教育巴巴 > 初中教案 > 七年级教案 > 数学教案 >

初一数学学生教案

时间: 沐钦 数学教案

初一数学学生教案都有哪些?数学时至今日,科学家们还在努力探索素数序列的某种顺序,我们有理由相信,这是人类思维永远无法洞悉的奥秘。下面是小编为大家带来的初一数学学生教案七篇,希望大家能够喜欢!

初一数学学生教案

初一数学学生教案精选篇1

一、读一读 学习目标:1、熟练证明的基本步骤和书写格式;

2、会根据“同位角相等,两直线平行”(公理)证明“同旁内角互补,两直线平行”“内错角相等,两直线平行”(定理),并能应用这些结论。

二、试一试

自学指导:平行线判定公理: 同位角相等,两直线平行

1、自学教材P229-231,学完后合上课本完成下列各题:

(1)已知:如右图所示,∠1和∠2是直线a,b被直线c截出的同旁内角,且∠1和∠2互补。利用平行线判定公理证明a∥b

由此得,平行线判定定理1: ;

(2)已知:如右图所示,∠1和∠2是直线a,b被直线c截出的内错角,且∠1=∠2利用平行线判定公理或上述已证明的判定定理证明a∥b

由此得,平行线判定定理2: .

三、练一练

1、在教材上完成P231随堂练习1;P232知识技能1;P233问题解决

2、已知:如右图所示,直线a,b被直线c所截,且∠1+∠2=180°

求证:a∥b 你有几种证明方法?请选择其中两种方法来证明

五、记一记:证明命题的一般步骤:

(1)根据题意画出图形(若已给出图形,则可省略)

(2)根据题设和结论,结合图形,写出已知和求证;

(3)经过分析,找出已知退出求证的途径,写出证明过程;

(4)检查证明过程是否正确完善。

初一数学学生教案精选篇2

学习目标:

1、了解平行线性质定理和判定定理在条件和结论上的区别,体会互逆的思维过程;

2、能熟练应用平行线的性质公理及定理。

二、试一试

自学指导:平行线性质公理:两直线平行,同位角相等

1、 思考下列各题,你能利用平行线性质公理解决它们吗?

2、 充分思考后自学教材P229-231,学完后合上课本完成下列各题,注意逻辑和书写。

(1)已知,如图,直线a∥b,∠1和∠2是直线a,b被直线c截出的内错角。请根据平行线性质公理证明∠1=∠2

由此得平行线性质定理1:

(2) 已知,如图,直线a∥b,∠1和∠2是直线a,b被直线c截出的同旁内角。请根据平行线性质公理或上题已证的定理证明∠1+∠2=180°

由此得平行线性质定理2:

三、练一练

1、已知:如图,直线a,b,c被直线d所截,且a∥b,c∥b

(1)求证:a∥c

(2)请将(1)题证得的结论用一句话总结出来

2、利用“两直线平行,同旁内角互补”证明“平行四边形对角线相等”。

五、记一记

1、两直线平行的性质公理及两个性质定理;

2、平行线的性质补充结论

(1)垂直于两平行线之一的直线必垂直于另一条直线

(2)夹在两平行线之间的平行线段相等;

(3)两条平行线间的距离处处相等;

(4)经过直线外一点,有且只有一条直线和已知直线平行;

(5)如果一个角的两边分别平行于另一个角的两边,那么这两个角相等或者互补

B组:请在补充结论中选择你感兴趣的进行证明:

初一数学学生教案精选篇3

一、读一读

学习目标:1、掌握“三角形内角和定理”的证明及其简单应用;

2、体会思维实验和符号化的理性作用

二、试一试

自学指导:

1、回忆三角形内角和的探索方式,想一想,根据前面给出的公里 和定理,你能进行论证么?

2、已知:如右图所示,△ABC

求证:∠A+∠B+∠C=180°

思考:延长BC到D,过点C作射线CE∥BA,这样就相

当于把∠A移到了 的位置,把∠B移到 的位置。

注意:这里的CD,CE称为辅助线,辅助线通常画成虚线

证明:作BC的延长线CD,过点C作射线CE∥BA,则:

3、你还有其它方式么(可参考课本239页“议一议”小明的想法;241页联系拓广4)?方法越多越好!

三、练一练

1、直角三角形的两锐角之和是多少度?正三角形的一个内角是多少度?请证明你的结论。

2、已知:如图,在△ABC中,∠A=60°,∠C=70°,点D和点E分别在AB和AC上,且DE∥BC

求证:∠ADE=50°

3、如图,在△ABC中,DE∥BC,∠DBE=30°, ∠EBC=25°,求∠BDE的大小。

4、证明:四边形的内角和等于360°

初一数学学生教案精选篇4

一、读一读

学习目标:1、掌握三角形内角和定理的两个推论及其证明;

2、体会几何中简单不等关系的证明;

3、从内和外、相等和不相等的不同角度对三角形的角作更全面的思考。

二、试一试

自学指导:

1、如图∠1是三角形的一个外角,它与图中其它角有什么关系?

2、自学教材P242-243,看看你的结论是否正确,并对例1例2进行学习,

仿照证明三角形内角和定理的两个推论:

推论1:三角形的一个外角等于和它不相邻的两个内角的和。

推论2:三角形的一个外角大于任何一个和它不相邻的内角。

证明:

三、练一练

1、如图,下列哪些说法一定正确

A ∠HEC >∠B

B ∠B+∠ACB=180°—∠A

C ∠B+∠ACB<180°

D ∠B>∠ACD

2、已知:如图,在△ABC中,∠A=45°,外角∠DCA=100°,

求∠B和∠ACB的大小

初一数学学生教案精选篇5

教学目标:

1、知识目标:

(1)知道什么是全等形、全等三角形及全等三角形的对应元素;

(2)知道全等三角形的性质,能用符号正确地表示两个三角形全等;

(3)能熟练找出两个全等三角形的对应角、对应边。

2、能力目标:

(1)通过全等三角形角有关概念的学习,提高学生数学概念的辨析能力;

(2)通过找出全等三角形的对应元素,培养学生的识图能力。

3、情感目标:

(1)通过感受全等三角形的对应美激发学生热爱科学勇于探索的精神;

(2)通过自主学习的发展体验获取数学知识的感受,培养学生勇于创新,多方位审视问题的创造技巧。

教学重点:全等三角形的性质。

教学难点:找全等三角形的对应边、对应角

教学用具:直尺、微机

教学方法:自学辅导式

教学过程:

1、全等形及全等三角形概念的引入

(1)动画(几何画板)显示:

问题:你能发现这两个三角形有什么美妙的关系吗?

一般学生都能发现这两个三角形是完全重合的。

(2)学生自己动手

画一个三角形:边长为4cm,5cm,7cm.然后剪下来,同桌的两位同学配合,把两个三角形放在一起重合。

(3)获取概念

让学生用自己的语言叙述:

全等三角形、对应顶点、对应角以及有关数学符号。

2、全等三角形性质的发现:

(1)电脑动画显示:

问题:对应边、对应角有何关系?

由学生观察动画发现,两个三角形的三组对应边相等、三组对应角相等。

3、 找对应边、对应角以及全等三角形性质的应用

(1) 投影显示题目:

D、AD∥BC,且AD=BC

分析:由于两个三角形完全重合,故面积、周长相等。至于D,因为AD和BC是对应边,因此AD=BC。C符合题意。

说明:本题的解题关键是要知道中两个全等三角形中,对应顶点定在对应的位置上,易错点是容易找错对应角。

分析:对应边和对应角只能从两个三角形中找,所以需将从复杂的图形中分离出来

说明:根据位置元素来找:有相等元素,其即为对应元素:

然后依据已知的对应元素找:(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边(2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角。

说明:利用“运动法”来找

翻折法:找到中心线经此翻折后能互相重合的两个三角形,易发现其对应元素

旋转法:两个三角形绕某一定点旋转一定角度能够重合时,易于找到对应元素

平移法:将两个三角形沿某一直线推移能重合时也可找到对应元素

求证:AE∥CF

分析:证明直线平行通常用角关系(同位角、内错角等),为此想到三角形全等后的性质――对应角相等

∴AE∥CF

说明:解此题的关键是找准对应角,可以用平移法。

分析:AB不是全等三角形的对应边,

但它通过对应边转化为AB=CD,而使AB+CD=AD-BC

可利用已知的AD与BC求得。

说明:解决本题的关键是利用三角形全等的性质,得到对应边相等。

(2)题目的解决

这些题目给出以后,先要求学生独立思考后回答,其它学生补充完善,并可以提出自己的看法。教师重点指导,师生共同总结:找对应边、对应角通常的几种方法:

投影显示:

(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边;

(2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角;

(3)有公共边的,公共边一定是对应边;

(4)有公共角的,角一定是对应角;

(5)有对顶角的,对顶角一定是对应角;

两个全等三角形中一对最长边(或角)是对应边(或对应角),一对最短边(或最小的角)是对应边(或对应角)

4、课堂独立练习,巩固提高

此练习,主要加强学生的识图能力,同时,找准全等三角形的对应边、对应角,是以后学好几何的关键。

5、小结:

(1)如何找全等三角形的对应边、对应角(基本方法)

(2)全等三角形的性质

(3)性质的应用

让学生自由表述,其它学生补充,自己将知识系统化,以自己的方式进行建构。

6、布置作业

a.书面作业P55#2、3、4

b.上交作业(中考题)

初一数学学生教案精选篇6

一、教材分析:勾股定理是学生在已经掌握了直角三角形的有关性质的基础上进行学习的,它是直角三角形的一条非常重要的性质,是几何中最重要的定理之一,它揭示了一个三角形三条边之间的数量关系,它可以解决直角三角形中的计算问题,是解直角三角形的主要根据之一,在实际生活中用途很大。

教材在编写时注意培养学生的动手操作能力和分析问题的能力,通过实际分析、拼图等活动,使学生获得较为直观的印象;通过联系和比较,理解勾股定理,以利于正确的进行运用。

据此,制定教学目标如下:1、理解并掌握勾股定理及其证明。2、能够灵活地运用勾股定理及其计算。3、培养学生观察、比较、分析、推理的能力。4、通过介绍中国古代勾股方面的成就,激发学生热爱祖国与热爱祖国悠久文化的思想感情,培养他们的民族自豪感和钻研精神。

二、教学重点:勾股定理的证明和应用。

三、 教学难点:勾股定理的证明。

四、教法和学法: 教法和学法是体现在整个教学过程中的,本课的教法和学法体现如下特点:以自学辅导为主,充分发挥教师的主导作用,运用各种手段激发学生学习欲望和兴趣,组织学生活动,让学生主动参与学习全过程。

切实体现学生的主体地位,让学生通过观察、分析、讨论、操作、归纳,理解定理,提高学生动手操作能力,以及分析问题和解决问题的能力。

通过演示实物,引导学生观察、操作、分析、证明,使学生得到获得新知的成功感受,从而激发学生钻研新知的欲望。

五、教学程序:本节内容的教学主要体现在学生动手、动脑方面,根据学生的认知规律和学习心理,教学程序设计如下:

(一)创设情境 以古引新

1、由故事引入,3000多年前有个叫商高的人对周公说,把一根直尺折成直角,两端连接得到一个直角三角形,如果勾是3,股是4,那么弦等于5。这样引起学生学习兴趣,激发学生求知欲。

2、是不是所有的直角三角形都有这个性质呢?教师要善于激疑,使学生进入乐学状态。

3、板书课题,出示学习目标。(二)初步感知 理解教材

教师指导学生自学教材,通过自学感悟理解新知,体现了学生的自主学习意识,锻炼学生主动探究知识,养成良好的自学习惯。

(三)质疑解难 讨论归纳:1、教师设疑或学生提疑。如:怎样证明勾股定理?学生通过自学,中等以上的学生基本掌握,这时能激发学生的表现欲。2、教师引导学生按照要求进行拼图,观察并分析;(1)这两个图形有什么特点?(2)你能写出这两个图形的面积吗?

(3)如何运用勾股定理?是否还有其他形式?

这时教师组织学生分组讨论,调动全体学生的积极性,达到人人参与的效果,接着全班交流。先有某一组代表发言,说明本组对问题的理解程度,其他各组作评价和补充。教师及时进行富有启发性的点拨,最后,师生共同归纳,形成一致意见,最终解决疑难。

(四)巩固练习 强化提高

1、出示练习,学生分组解答,并由学生总结解题规律。课堂教学中动静结合,以免引起学生的疲劳。

2、出示例1学生试解,师生共同评价,以加深对例题的理解与运用。针对例题再次出现巩固练习,进一步提高学生运用知识的能力,对练习中出现的情况可采取互评、互议的形式,在互评互议中出现的具有代表性的问题,教师可以采取全班讨论的形式予以解决,以此突出教学重点。

(五)归纳总结 练习反馈

引导学生对知识要点进行总结,梳理学习思路。分发自我反馈练习,学生独立完成。

本课意在创设愉悦和谐的乐学气氛,优化教学手段,借助多媒体提高课堂教学效率,建立平等、民主、和谐的师生关系。加强师生间的合作,营造一种学生敢想、感说、感问的课堂气氛,让全体学生都能生动活泼、积极主动地教学活动,在学习中创新精神和实践能力得到培养。

初一数学学生教案精选篇7

(一)创设情境 导入新课

不利用工具,请你将一张用纸片做的角分成两个相等的角。你有什么办法?

如果前面活动中的纸片换成木板、钢板等没法折的角,又该怎么办呢?

设计目的:能聚拢学生的思维为新课的开展创造了良好的教学氛围。

(二)合作交流 探究新知

(活动一)探究角平分仪的原理。具体过程如下:

播放奥巴马访问我国的录像资料------引出雨伞-----观察它的截面图,使学生认清其 中的边角关系-----引出角平分线;并且运用几何画板对伞的开合进行动态演示,让学生直观感受伞面形成的角与主杆的关系-----让学生设计制作角平分仪;并利用以前所学的知识寻找理论上的依据,说明这个仪器的制作原理。

设计目的:用生活中的实例感知。以最近大事作引入点,以最常见的事物为载体,让学生感受到生活中处处都有数学,认识到数学的价值。其中设计制作角平分仪,可培养学生的创造力和成就感以及学习数学的兴趣。使学生很轻松的完成活动二。

(活动二)通过上述探究,能否总结出尺规作已知角的平分线的一般方法.自己动手做做看.然后与同伴交流操作心得.

分小组完成这项活动,教师可参与到学生活动中,及时发现问题,给予启发和指导,使讲评更具有针对性。

讨论结果展示: 教师根据学生的叙述,利用多媒体课件演示作已知角的平分线的方法:

已知:∠AO B.

求作:∠AOB的平分线.

作法:

(1)以O为圆心,适当长为半径作弧,分别交OA、OB于M、N.

(2)分别以M、N为圆心,大于1/2MN的长为半径作弧.两弧在∠AOB内部交于点C.

(3)作射线OC,射线OC即为所求.

设计目的:使学生能更直观地理解画法,提高学习数学的兴趣。

议一议:

1.在上面作法的第二步中,去掉“大于 MN的长”这个条件行吗?

2.第二步中所作的两弧交点一定在∠AOB的内部吗?

设计这两个问题的目的在于加深对角的平分线的作法的理解,培养数学严密性的良好学习习惯。

学生讨论结果总结:

1.去掉“大于 MN的长”这个条件,所作的两弧可能没有交点,所以就找不到角的平分线.

2.若分别以M、N为圆心,大于 MN的长为半径画两弧,两弧的交点可能在∠AOB的内部,也可能在∠AOB的外部,而我们要找的是∠AOB内部的交点,否则两弧交点与顶点连线得到的射线就不是∠AOB的平分线了.

3.角的平分线是一条射线.它不是线段,也不是直线,所以第二步中的两个限制缺一不可.

4.这种作法的可行性可以通过全等三角形来证明.

(活动三)探究角平分线的性质

思考:已知一角及其角平分线添加辅助线构成全等三角形;构成全等的直角三角形。这样的三角形有多少对?

这样设计的目的是加深对全等的认识

37325