五年级数学一单元教案设计
五年级数学老师应该在课堂中培养学生的好奇心,热情鼓励他们进取思考,引导大胆提出疑问。每个五年级数学教师在教学之前都应该写五年级数学教案。你是否在找正准备撰写“五年级数学一单元教案设计”,下面小编收集了相关的素材,供大家写文参考!
五年级数学一单元教案设计1
教学内容
人教版课标实验教材五年级下册第60——64页。
教学目标
1、知道分数的产生,理解分数的意义,掌握分数单位。
2、在具体的生活情境中感悟分数的意义,理解单位“1”的含义,体会部分与整体的关系,培养学生的抽象概括能力。
3、通过合作学习使学生获得成功、兴趣、愉悦、兴奋这些丰富的情感体验,并感受到生活中处处有分数。
教学重点
自主探究分数的意义。
教学难点
建立单位“1”的概念。
教学过程
一、导入新课
师出示分数3/7 6/8 1/4 认识吗?读一读。这些数都是我们曾经学过的分数。
师:你们知道分数是怎样产生的吗?想知道吗?从古至今,我们在进行测量、分物的时候往往不能得到整数的结果,就用分数来表示。(课件演示)
二、探究新知
1、动手操作,理解1/4
师:今天我们就进一步来认识分数,了解分数的意义.(板书课题) 为了让大家更好的理解分数的意义,今天老师为大家准备了一个正方形、4支笔、8颗糖。
活动要求:现在我们以1/4为例,请同学们4人一组,,通过折一折、分一分、涂一涂的办法表示出它的1/4。
2、小组合作,交流方法
师:分好的同学就与同组的小伙伴交流一下,说说1/4是怎么得到的?1/4的含义是什么?
组1:我们选的是正方形。我们把正方形平均分成了4份,每一份是这个正方形的1/4。
组2:我们选的是4支笔。把4只笔平均分成了4份,其中一份是这些笔的1/4。
组3:我们选的是8颗糖。把8个糖平均分成了4份,其中一份是8个糖的1/4。
3、建立单位“1”的概念
师:仔细观察这3幅图,它们有什么相同的地方?
生1:都是平均分成了4份,都表示了各自的1/4。
生2:被分的东西不一样,每一份也不一样。
师:对,大家都发现原来是因为被分的东西不一样,有的'是一个物体、有的是一些物体。像这样的一个物体或一些物体,我们都可以把它看作是一个整体。(板书“整体”)一个整体可以用自然数1来表示,我们通常把它叫做单位“1”。(板书单位“1”)
4、归纳分数的意义
师:谁来说说什么是分数?
生:把单位“1”平均分成一份或几份,就可以用分数表示。
师:一个整体用什么表示?平均分是什么意思?若干份是什么意思?(生:很多份)
5、练习:
四、认识分数单位
自学课本,学生汇报什么是分数单位。
生:把单位“1”平均分成若干份,表示其中一份的数叫做分数单位。
师:你能个举例子来说明吗?
生:2/3的分数单位是1/3。(板书2/3)
师:他有几个这样的分数单位?(2个)
师:3/4的分数单位是多少?11/23呢?17/120呢?你们找分数单位怎么又准又快呀?有什么简便的好方法?”
生:分数的分母是几,它的分数单位就是几分之一,分子是几,就有几个这样的分数单位。
五、巩固练习
六、全课小结
师:今天这节课你有什么收获?对自己学习情况进行简单评价。有收获的同学占全班人数的几分之几?(百分之百)在学习评价的时候也用到了分数,分数真是无处不在,希望大家课后到生活中去寻找分数,进一步去了解分数。
五年级数学一单元教案设计2
(一)教学目标
1.知道分数是怎样产生的,理解分数的意义,明确分数与除法的关系。
2.认识真分数和假分数,知道带分数是一部分假分数的另一种书写形式,能把假分数化成带分数或整数。
3.理解和掌握分数的基本性质,会比较分数的大小。
4.理解公因数与公因数、公倍数与最小公倍数,能找出两个数的公因数与最小公倍数,能比较熟练地进行约分和通分。
5.会进行分数与小数的互化。
(二)教材说明和教学建议
教材说明
1.本单元内容的结构及其地位作用。
本单元是学生系统学习分数的开始。内容包括:分数的意义、分数与除法的关系,真分数与假分数,分数的基本性质,公因数与约分,最小公倍数与通分以及分数与小数的互化。
学生在三年级上学期的学习中,已借助操作、直观,初步认识了分数(基本是真分数),知道了分数各部分的名称,会读、写简单的分数,会比较分子是1的分数,以及同分母分数的大小。还学习了简单的同分母分数加、减法。在本学期,又学习了因数、倍数等概念,掌握了2、3、5的倍数的特征。这些,都是本单元学习的重要基础。
通过本单元的学习,将引导学生在已有的基础上,由感性认识上升到理性认识,概括出分数的意义,比较完整地从分数的产生,从分数与除法的关系等方面加深对分数意义的理解,进而学习并理解与分数有关的基本概念,掌握必要的约分、通分以及分数与小数互化的技能。
这些知识在后面系统学习分数四则运算及其应用时都要用到。因此,学好本单元的内容是顺利掌握分数四则运算并学会应用分数知识解决一系列实际问题的必要基础。
本单元的内容分为六节,各节的内容的编排体系及其内在联系如下图所示。
五下分数的意义和性质
从上面的图示,不难看出六节教材的内容所具有的内在逻辑联系。
首先,第1节分数的意义和第3节分数的基本性质,是整个单元教学内容的主干,也是本单元教学的重点。第2节真分数与假分数是分数意义即分数概念的引申;第4节约分、第5节通分则是分数基本性质的运用。最后一节沟通了分数与小数在表现形式上的相互联系,得出了分数与小数的互化方法。整个单元的内容,大体上显现出由概念到性质,再到方法、技能的递进发展关系。
其次,在第1节里,分数的意义是学习的重点。在前面学习的基础上,这里引入了两个新的概念,即单位“1”与分数单位。至于分数的产生、分数与除法的关系,则是从分数的现实来源和数学内部来源两方面来帮助学生深化对分数的认识。
在第2节里,先通过三道例题,引入真分数、假分数、带分数三个概念,再通过例4,解决把假分数化成带分数或整数的问题。
在第3节里,先通过例1,得出分数基本性质,然后通过例2,在运用的过程中加以巩固。
在第4、5节里,先引入公因数与公因数,公倍数与最小公倍数的概念,再讨论求公因数、最小公倍数的方法,然后在此基础上,引入约分、通分的概念和方法。
显然,在第2、3、4、5节内部,同样显现出由概念到方法的逻辑关系。
2.本单元教材的编写特点。
与原教材相比,本单元教材的主要改进有以下几点。
(1)多侧面地展现了分数的来源。
在小学数学里,认识分数是小学生数概念的一次重要扩展。考虑到分数概念比较重要,又比较抽象,有必要通过揭示产生分数的现实背景,来帮助学生形成分数概念,理解它的含义。
从现实的角度来看,数是用来表示量的。5只兔、5个人,这些量的共同特征,可以用自然数5来表示。也就是说自然数是一个量(兔、人)与另一个作为单位的量(1只兔、1个人)的比。
现实世界中存在的量,除了上面例举的,由一些单位量合成的,可以用自然数表示多少的量之外,还存在着许多可以分割的,无法用自然数表示的量。例如,用一根作为单位长的木棒(米尺)去量一条线段AB的长,量了3次还有一段PB剩余。
五下分数的意义和性质
这时,运用自然数就只能粗略地说,这条线段长3米多一点。要更精确一些,就必须把度量单位等分成更小的单位,来度量余下的那条线段。比如把1米一分为四,则每等份叫做“四分之一”米,记做1/4米。这就引入了形如1/n(n为大于1的自然数)的分数。假如使用度量单位14米去量图中剩下的一条线段PB,量了3次恰巧量尽,那么PB的长就是“3个1/4”,记作3/4米,这样就又引入了形如m/n(n为大于1的自然数,m为自然数)的分数。历,分数正是为了比较精确地测量这类可以分割的量而引入的。
从数学的角度来看,分数的引入是为了解决在整数集合里除法不是总能实施的矛盾。比如,2÷3在整数范围内不能计算,引入分数就能记作2÷3=2/3。当然,这种抽象的表示方法也有它的实际意义。例如把2块饼平均分给3个人,每人分得2/3块饼。
在本单元的第1节里,教材首先从历史的角度,从现实生活中等分量的需要出发,生动形象地展示了分数的现实来源。
在引出分数概念之后,教材又通过分蛋糕、分月饼的实例,抽象出分数与除法的关系,使学生初步感悟,有了分数,就能解决整数除法除不尽的矛盾。这实际上是从数学内部发展的角度,揭示了分数的来源。
这就为拓宽学生的认识,加深对分数的理解,提供了较为丰富的教学素材。
(2)约数、倍数的有关知识与分数的相关知识结合起来教学。
我们知道,在小学数学中,约数、倍数的有关知识的学习,主要是为学习分数服务的。但在以往的教材中,两者各自独立成章,学完后,学生还不知道学了公因数、公倍数与公因数、最小公倍数有什么用,只能对一组组整数单纯地练习求它们的公因数或最小公倍数。而且,这些知识集中在一个单元里,概念多,而且抽象,不利于分散难点,逐步消化,也不利于认识的螺旋上升。
现在,把公因数、公因数的内容安排在讨论约分之前教学;把公倍数、最小公倍数的内容安排在引进通分之前学习。从而将两部分知识紧密结合起来,学了就用,既能减少单纯的枯燥练习,节省教学时间,又有利于整除性知识的教学改革。为了配合这一改革,约分与通分不再合成一节,而是公因数、公因数与约分编为一节,公倍数、最小公倍数与通分编为一节。
(3)关注数学的抽象过程,从现实问题情境引出数学问题,得出数学知识。
在本单元中,无论是公因数与公因数、公倍数与最小公倍数的引入,还是约分、通分的给出,教材都创设了适当的现实问题情境,进而在解决实际问题中,抽象出数学的概念,得出数学的方法。这些数学知识,还有利于培养学生的数学应用意识和解决实际问题的能力。
(4)部分内容作了适当的精简处理或编排调整。
本单元中,比较重要的内容精简处理与编排调整,在前面揭示单元内容结构与联系的图示中,已有所显示。这里,再择要作些说明。
其一,分数大小比较,不在第1节中单列一段,而是充分利用前面学习分数初步认识时打下的基础,把有关内容与通分结合在一起学习。这样既进一步简化了第1节的内容,也有利于发挥学习的正向迁移作用。
其二,删去了原来第2节中把整数或带分数化成假分数的内容。这是因为根据课程标准,今后的分数运算中将不含带分数,所以无须再掌握把整数或带分数化成假分数的技能。考虑到把假分数化成带分数,容易看出这个假分数的大小在哪两个整数之间,从而有利于数感的形成;把能化成整数的假分数化成整数,是化简某些计算结果的需要。所以,把假分数化成带分数或整数的内容,仍然保留,但也作了简化,合在一个例题中予以解决。
教学建议
1.充分利用教材资源,用好直观手段。
如前介绍,本单元教材在加强数学与现实世界的联系上作了不少努力,同时,教材还运用了多种形式的直观图示,数形集合,展现了数学概念的几何意义。从而为教师与学生提供了较为丰富的学习资源。教学时,应充分利用这些资源,以发挥形象思维和生活体验对于抽象思维的支持作用。
本单元的特点之一就是概念较多,且比较抽象。而小学高年级学生的思维特点是他们的抽象逻辑思维在很大程度上还需要直观形象思维的支撑。因此,在引入新的数学概念时,适当加大思维的形象性,化抽象为具体、为直观,对于顺利开展教学来说,是十分必要的。所谓化抽象为具体,就是通过具体的现实情境,调动学生相关生活经验来帮助理解。所谓化抽象为直观,就是运用适当的图形、图示来说明数学概念的含义,这是小学数学最常用的也是最主要的直观教学手段。
2.及时抽象,在适当的抽象水平上,建构数学概念的意义。
为了搞好本单元的教学,在加强直观教学的同时,还要重视及时抽象,不能听任学生的认识停留在直观水平上。否则,同样会妨碍学生对所学知识的理解和应用。例如:比较1/3与1/2的大小,有学生回答,不一定谁大谁小,要看他们分的那个圆,哪个大,由此得出1/3可能比1/2大,也可能比1/2小,还可能和1/2相等。造成这种错误认识的主要原因,就在于过分依赖直观,而没有及时抽象。因此,在充分展开直观教学,让学生获得足够的感性认识基础上,要不失时机地引导学生由实例、图示加以概括,建构概念的意义。
3.揭示知识与方法的内在联系,在理解的基础上掌握方法。
在本单元中,约分与通分、假分数化为带分数或整数、分数与小数的互化的方法,都是必须掌握的。这些方法看似头绪较多,但若归结为基础知识,就是揭示相关知识与方法的联系,就比较容易在理解的基础上掌握方法。以约分与通分为例,它们都是分数基本性质的应用。尽管约分时分子、分母同除以一个适当的数,通分时分子、分母同乘一个适当的数,但它们都是依据分数的基本性质,使分数的大小保持不变。因此,教学时不宜就方法论方法,而应凸显得出方法的过程,使学生明白操作方法背后的算理。这样就能依靠理解掌握方法,而不是依赖记忆学会操作。
4.这部分内容可以用20课时进行教学。
五年级数学一单元教案设计3
教学内容:教材第19页的内容
教学目标:
知识与技能:让学生了解在生活情景中确定物体位置的多种方法,能在具体情境中学会用“第几排第几座”、“第几层第几号”、“第几组第几个”等方式描述物体在平面中的相对位置,或根据平面位置确定物体。
过程与方法:知道可以在平面上用两上数据确定物体的位置,在确定位置的过程中培养学生的空间观念渗透平面坐标最基本的知识。
情感态度价值观:体会生活中处处有数学,产生对数学的亲切感。
教学重难点:
重点:学会用“第几排第几座”、“第几层第几号”、“第几组第几个”等方式描述物体在平面中的相对位置,或根据平面位置确定物体,并解决一些生活中的实际问题。
难点:学根据“第几排第几座”、“第几层第几号”、“第几组第几个”等方式描述物体在平面中的相对位置。
教学方法:直观演示法与自主探索、小组合作的方法。
教学准备:多媒体、投影仪等有关内容图片。
教学过程:
一、创设情境,引出新知。
1、 出示多媒体课件或图片:一位教师到图书馆借书,询问图书管理员工具书所在位置,然后图书员告诉他图书所在位置。
2、 学生观看多媒体课件或图片,听教师讲解,初次接触位置这个概念。
3、 引入本课学习并板书课题。
4、 学生在教师的引导下回忆某物体的位置,确定它们的位置,联系具体生活场景和经验,进入到下面的学习中。
设计意图:通过具体的直观演示以及具体的情景联系,充分调动学生对学习的兴趣,为学习新知奠定基础。
二、例题展示:
1、投影出示例1的内容。
(1)学生读题,了解已知信息。
教师引导学生可以根据自己在教室里的位置来思考这个问题。
(2)问:已知张亮同学是第二列、第三行的同学,你能指出谁是张亮同学吗?
学生联系实际的基础上根据图中张亮所在的列数的行数来确定张亮的位置,教师给予肯定。
(3)如果用(2,3)表示张亮同学的位置,你能表示王艳和赵强同学的位置吗?看一看有什么不同?
启发学生思考,引导学生用数对表示位置。
2、引导学生用刚才的方法小结:先从前往后确定第几行,再从左往右确定第几列,这样就能用第几行第几列确定同学们的位置。
设计意图:通过具体的实例引导学生认识第几行和第几列的判断方法,经历应用数学知识分析问题和解决问题的过程。
三、做一做,巩固确定位置的方法。
1、出示情景。组织学生观察情景,思考教师的提问。
2、引导学生利用在例题中学到的确定位置的方法来回答问题。
3、组织学生用一组数字来表示它们的位置。学生思考后可交流讨论,最后全班汇报。
四、反馈练习。
完成教材第19 页的做一做。
五、课堂小结。
六、作业:选用课时作业。
板书设计:
位置
竖排叫列 横排叫行
确定第几列一般从左往右数,确定第几行一般从前往后数。
课后小记与反思:
第二课时 位置(二)
课型:讲授课
教学内容:教材第20页及相关教学内容
教学目标:
知识与技能:知道在生活中如何根据示意图找到位置。
过程与方法:理解可以用一组数来确定位置关系,通过确立一个坐标图形来找准方位。
情感态度价值观:体会生活中处处有数学,产生数学的亲切感,把位置关系的学习与生活场景紧密联系起来。
教学重难点:
重点:能够通过示意图找到物体的具体位置。
难点:理解用一对数来确定位置的方法,并把它用于实践中。
教学方法:直观演示法和自主探究与小组合作的学习方式。
教学准备:多媒体课件或实物等。
教学时间:
教学过程
一、联系生活,引入新课。
1、谈话导入。
学生回顾在生活所见的示意图,回答教师问题,。
2、引入新课,板书课题。
设计意图:通过对前面知识的复习,以及具体的直观演示和具体的情景联系,充分调动学生对学习的兴趣,为学习新知奠定基础。
二、例题展示。
1、出示例2。
学生读题,明白示意图,初步了解题目中的每个位置是用一个坐标的形式来表示的,每一个游览区和一对数相对应。
2、学生可提问质疑,可小组讨论,可互相回答问题。全班交流。
交流时教师要引导学生认识示意图,知道它们是如何标示各区域所在位置的。
小结:横排和竖排所构成的区域就是整个动物园的范围。
每个小区域所对应的数值就是整个动物园这个大范围的一个坐标点。通过这些坐标点,我们就能够确定某个游览区的具体位置。
3、组织学生说说其他场馆的位置,同时教师板书。
4、引导学生进一步理解场馆位置与坐标中各点对应的关系。
5、练习:在图上标出这些场馆的位置。
6、小结:通过例题我们把一个区域的示意图用坐标的形式表示出来,通过对应的坐标位置就可以确定所要找的地方的位置。
三、做一做,巩固确定位置的知识。
出示练习,引导学生完成练习。
四、反馈练习。
五、课堂总结。
在练习中,要紧紧把握图形,从题目入手,寻找位置与坐标数值的对应关系,明确它们之间是一一对应的关系,可以互相判断对方。
六、作业:选用课时作业。
板书设计:
位置
第三课时 位置(练习课)
教学内容:人教版小学数学五年级教材P21——23练习五2、3、5、6、7、8题
教学目标:
1、通过练习,使学生进一步提高用数对表示、确定位置的能力。
2、通过练习,进一步提高学生抽象思维能力,发展学生的空间观念,体验数学与生活的联系。
教学重点:通过练习,使学生进一步提高用数对表示、确定位置的能力。
教学难点:发展学生的空间观念,体验数学与生活的联系。
教学过程:
一、 基础性练习
1、填一填,再回答
⑴、用数对表示平面图中的位置时,我们规定:竖排叫做( ),横排叫做( ),确定第几列一般从( )往( )数,确定第几行一般从( )往( )数。
⑵、○在第4列第5行,用数对表示是( , ); 用数对表示是(2,7),那么它在第( )列第( )行,(8,7)在图中表示第( )列第( )行的位置。 2、动物园的平面图。
①、动态生成方格图,渗透坐标思想
②、你能用数对表示出大门的位置吗?请生汇报,说理。
③、游戏:猜景点
任选你想去的一个景点,用数对表示它的位置。小组内同学看数对说地名,看看说得对吗?全班交流。 如果想去的景点是在( ,4),可能是哪里?
得出:一个数能准确说出一个地点的位置吗?数对中的两个数能帮助我们很快在平面图上找到某个具体的地点。
④鳄鱼潭在(2,4),请标出。图上(4,2)和(2,4)表示的位置相同吗?为什么? 得出:数对表示位置时不仅要用两个数,还要注意两个数的顺序。
⑤小强的位置在(3,1),他要去的地方位置在(6,5),你能沿着方格线画出他的行走路线吗? 过渡:数对能表示一个人的具体位置,平面图上一个地点,利用数对还能准确描述图形的具体位置。
二、巩固性练习:
书本第2、3、5、6、7、8题,学生先独立练习,老师再有选择、有重点地加以点评,指正(为节省课堂教学时间,这部分练习可以课前布置)。
三、发展性练习
1、移动图形
⑴、在格子图上画一个直角三角形ABC,并构建一个平面示意图,确定列和行,用数对表示这个直角三角形的三个顶点。
⑵、把三角形ABC向右平移5格再向上平移两格后的图形用A’、B’、C’标出对应的点,并用数对表示A’、B’、C’的位置。
⑶、把三角形ABC绕B点逆时针90°,得到的图形用A”、B”、C”标出对应的点,并用数对表示A”、B”、C”的位置。 2、五子棋
明明和小强下五子棋:
明明执黑子先下,小强执白子后下。 明明和小强的落子位置用数对表示是:
明明:1、(4,5) 2、(5,6) 3、(6,7) 4、(7,8) 5、(4,7) 6、(5,7)
小强:1、(5,5) 2、(6,6) 3、(3,4) 4、(8,9) 5、(4,4) 6、(7,7)
⑴、请你根据所给的信息,画出一个简单的棋盘,并在棋盘上画出黑子和白子。
⑵、你认为谁赢的可能性大?如果你是明明,你的下一步棋子准备放哪?请用数对表示。 3、涂色游戏
根据下面给出的数对给方格涂上相应的颜色,并说说涂出的图形是什么。
红色:(3,4),(4,5),(5,6),(6,7),(7,6),(8,5),(9,4),(4,4),(5,4),(6,4),(7,4),(8,4)。
蓝色:(4,1),(4,2),(4,3),(8,1),(8,2),(8,3)。 黄色:(8,6),(8,7)。
绿色:(7,10),(8,9),(8,11),(9,9),(9,11),(10,9),(10,11),(11,10)。
四、课堂总结:
用数对确定位置在生活中有着广泛的应用,同学们说说在哪些领域会用到这个知识?我们学好这个知识对于大家以后指导自己的生活,工作都有重要的作用。我们今天练习的这些内容?你觉得自己掌握的情况如何?有哪些地方还需要加强?
五年级数学一单元教案设计4
教学内容:
人教版义务教育课程标准教科书五年级下册第84-85页例3、例4及相关练习
学情分析:
《约分》是在学生已经掌握了分数的基本性质和公因数的基础上进行教学的,约分作为分数基本性质的直接应用,它是化简分数的常用方法。学习约分,不但可以提高对分数基本性质的的认识,还为分数的四则运算打下基础。
教学目标:
1、知识和技能目标:理解最简分数和约分的意义,掌握约分的方法,能够正确地进行约分,培养学生观察、比较和概括能力。
2、过程与方法目标:通过学生自主探索理解最简分数和约分的意义,经历探究约分方法的过程,渗透恒等变换思想。
3、情感态度和价值观目标:培养学生运用所学知识解决问题的能力,感受数学与生活的紧密联系。
教学重难点:
重点:最简分数的意义和约分的方法;掌握约分的方法。
难点:能准确的判断约分的结果是不是最简分数。
教具、学具准备:
课件
教学过程
复习铺垫。
课件出示一起回答 用列举法找出24和30的公因数和公因数 (为24
/
30约分做准备)
1、24的因数有( ),30 的因数有( ),24和30的公因数有( ),它们的公因数是( )。
2、填空(说说为什么,什么是分数的基本性质)
(教学方法:课件出示复习题,第1题学生在练习本上完成,第2题先默背,然后指名回答,集体订正。)
过渡:这是我们前面所学习的内容,这节课我们接着学习新内容,请看大屏幕。
二、探究新知。
(一)、猜测、验证和比较,理解最简分数的意义
1、出示例3的教学情境图,让学生观察。
2、师:从情境图中,你得到了什么信息?(这是某所学校100米游泳比赛中,三个学生的对话,生1:一共要游100米,小明已经游了75米,生2:他已经游了全程的3
/
4,生3:75
/
100和3
/
4是一回事吗?)
3 、猜一猜:75
/
100和3
/
4
/
是一回事吗?
4、验证:让学生同桌讨论,把验证过程写在练习本上。
5、学生汇报结果,教师课件演示。
6、引导学生比较75
/
100和3
/
4两个分数的异同,得出最简分数的概念。
相同点:分数的大小相等
不同点:75
/
100分子和分母较大,含有公因数1、5、25;3
/
4分子和分母较小,只含有公因数1。分数的意义,分数单位都不同
总结概念:分子和分母只含有公因数1,像这样的分数叫做最简分数。
活动:请学生例举最简分数的例子。
教师说学生判断,
学生说大家判断
学生说同桌判断
抓住关键:分子和分母只含有公因数1,看是否有公因数2、3、5
8、课件出示练习:指出下面哪些分数是最简分数?为什么?
5
/
7 6
/
9 10
/
12 11
/
12 8
/
10 14
/
169
/
1624
/
25 21
/
24 13
/
17
名回答,说明为什么。
还是抓住关键:分子和分母只含有公因数1
假如都是2或3或5等的倍数,就不只有公因数1。
(二)、探究约分的意义和方法
过渡:刚才,我们一起学习了最简分数,在我们学过的分数中有很多都不是最简分数,我们能不能把它化成最简分数呢?
课件出示例4. 判断24
/
30是不是最简分数(不是,除了1外,还有公因数2、3、6)
把24/30化简成最简分数
师提出思考问题:
(1)、化简指什么? 使分子分母的数字变小
(2)、化简后大小不能变,要运用什么性质? 等式的基本性质
(3)、 等式的基本性质中同时乘或除以相同的数(0除外),化简时,是乘,还是除,用什么来除。 除,用公因数来除
(4)、化简到什么时候为止? 最简分数,分子分母只有公因数1
学生小组内讨论交流,明确题目要求,为探究约分方法做准备。
2、师:请同学们试着做一做,把24/30化简成最简分数。大小不能变。
完成后小组内交流。
巡视,指导。
交流探究结果。
小组汇报结果。
(1)方法一:用分子和分母的公因数(1除外)依次去除。除到最简分数为止
24
/
30=24+30
/
30+2=12
/
152
/
15=12÷3
/
15÷3=4
/
5
(2)方法二:直接用分子和分母的公因数去除。直接得到最简分数。
24
/
30=24+6
/
30+6=4
/
5
/
小结:教师用课件演示比较两种约分方法,并总结约分的意义。
约分的概念:
师:约分还有一种书写方法,请同学们看第85页例4,
并在练习本上写一写约分的这种写法。
6、教师课件直观演示约分的另一种书写格式。
三、巩固练习(课件演示)
过渡:刚才我们一起学习到了最简分数和约分的知识,老师发现大家学得很认真,但不知掌握的怎么样?大家愿意接受挑战吗?
1、判断下面各等式,哪些是约分?为什么?
2、错题改正。
3、指出下列分数分子和分母的公因数。
4、分苹果。
四、课堂小结
这节课我们学习了什么内容?(板书课题:约分)
五、板书设计
约 分
方法一:
24
/
30=24÷2
/
30÷2=12
/
15
12
/
15=12÷3
/
15÷3=4
/
5
方法二:
24
/
30=24÷6
/
30÷6=4
/
5
75
/
100= 3
/
4
不同点 : 分子和分母较大 分子和分母较小,
含有公因数1、5、25 只含有公因数1
最简分数
教学反思
1、为学生的数学思考搭梯子。
课堂提问是学生进行数学思考的前提,问题过易就没有思考探究的价值,但问题过难,学生又研讨不出来也没有实际意义。本节课的教学,我根据问题的难易和学生的实际情况给学生学习搭梯子。
如:在探究理解最简分数意义这一环节的教学中,学生验证出75
/
100和3
/
4相等以后,我提出了一个问题:75
/
100和3
/
4有什么区别?很多学生都能看出75
/
100分子分母较大,3
/
4分子分母较小,但没有学生从分子和分母的公因数上去比较。接着我给学生搭了个梯子:请同学们从分子和分母的公因数上比较一下看它们有什么区别?很快学生就找出了75
/
100分子分母有公因数1、5、25,而3/4只有公因数1,然后我又在“只有”这个词上加以强调,使学生深刻的理解了最简分数的概念。
又如探究“约分的意义和方法”这个环节,如果直接出示例4:24
/
30,然后让学生自主探究约分的方法,相信很多学生会“丈二和尚摸不着头脑”,无从下手。在出示例4之后,我是这样给学生搭梯子的。我要求学生不动手,先思考三个问题(①、化简指什么?②、化简要运用什么性质?③化简到什么时候为止?),接着让学生交流,明确题目要求,为探究约分方法做准备。通过这两步搭梯子之后,学生也就知道了化简就是把分子分母较大的分数化成分子分母较小的分数,化简要运用分数的基本性质,化简要化到最简分数为止。第三步再让学生自己去探究约分的方法。此时学生已胸中成竹,很自然的探究出了约分的方法,体验了成功的喜悦,突破了本课的教学重点。
2、为学生交流搭台子。
课堂是学生的舞台,需要教师给学生搭台子。只要有探究的地方,就需要交流,学生交流的过程就是在建构知识的过程。因此在理解最简分数和探究约分方法的教学中,我都充分让学生先同桌讨论再全班交流,最后归纳总结形成知识点。我认为教师在教学时,应时刻记住把课堂还给学生,为学生的精彩交流喝彩。只有这样,你的课堂才会因为学生的精彩交流而精彩。
3、不动笔墨不读书。
数学学习是学生动脑、动口、动手的过程。学生在思考交流之后更应让学生动手来写,熟话说“读十遍不如写一遍”。我特别注重学生动手能力的培养,要求学生 “不动笔墨不读书”。在复习铺垫中让学生把练习题先写在练习本上,再集体订正;在验证75/100和3/4是否相等的教学时,要求学生把验证过程写在练习本上;在探究约分的方法时,让学生把化简的过程写在练习本上,再交流;在学生看书找约分的另一种书写格式时,我始终要求学生练习写一写。
4、教学环节过渡亦无痕。
好的书法给人感觉“行云流水一气呵成”,好的课堂也应是环环相扣,衔接自然的。本节课我注重教学各个环节的过渡,如:复习铺垫后说:这是我们前面所学习的内容,这节课我们接着学习新内容,请看大屏幕(过渡到最简分数的教学);在学习了最简分数后说:刚才,我们一起学习了最简分数,在我们学过的分数中有很多都不是最简分数,我们能不能把它化成最简分数呢(过渡到约分的教学)?在学习了约分后说:我们一起学习了最简分数和约分的知识,老师发现大家学得很认真,但不知掌握的怎么样?大家愿意接受挑战吗(过渡到巩固练习的教学)?
5、思想方法渗透亦无形。
数学知识和技能的教学是一条明线,数学思想的渗透是教学的一条暗线。数学的每一个知识点都会渗透着一种数学思想,《约分》这一知识点就渗透着恒等变换的数学思想。本课的教学中,恒等变换的数学思想在验证75/100和3/4是否相等和化简分数的教学时得到渗透,在巩固练习中得到不断的内化和深化。
欠缺火候的地方:
有智慧的教师往往能利用课堂即生资源进行教学,使课堂教学更具魅力。整观这节课,本人扑捉学生课堂发言及练习中有用教育资源的能力不够,课堂教学亮点不够亮;其次本人对学生评价的语言还不能较大程度的激发学生的学习兴趣;第三,学生倾听和动笔的习惯还有待进一步提高。
名师张齐华说:好课是从心灵深处流淌出来的。一堂成功的课往往不是教师教学技艺和技巧的简单叠加与拼凑,而是其多年来学识、功底、经验、技巧、智慧、个性乃至人生阅历等在特定教育情境下的一种自然勃发与流淌。如练武之人,境界不是十八般武艺样样精通,而是有深厚内力和“手中无剑,心中有剑”的气魄。自知自己还有很多东西需要不断学习,路漫漫其修远兮,吾将上下而求索。
五年级数学一单元教案设计5
教学目标:
1.使学生在具体情境中认识列、行的含义,知道确定第几列、第几行的规则,初步理解数对的含义,会用数对表示具体情境中物体的位置。
2.使学生经历由具体的座位抽象成用列、行表示的平面图的过程,提高抽象思维能力,发展空间观念。
3.使学生体验数学与生活的密切联系,进一步增强用数学的眼光观察生活的意识。
教学过程:
一、情境引入
1、谈话:我们每个学期都要召开家长会,如果是你爸爸来参加家长会了,你用什么方法告诉他你在教室里的位置呢?
2、指名学生汇报,预设回答:(①我坐在第一组第二张桌子;②我坐在教室中间的位置;③我坐在第五行靠墙的位置)教师对学生的回答一一点评
指出:要确定自己的位置,一个条件是不够的,至少需要两个条件。
3、谈话:今天我就要学习一种简洁、新颖的方法来确定位置,想知道是什么方法吗?
二、教学新课
1、教学例1
(1)出示例题图,提问:这是某个班级的座位图,从图中你看出了什么?
学生回答后继续追问:谁能说说小军的位置?
预设回答:(小军坐在第4竖排第三个;小军坐在第三横排的第4个)
指导学生数的时候是从哪向哪数。
提问:如果我们不知道小军的位置,听了刚才同学的发言,能顺利地找到小军的位置吗?
谈话:这些方法都是正确的,但是你觉得用这样的方法描述小军的位置有什么不足之处吗?
预设回答(不够清楚,比较麻烦)
(2)用数对表示位置。
出示抽象图,谈话:我们把刚才例题图转化为抽象图,你还能找到小军的位置吗?
第5行 ○ ○ ○ ○ ○ ○
第4行 ○ ○ ○ ○ ○ ○
第3行 ○ ○ ○ ○ ○ ○
第2行 ○ ○ ○ ○ ○ ○
第1行 ○ ○ ○ ○ ○ ○
第 第 第 第 第 第
1 2 3 4 5 6
列 列 列 列 列 列
谈话:实际上,在确定位置时,竖排叫列,确定第几列一般从左往右数;
横排叫行,确定第几行一半从前往后数(指图板书)。
小军位置是第几列第几行?(从左向右数第4列,从前向后数第3行)
像这样的位置我们可以用一个数对来表示(4,3)
让学生说说对(4,3)的理解
小结:(4,3)表示第4列,第3行,这样的数对包含两个数,第一个数表示第几列,第二个数表示第几行,两个数之间用逗号隔开,外面加上小括号。
(3)用数对表示位置。
课件出示问题:在抽象图中找出第2列第4行的位置,用数对表示是什么?
指名学生回答,让其他学生点评
继续出示问题:( 6,5 )在上图中表示第几列第几行的位置。
指名学生回答,让其他学生点评
回到例1教学用图,谈话:小军还有几个好朋友,你能用数对表示出他们的位置吗?
指名学生回答,并让他们说出表示什么
2、情境教学
(1)谈话:我们刚才学习了用数对来表示位置,那么家长会之前你能这个方法告诉你家长的位置吗?我们规定从讲台开始,从前向后分别为第一行、第二行……;从教室的门开始,老师的方向从左向右分别为第一列、第二列……。请大家每个人都想想自己的位置怎么用数对表示。
(2)同桌互相交流,说说自己位置表示的数对
(3)指名学生说说自己的位置和表示的数对,然后点评
(4)活动:出示数对,请相应的同学起立 (1,4) (4,3) (2,2) (5,1) (7,5) (9,6)
点评:为什么
2.完成“练一练”。
(1)学生在书上完成1.2题。
你能找到第2列第4行的位置吗?有数对怎样表示?
(2)(5,5)表示什么呢?是图上的哪个圈?
两个“5”表示的意思一样吗?
三、巩固练习
1.完成练习三第1题。
教室里的座位共有几列几行呢?第1列第1行是哪个同学的座位?用数对怎样表示你能说说自己的座位在第几列第几行吗?用数对怎样表示?
在小组中互相说说,并互相指其他座位说数对。
2.完成练习三第2题。
在实际生活中,也经常用数对确定位置。
你能悦纳嘎数对表示这四块瓷砖的位置吗?
追问:第3列的两块瓷砖有什么共同特点吗?
第4行的两块瓷砖用数对表示位置时,写出的两个数对有什么相同的地方?
同一列的两块瓷砖,数对中的第一个数相同;
同一行的瓷砖,数对中的第二个数相同。
3.完成第3题。
(1)独立完成用数对表示每一块花砖的位置。
(2)在小组中交流花砖位置的排列有什么规律?
(3)汇报交流结果。
四、课堂总结
通过今天的学习,你有什么收获?你认为学习用数对确定位置的方法对你以后有什么指导作用呢?
板书设计:
用数对确定位置
竖排叫列,横排叫行。
数对中的第一个数表示第几列,第二个数表示第几行;
两个数之间用逗号隔开,两个数的外面用小括号括起来。
数学教案相关文章:
★ 小学教案模板
★ 高中教案模板
★ 小学教案模板
★ 小学教案模板