角这两个要素的性质时经历的过程,总结研究平行四边形的性质的一般活动过程(即观察、度量、猜想、证明等),积累研究图形的.活动经验,为本节课研究对角线要素作准备.

问题2如图,在ABCD中,连接AC,BD,并设它们相交于点O,OA与OC,OB与OD有什么关系?你能证明发现的结论吗?

师生活动:启发学生去发现并猜想:平行四边形的对角线互相平分.

你能证明上述猜想吗?

教师操作投影仪,提出下面问题:

图中有哪些三角形全等?哪些线段是相等的?请同学们用多种方法加以验证.

学生合作学习,交流自己的思路,并讨论不同的验证思路.

教师点拨:图中有四对三角形全等,分别是:△AOB≌△COD,△AOD≌△COB,

△ABD≌△BCD,△ADC≌△CBA.有如下线段相等:OA=OC,OB=OD,AD=BC,AB=DC证明中应用到“AAS”,“ASA”证明.

师生归纳整理:

定理:平行四边形的对角线互相平分.

我们证明了平行四边形具有以下性质:

(1)平行四边形的对边相等;

(2)平行四边形的对角相等;

(3)平行四边形的对角线互相平分.

设计意图:应用三角形全等的知识,猜想并验证所要学习的内容.

2.例题解析 应用所学

问题3如图,在ABCD中,AB=10,AD=8,AC⊥BC,求BC、CD、AC、OA的长以及ABCD的面积.

师生活动:教师分析解题思路, 可以利用平行四边形对边相等求出BC=AD=8,CD=AB=10,在求AC长度时,因为∠ACB=90°,可以在Rt△ACB中应用勾股定理求出AC= =6,由于OA=OC,因此AO=3,求ABCD面积是48,学生板演解题过程.

变式追问:在上题中,直线EF过点O,且与AB,CD分别相交于点E,F.求证:OE=OF.图中还在哪些相等的量?

设计意图:对于几何计算或证明,分析思路和方法是根本,本题既巩固平行四边形对角线互相平分的性质,又复习勾股定理和平行四边形面积计算的知识,通过本例,让学生学会如何分析,渗透“综合分析法”. 让学生理解平行四边形对角线互相平分的性质的应用价值.

3.课堂练习,巩固深化

(1)ABCD的周长为60cm,对角线交于O,△AOB的周长比△BOC的周长大8cm,则AB、BC的长分别是_________.

(2)如图,在ABCD中,BC=10,AC=8,BD=14,△AOD的周长是多少?△ABC与△DBC的周长哪个长?长多少?

设计意图:通过练习,深化理解平行四边形的性质,提高选择运用平行四边形定义、性质解决问题的能力.

4.反思与小结

(1)我们学习了平行四边形的哪些性质?

(2)结合本节的学习,谈谈研究平行四边形性质的思想方法.

(3)根据研究几何图形的基本套路,你认为我们还将研究平行四边形的什么问题?

5.布置作业

教科书P49页习题18.1 第3题;

教科书第51页第14题.

四年级人教版下册数学教案5

教学目标:

1.知识与技能

结合具体实例,进一步认识三角形的概念,掌握三角形三条边的关系.

2.过程与方法

通过观察、操作、想象、推理、交流等活动,发展空间观念,推理能力和有条理地表达能力.

3.情感、态度与价值观

联系学生的生活环境、创设情景,帮助学生树立几何知识源于实际、用于实际的观念,激发学生的学习兴趣.

教学重点难点:

1.重点

让学生掌握三角形的概念及三角形的三边关系,并能运用三边关系解决生活中的实际问题.

2.难点

探究三角形的三边关系应用三边关系解决生活中的实际问题.

教学设计:

本节课件设计了以下几个环节:回顾与思考、情境引入、三角形的概念、探索三角形三边关系、练习应用、课堂小结、探究拓展思考、布置作业.

第一环节 回顾与思考

1、如何表示线段、射线和直线?

2、如何表示一个角?

第二环节 情境引入

活动内容:让学生收集生活中有关三角形的图片,课上让学生举例,并观察图片.

活动目的:让学生能从生活中抽象出几何图形,感受到我们生活在几何图形的世界之中.培养学生善于观察生活、乐于探索研究的学习品质,从而更大地激发学生学习数学的兴趣

第三环节 三角形概念的讲解

(1)你能从中找出四个不同的三角形吗?

(2)与你的同伴交流各自找到的三角形.

(3)这些三角形有什么共同的特点?

通过上题的分析引出三角形的概念、三角形的表示方法及三角形的边角的表示方法.并出两道习题加以练习,从练习中归纳出三角形的三要素和注意事项.

第四环节 探索三角形三边关系



数学教案相关文章:

2021五年级公开课数学教案

四年级数学课堂教案

《认识图形》一年级数学上册教案

2022人教版一年级数学上册教案

小学教案模板

2022青岛版四年级数学上册教案

高中教案模板

小学教案模板

小学教案模板

12401