教育巴巴 > 初中教案 > 七年级教案 > 数学教案 >

2023初一上册数学教案

时间: 沐钦 数学教案

2023初一上册数学教案如何写?教学设计,激发求知欲和学习兴趣,锻炼积极探索、发现新知识、总结规律的能力,解题时养成归纳总结的良好习惯。下面是小编为大家带来的2023初一上册数学教案七篇,希望大家能够喜欢!

2023初一上册数学教案

2023初一上册数学教案精选篇1

教学目标

1.知识与技能

会应用平方差公式进行因式分解,发展学生推理能力.

2.过程与方法

经历探索利用平方差公式进行因式分解的过程,发展学生的逆向思维,感受数学知识的完整性.

3.情感、态度与价值观

培养学生良好的互动交流的习惯,体会数学在实际问题中的应用价值.

重、难点与关键

1.重点:利用平方差公式分解因式.

2.难点:领会因式分解的解题步骤和分解因式的彻底性.

3.关键:应用逆向思维的方向,演绎出平方差公式,对公式的应用首先要注意其特征,其次要做好式的变形,把问题转化成能够应用公式的方面上来.

教学方法

采用“问题解决”的教学方法,让学生在问题的牵引下,推进自己的思维.

教学过程

一、观察探讨,体验新知

【问题牵引】

请同学们计算下列各式.

(1)(a+5)(a-5);(2)(4m+3n)(4m-3n).

【学生活动】动笔计算出上面的两道题,并踊跃上台板演.

(1)(a+5)(a-5)=a2-52=a2-25;

(2)(4m+3n)(4m-3n)=(4m)2-(3n)2=16m2-9n2.

【教师活动】引导学生完成下面的两道题目,并运用数学“互逆”的思想,寻找因式分解的规律.

1.分解因式:a2-25;2.分解因式16m2-9n.

【学生活动】从逆向思维入手,很快得到下面答案:

(1)a2-25=a2-52=(a+5)(a-5).

(2)16m2-9n2=(4m)2-(3n)2=(4m+3n)(4m-3n).

【教师活动】引导学生完成a2-b2=(a+b)(a-b)的同时,导出课题:用平方差公式因式分解.

平方差公式:a2-b2=(a+b)(a-b).

评析:平方差公式中的字母a、b,教学中还要强调一下,可以表示数、含字母的代数式(单项式、多项式).

二、范例学习,应用所学

【例1】把下列各式分解因式:(投影显示或板书)

(1)x2-9y2;(2)16x4-y4;

(3)12a2x2-27b2y2;(4)(x+2y)2-(x-3y)2;

(5)m2(16x-y)+n2(y-16x).

【思路点拨】在观察中发现1~5题均满足平方差公式的特征,可以使用平方差公式因式分解.

【教师活动】启发学生从平方差公式的角度进行因式分解,请5位学生上讲台板演.

【学生活动】分四人小组,合作探究.

解:(1)x2-9y2=(x+3y)(x-3y);

(2)16x4-y4=(4x2+y2)(4x2-y2)=(4x2+y2)(2x+y)(2x-y);

(3)12a2x2-27b2y2=3(4a2x2-9b2y2)=3(2ax+3by)(2ax-3by);

(4)(x+2y)2-(x-3y)2=[(x+2y)+(x-3y)][(x+2y)-(x-3y)]=5y(2x-y);

(5)m2(16x-y)+n2(y-16x)

=(16x-y)(m2-n2)=(16x-y)(m+n)(m-n).

2023初一上册数学教案精选篇2

教学目的

1.了解一元一次方程的概念。

2.掌握含有括号的一元一次方程的解法。

重点、难点

1.重点:解含有括号的一元一次方程的解法。

2.难点:括号前面是负号时,去括号时忘记变号。

教学过程

一、复习提问

1.解下列方程:

(1)5x-2=8 (2)5+2x=4x

2.去括号法则是什么?“移项”要注意什么?

二、新授

一元一次方程的概念

如44x+64=328 3+x=(45+x) y-5=2y+l 问:它们有什么共同特征?

只含有一个未知数,并且含有未知数的式子都是整式,未知数的次数是l,这样的方程叫做一元一次方程。

例1.判断下列哪些是一元一次方程

x= 3x-2 x-=-l

5x2-3x+1=0 2x+y=l-3y =5

例2.解方程(1)-2(x-1)=4

(2)3(x-2)+1=x-(2x-1)

强调去括号时把括号外的因数分别乘以括号内的每一项,若括号前面是“-”号,注意去掉括号,要改变括号内的每一项的符号。

补充:解方程3x-[3(x+1)-(1+4)]=l

说明:方程中有多重括号时,一般应按先去小括号,再去中括号,最后去大括号的方法去括号,每去一层括号合并同类项一次,以简便运算。

三、巩固练习

教科书第9页,练习,l、2、3。

四、小结

学习了一元一次方程的概念,含有括号的一元一次方程的解法。用分配律去括号时,不要漏乘括号中的项,并且不要搞错符号。

五、作业

1.教科书第12页习题6.2,2第l题。

2023初一上册数学教案精选篇3

一、学习目标:1.添括号法则.

2.利用添括号法则灵活应用完全平方公式

二、重点难点

重 点: 理解添括号法则,进一步熟悉乘法公式的合理利用

难 点: 在多项式与多项式的乘法中适当添括号达到应用公式的目的.

三、合作学习

Ⅰ.提出问题,创设情境

请同学们完成下列运算并回忆去括号法则.

(1)4+(5+2) (2)4-(5+2) (3)a+(b+c) (4)a-(b-c)

去括号法则:

去括号时,如果括号前是正号,去掉括号后,括号里的每一项都不变号;

如果括号前是负号,去掉括号后,括号里的各项都要变号。

1.在等号右边的括号内填上适当的项:

(1)a+b-c=a+( ) (2)a-b+c=a-( )

(3)a-b-c=a-( ) (4)a+b+c=a-( )

2.判断下列运算是否正确.

(1)2a-b- =2a-(b- ) (2)m-3n+2a-b=m+(3n+2a-b)

(3)2x-3y+2=-(2x+3y-2) (4)a-2b-4c+5=(a-2b)-(4c+5)

添括号法则:添上一个正括号,扩到括号里的不变号,添上一个负括号,扩到括号里的要变号。

五、精讲精练

例:运用乘法公式计算

(1)(x+2y-3)(x-2y+3) (2)(a+b+c)2

(3)(x+3)2-x2 (4)(x+5)2-(x-2)(x-3)

随堂练习:教科书练习

五、小结:去括号法则

六、作业:教科书习题

2023初一上册数学教案精选篇4

一、学习目标:让学生了解多项式公因式的意义,初步会用提公因式法分解因式

二、重点难点

重 点: 能观察出多项式的公因式,并根据分配律把公因式提出来

难 点: 让学生识别多项式的公因式.

三、合作学习:

公因式与提公因式法分解因式的概念.

三个矩形的长分别为a、b、c,宽都是m,则这块场地的面积为ma+mb+mc,或m(a+b+c)

既ma+mb+mc = m(a+b+c)

由上式可知,把多项式ma+mb+mc写成m与(a+b+c)的乘积的形式,相当于把公因式m从各项中提出来,作为多项式ma+mb+mc的一个因式,把m从多项式ma+mb+mc各项中提出后形成的多项式(a+b+c),作为多项式ma+mb+mc的另一个因式,这种分解因式的方法叫做提公因式法。

四、精讲精练

例1、将下列各式分解因式:

(1)3x+6; (2)7x2-21x; (3)8a3b2-12ab3c+abc (4)-24x3-12x2+28x.

例2把下列各式分解因式:

(1)a(x-y)+b(y-x);(2)6(m-n)3-12(n-m)2.

(3) a(x-3)+2b(x-3)

通过刚才的练习,下面大家互相交流,总结出找公因式的一般步骤.

首先找各项系数的____________________,如8和12的公约数是4.

其次找各项中含有的相同的字母,如(3)中相同的字母有ab,相同字母的指数取次数最___________的.

课堂练习

1.写出下列多项式各项的公因式.

(1)ma+mb 2)4kx-8ky (3)5y3+20y2 (4)a2b-2ab2+ab

2.把下列各式分解因式

(1)8x-72 (2)a2b-5ab

(3)4m3-6m2 (4)a2b-5ab+9b

(5)(p-q)2+(q-p)3 (6)3m(x-y)-2(y-x)2

2023初一上册数学教案精选篇5

一、学习目标:1.使学生了解运用公式法分解因式的意义;

2.使学生掌握用平方差公式分解因式

二、重点难点

重 点: 掌握运用平方差公式分解因式.

难 点: 将单项式化为平方形式,再用平方差公式分解因式;

学习方法:归纳、概括、总结

三、合作学习

创设问题情境,引入新课

在前两学时中我们学习了因式分解的定义,即把一个多项式分解成几个整式的积的形式,还学习了提公因式法分解因式,即在一个多项式中,若各项都含有相同的因式,即公因式,就可以把这个公因式提出来,从而将多项式化成几个因式乘积的形式.

如果一个多项式的各项,不具备相同的因式,是否就不能分解因式了呢?当然不是,只要我们记住因式分解是多项式乘法的相反过程,就能利用这种关系找到新的因式分解的方法,本学时我们就来学习另外的一种因式分解的方法——公式法.

1.请看乘法公式

(a+b)(a-b)=a2-b2 (1)

左边是整式乘法,右边是一个多项式,把这个等式反过来就是

a2-b2=(a+b)(a-b) (2)

左边是一个多项式,右边是整式的乘积.大家判断一下,第二个式子从左边到右边是否是因式分解?

利用平方差公式进行的因式分解,第(2)个等式可以看作是因式分解中的平方差公式.

a2-b2=(a+b)(a-b)

2.公式讲解

如x2-16

=(x)2-42

=(x+4)(x-4).

9 m 2-4n2

=(3 m )2-(2n)2

=(3 m +2n)(3 m -2n)

四、精讲精练

例1、把下列各式分解因式:

(1)25-16x2; (2)9a2- b2.

例2、把下列各式分解因式:

(1)9(m+n)2-(m-n)2; (2)2x3-8x.

补充例题:判断下列分解因式是否正确.

(1)(a+b)2-c2=a2+2ab+b2-c2.

(2)a4-1=(a2)2-1=(a2+1)•(a2-1).

五、课堂练习 教科书练习

六、作业 1、教科书习题

2、分解因式:x4-16 x3-4x 4x2-(y-z)2

3、若x2-y2=30,x-y=-5求x+y

2023初一上册数学教案精选篇6

一、学习目标:

1.使学生会用完全平方公式分解因式.

2.使学生学习多步骤,多方法的分解因式

二、重点难点:

重点: 让学生掌握多步骤、多方法分解因式方法

难点: 让学生学会观察多项式特点,恰当安排步骤,恰当地选用不同方法分解因式

三、合作学习

创设问题情境,引入新课

完全平方公式(a±b)2=a2±2ab+b2

讲授新课

1.推导用完全平方公式分解因式的公式以及公式的特点.

将完全平方公式倒写:

a2+2ab+b2=(a+b)2;

a2-2ab+b2=(a-b)2.

凡具备这些特点的三项式,就是一个二项式的完全平方,将它写成平方形式,便实现了因式分解

用语言叙述为:两个数的平方和,加上(或减去)这两数的积的2倍,等于这两个数的和(或差)的平方

形如a2+2ab+b2或a2-2ab+b2的式子称为完全平方式.

由分解因式与整式乘法的关系可以看出,如果把乘法公式反过来,那么就可以用来把某些多项式分解因式,这种分解因式的方法叫做运用公式法.

练一练.下列各式是不是完全平方式?

(1)a2-4a+4; (2)x2+4x+4y2;

(3)4a2+2ab+ b2; (4)a2-ab+b2;

四、精讲精练

例1、把下列完全平方式分解因式:

(1)x2+14x+49; (2)(m+n)2-6(m +n)+9.

例2、把下列各式分解因式:

(1)3ax2+6axy+3ay2; (2)-x2-4y2+4xy.

课堂练习: 教科书练习

补充练习:把下列各式分解因式:

(1)(x+y)2+6(x+y)+9; (2)4(2a+b)2-12(2a+b)+9;

五、小结:两个数的平方和,加上(或减去)这两数的积的2倍,等于这两个数的和(或差)的平方

形如a2+2ab+b2或a2-2ab+b2的式子称为完全平方式.

六、作业:1、

2、分解因式:

X2-4x+4 2x2-4x+2 (x2+y2)2-8(x2+y2)+16 (x2+y2)2-4x2y2

45ab2-20a -a+a3 a-ab2 a4-1 (a2+1)2-4 (a2+1)+4

2023初一上册数学教案精选篇7

【学习过程】

一、阅读教材

二、独立完成下列预习作业:

1、单项式和多项式统称 整式 .

2、 表示 ÷ 的商, 可以表示为 .

3、长方形的面积为10 ,长为7cm,宽应为 cm;长方形的面积为S,长为a,宽应为 .

4、把体积为20 的水倒入底面积为33 的圆柱形容器中,水面高度为 cm;把体积为V的水倒入底面积为S的圆柱形容器中,水面高度为 .

一般地,如果A、B表示两个整式,并且B中含有字母 ,那么式子 叫做分式.

◆◆分式和整式统称有理式◆◆

三、合作交流,解决问题:

分式的分母表示除数,由于除数不能为0,故分式的分母不能为0,即当B≠0时,分式 才有意义.分子分母相等时分式的值为1、分子分母互为相反数时分式的值为-1.

1、当x 时,分式 有意义;

2、当x 时,分式 有意义;

3、当b 时,分式 有意义;

4、当x、y满足 时,分式 有意义;

四、课堂测控:

1、下列各式 , , , , , , , , x+y, , , , ,0中,

是分式的有 ;

是整式的有 ;

是有理式的有

3、下列各式中,无论x取何值,分式都有意义的是( )

A. B. C. D.

4、当x 时,分式 的值为零

5、当x 时,分式 的值为1;当x 时,分式 的值为-1.

36988