数学初一教学教案备课
数学初一教学教案备课都有哪些?数学的演变,可以看做是抽象的不断发展,也可以看做是题材的延伸,而东西方文化采取了不同的角度。欧洲文明发展了几何,中国发展了算术,下面是小编为大家带来的数学初一教学教案备课七篇,希望大家能够喜欢!
数学初一教学教案备课精选篇1
教学过程
一、复习等腰三角形的判定与性质
二、新授:
1.等边三角形的性质:三边相等;三角都是60°;三边上的中线、高、角平分线相等
2.等边三角形的判定:
三个角都相等的三角形是等边三角形;有一个角是60°的等腰三角形是等边三角形;
在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半
注意:推论1是判定一个三角形为等边三角形的一个重要方法.推论2说明在等腰三角形中,只要有一个角是600,不论这个角是顶角还是底角,就可以判定这个三角形是等边三角形。推论3反映的是直角三角形中边与角之间的关系.
3.由学生解答课本148页的例子;
4.补充:已知如图所示,在△ABC中,BD是AC边上的中线,DB⊥BC于B,
∠ABC=120o,求证:AB=2BC
分析由已知条件可得∠ABD=30o,如能构造有一个锐角是30o的直角三角形,斜边是AB,30o角所对的边是与BC相等的线段,问题就得到解决了
数学初一教学教案备课精选篇2
教学目标
1、理解并掌握等腰三角形的判定定理及推论
2、能利用其性质与判定证明线段或角的相等关系.
教学重点:等腰三角形的判定定理及推论的运用
教学难点:正确区分等腰三角形的判定与性质,能够利用等腰三角形的判定定理证明线段的相等关系.
教学过程:
一、复习等腰三角形的性质
二、新授:
I提出问题,创设情境
出示投影片.某地质专家为估测一条东西流向河流的宽度,选择河流北岸上一棵树(B点)为B标,然后在这棵树的正南方(南岸A点抽一小旗作标志)沿南偏东60°方向走一段距离到C处时,测得∠ACB为30°,这时,地质专家测得AC的长度就可知河流宽度.
学生们很想知道,这样估测河流宽度的根据是什么?带着这个问题,引导学生学习“等腰三角形的判定”.
II引入新课
1.由性质定理的题设和结论的变化,引出研究的内容——在△ABC中,苦∠B=∠C,则AB=AC吗?
作一个两个角相等的三角形,然后观察两等角所对的边有什么关系?
2.引导学生根据图形,写出已知、求证.
2、小结,通过论证,这个命题是真命题,即“等腰三角形的判定定理”(板书定理名称).
强调此定理是在一个三角形中把角的相等关系转化成边的相等关系的重要依据,类似于性质定理可简称“等角对等边”.
4.引导学生说出引例中地质专家的测量方法的根据.
III例题与练习
1.如图2
其中△ABC是等腰三角形的是[]
2.①如图3,已知△ABC中,AB=AC.∠A=36°,则∠C______(根据什么?).
②如图4,已知△ABC中,∠A=36°,∠C=72°,△ABC是______三角形(根据什么?).
③若已知∠A=36°,∠C=72°,BD平分∠ABC交AC于D,判断图5中等腰三角形有______.
④若已知AD=4cm,则BC______cm.
3.以问题形式引出推论l______.
4.以问题形式引出推论2______.
例:如果三角形一个外角的平分线平行于三角形的一边,求证这个三角形是等腰三角形.
分析:引导学生根据题意作出图形,写出已知、求证,并分析证明.
练习:5.(l)如图6,在△ABC中,AB=AC,∠ABC、∠ACB的平分线相交于点F,过F作DE//BC,交AB于点D,交AC于E.问图中哪些三角形是等腰三角形?
(2)上题中,若去掉条件AB=AC,其他条件不变,图6中还有等腰三角形吗?
练习:P53练习1、2、3。
IV课堂小结
1.判定一个三角形是等腰三角形有几种方法?
2.判定一个三角形是等边三角形有几种方法?
3.等腰三角形的性质定理与判定定理有何关系?
4.现在证明线段相等问题,一般应从几方面考虑?
数学初一教学教案备课精选篇3
教学目标
1.等腰三角形的概念.2.等腰三角形的性质.3.等腰三角形的概念及性质的应用.
教学重点:1.等腰三角形的概念及性质.2.等腰三角形性质的应用.
教学难点:等腰三角形三线合一的性质的理解及其应用.
教学过程
Ⅰ.提出问题,创设情境
在前面的学习中,我们认识了轴对称图形,探究了轴对称的性质,并且能够作出一个简单平面图形关于某一直线的轴对称图形,还能够通过轴对称变换来设计一些美丽的图案.这节课我们就是从轴对称的角度来认识一些我们熟悉的几何图形.来研究:①三角形是轴对称图形吗?②什么样的三角形是轴对称图形?
有的三角形是轴对称图形,有的三角形不是.
问题:那什么样的三角形是轴对称图形?
满足轴对称的条件的三角形就是轴对称图形,也就是将三角形沿某一条直线对折后两部分能够完全重合的就是轴对称图形.
我们这节课就来认识一种成轴对称图形的三角形──等腰三角形.
Ⅱ.导入新课:要求学生通过自己的思考来做一个等腰三角形.
作一条直线L,在L上取点A,在L外取点B,作出点B关于直线L的对称点C,连结AB、BC、CA,则可得到一个等腰三角形.
等腰三角形的定义:有两条边相等的三角形叫做等腰三角形.相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫底角.同学们在自己作出的等腰三角形中,注明它的腰、底边、顶角和底角.
思考:
1.等腰三角形是轴对称图形吗?请找出它的对称轴.
2.等腰三角形的两底角有什么关系?
3.顶角的平分线所在的直线是等腰三角形的对称轴吗?
4.底边上的中线所在的直线是等腰三角形的对称轴吗?底边上的高所在的直线呢?
结论:等腰三角形是轴对称图形.它的对称轴是顶角的平分线所在的直线.因为等腰三角形的两腰相等,所以把这两条腰重合对折三角形便知:等腰三角形是轴对称图形,它的对称轴是顶角的平分线所在的直线.
要求学生把自己做的等腰三角形进行折叠,找出它的对称轴,并看它的两个底角有什么关系.
沿等腰三角形的顶角的平分线对折,发现它两旁的部分互相重合,由此可知这个等腰三角形的两个底角相等,而且还可以知道顶角的平分线既是底边上的中线,也是底边上的高.
由此可以得到等腰三角形的性质:
1.等腰三角形的两个底角相等(简写成“等边对等角”).
2.等腰三角形的顶角平分线,底边上的中线、底边上的高互相重合(通常称作“三线合一”).
由上面折叠的过程获得启发,我们可以通过作出等腰三角形的对称轴,得到两个全等的三角形,从而利用三角形的全等来证明这些性质.同学们现在就动手来写出这些证明过程).
如右图,在△ABC中,AB=AC,作底边BC的中线AD,因为
所以△BAD≌△CAD(SSS).
所以∠B=∠C.
]如右图,在△ABC中,AB=AC,作顶角∠BAC的角平分线AD,因为
所以△BAD≌△CAD.
所以BD=CD,∠BDA=∠CDA=∠BDC=90°.
[例1]如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,
求:△ABC各角的度数.
分析:根据等边对等角的性质,我们可以得到
∠A=∠ABD,∠ABC=∠C=∠BDC,
再由∠BDC=∠A+∠ABD,就可得到∠ABC=∠C=∠BDC=2∠A.
再由三角形内角和为180°,就可求出△ABC的三个内角.
把∠A设为x的话,那么∠ABC、∠C都可以用x来表示,这样过程就更简捷.
解:因为AB=AC,BD=BC=AD,
所以∠ABC=∠C=∠BDC.
∠A=∠ABD(等边对等角).
设∠A=x,则∠BDC=∠A+∠ABD=2x,
从而∠ABC=∠C=∠BDC=2x.
于是在△ABC中,有
∠A+∠ABC+∠C=x+2x+2x=180°,
解得x=36°.在△ABC中,∠A=35°,∠ABC=∠C=72°.
[师]下面我们通过练习来巩固这节课所学的知识.
Ⅲ.随堂练习:1.课本P51练习1、2、3.2.阅读课本P
49~P51,然后小结.
Ⅳ.课时小结
这节课我们主要探讨了等腰三角形的性质,并对性质作了简单的应用.等腰三角形是轴对称图形,它的两个底角相等(等边对等角),等腰三角形的对称轴是它顶角的平分线,并且它的顶角平分线既是底边上的中线,又是底边上的高.
我们通过这节课的学习,首先就是要理解并掌握这些性质,并且能够灵活应用它们.
Ⅴ.作业:课本P56习题12.3第1、2、3、4题.
板书设计
12.3.1.1等腰三角形
一、设计方案作出一个等腰三角形
二、等腰三角形性质:1.等边对等角2.三线合一
数学初一教学教案备课精选篇4
复习目标:
1. 理解分式的概念,掌握分式有意义的条件。
2. 掌握分式的基本性质,会利用其进行约分。
3. 了解分式值的正负或为零的条件。
知识点复习:
1.分式的概念::
练习:(1) 在 、 、 、 、 、 、 3a2- b 、 中是分式的有
(2).下列各式中,是分式的有( )
,(x+3)÷(x-5),-a2,0, , ,
A.1个 B.2个 C.3个 D.4个
分式有意义的条件
练习:(3)当x取何值时下列分式有意义?
, , ,
(4).分式 有意义的条件是( )
A. x≠0 B.y≠0 C.x≠0或y≠0 D.x≠0且y≠0
(5).若A=x+2,B=x-3,当x______时,分式 无意义。
2.分式的基本性质
分式的分子和分母都乘以(或除以)同一个不等于0的整式,分式的值不变.
练习:(6)下列等式成立的是( )
A. B.
C. D.
(7)如果正数x、y同时扩大10倍,那么下列分式中值保持不变的是( )
A. B. C. D.
(8). 若等式 成立,则A=_______.
(9). 下列化简结果正确的是( )A. B. =0
C. =3x3 D. =a3
3.分式值的正负或为零的条件
=0 的条件________ >0 的条件________ <0的条件________
练习:(11) 当x 时,分式 的值为零。
(12). 当x= 时,分式 的值是零
(13). 当x 时,分式 的值为正数.
(14) 若分式 的值为负数,则x的取值范围是( )
A.x>3 B.x<3 C.x<3且x≠0 D.x>-3且x≠0
(15).已知x=-1时,分式 无意义,x=4时分式的值为零,则a+b=________.)
4.整数指数幂 负指数幂: a-p= a0=1
1.计算: ; ;
2.某微粒的直径约为4080纳米(1纳米=10 米),用科学记数____________米;
3.用科学记数法表示:(1)0.00150=_____________;
(2)-0.000004020=__________
第十六章分式 复习学案(2)
1.分式乘法:
练习:(1). = (2). =
2. 分式除法:
练习:(3). = (4). =
(5). =
3.分式通分:
练习:(6). 的最简公分母是 。
(7). 通分
4.分式加减:
练习:计算(8) (9).
(10). (11)
5.化简,求值。
1.先化简,再求值: ,其中x=2
2. 已知 - =5,则 的值是 .
6.解分式方程
练习:1. 2.
7.分式方程无解的条件
1. 若方程 有增根,则m的值是…………( )
2.若 无解,则m的值是( )
8.方程思想的运用
1. 若关于x的方程 的解是x=2,则a= ;
2.已知关于x的方程 的解为负值,求m的取值范围。
9.分式方程应用题
(1)A、B两地的距离是80公里,一辆公共汽车从A地驶出3小时后,一辆小汽车也从A地出发,它的速度是公共汽车的3倍,已知小汽车比公共汽车迟20分钟到达B地,求两车的速度。
(2)为加快西部大开发,某自治区决定新修一条公路,甲、乙两工程队承包此项工程。如果甲工程队单独施工,则刚好如期完成;如果乙工程队单独施工就要超过6个月才能完成,现在甲、乙两队先共同施工4个月,剩下的由乙队单独施工,则刚好如期完成。问原来规定修好这条公路需多长时间?
(3)某工人原计划在规定时间内恰好加工1500个零件,改进了工具和操作方法后,工作效率提高为原来的2倍,因此加工1500个零件时,比原计划提前了五小时,问原计划每小时加工多少个零件?
数学初一教学教案备课精选篇5
1.已知一个函数具有以下条件:⑴该图象经过第四象限;⑵当 时, y随x的增大而增大;⑶该函数图象不经过原点。请写出一个符合上述条件的函数关系式: 。
2.已知点 在反比例函数 的 图象上,则 .
知识点三、反比例函数的增减性
1.已知点A(-2,y1)、B(-1,y2)、C(3,y3)都在反比例函数 的图象上,则( )
(A)y12.已知反比例函数 ,当m 时,其图象的两个分支在第一、三象限内;
m 时,其图象在每个象限内 随 的增大而增大。
知识点四、反比例函数的解析式
1. 若反比例函数 的图象经过点 ,则
2.某反比例函数的图象经过点 ,则此函数图象也经过点( )
A. B. C. D.
知识点五、图像与图形的面积
的几何含义:反比例函数y= (k≠0)中比例系数k的几何
意义,即过双曲线y= (k≠0)上任意一点P作x轴、y轴
垂线,设垂足分别为A、B,则所得矩形OAPB的面积为 .
1.如图2,若点 在反比例函数
的图象上, 轴于点 , 的面积为3,
则 .
2.如图,一次函数 的图象与反比例函数 的图象交于 两点.
(1)试确定上述反比例函数和一次函数的表达式;
(2)求 的面积.
知识点六、一次函数与反比例函数
1.若反比例函数 与一次函数 的图象都经过点A( ,2)
(1)求点A的坐标;
(2)求一次函数 的解析式;
(3)设O为坐标原点,若两个函数图像的另一个交点为B,求△AOB的面积。
2.已知正比例函数y=kx与反比例函数y= 的图象都过A(m,,1)点,求此正比例函数解析式及另一个交点的坐标.
知识点七、实际问题与反比例函数
1.面积一定的矩形的相邻的两边长分别为 ㎝和 ㎝,下表给出了 和 的一些值.
写出 与 的函数关系式;
(㎝) 1 4 8 10
(㎝) 10 5
数学初一教学教案备课精选篇6
考点一、已知两边求第三边
1.在直角三角形中,若两直角边的长分别为1cm,2cm ,则斜边长为_____________.
2.已知直角三角形的两边长为3、2,则另一条边长是________________.
3.在数轴上作出表示 的点.
4.已知,如图在ΔABC中,AB=BC=CA=2cm,AD是边BC上的高.求 ①AD的长;②ΔABC的面积.
考点二、利用列方程求线段的长
5.如图,铁路上A,B两点相距25km,C,D为两村庄,DA⊥AB于A,CB⊥AB于B,已知DA=15km,CB=10km,现在要在铁路AB上建一个土特产品收购站E,使得C,D两村到E站的距离相等,则E站应建在离A站多少km处?
6.如图,某学校(A点)与公路(直线L)的距离为300米,
又与公路车站(D点)的距离为500米,现要在公路上建一个小商店(C点),使之与该校A及车站D的距离相等,求商店与车站之间的距离.
考点三、判别一个三角形是否是直角三角形
7、分别以下列四组数为一个三角形的边长:(1)3、4、5(2)5、12、13(3)8、15、17(4)4、5、6,其中能够成直角三角形的 有-----------
8、若三角形的三别是a2+b2,2ab,a2-b2(a>b>0),则这个三角形是---------------.
9、在△ABC中,AB=13,BC=10,BC边上的中线AD=12,你能求出AC的值吗?
考点四、构造直角三角形解决实际问题
10、直角三角形中,以直角边为边长的两个正方形的面积为7 ,8 ,
则以斜边为边长的正方形的面积为_________ .
11、如图一个圆柱,底圆周长6cm,高4cm,一只蚂蚁沿外
壁爬行,要从A点爬到B点,则最少要爬行 cm
12、一种盛饮料的圆柱形杯,测得内部底面半径为2.5㎝,高为12㎝,
吸管放进杯里,杯口外面至少要露出4.6㎝,问吸管要做多长?
13、如图:带阴影部分的半圆的面积是-----------( 取3)
14、若一个三角形的周长12cm,一边长为3cm,其他两边之差为cm,则这个三角形是______________________.
15.已知直角三角形两直角边长分别为5和12, 求斜边上的高.
知识点五、其他图形与直角三角形
16、等腰三角形的腰长为10,底边上的高为6,则底边长为 。
16.如图是一块地,已知AD=8m,CD=6m,∠D=90°,AB=26m,BC=24m,求这块地的面积。
17、如图,四边形ABCD中,F为DC的中点,E为BC上一点,
且 .你能说明∠AFE是直角吗?
18.在△ABC中,∠C=450,AC= ,∠A=1050,
求△ABC的面积。
第十九章 四边形复习学案
知识点回顾
知识点一:平行四边形
性质:
判定:
练习:1.如图1,点E、F、G、H分别是平行四边形ABCD的边AB、BC、CD、DA的中点.
求证:△BEF≌△DGH
2. 如图2,在 中,点 分别是 边的中点,若把 绕着点 顺时针旋转 得到 .
(1)请指出图中哪些线段与线段 相等;
(2)试判断四边形 是怎样的四边形?证明你的结论.
数学初一教学教案备课精选篇7
学习目标:
1、进一步理解平均数、中位数和众数等统计量的统计意义。
2、会计算加权平均数,理解“权”的意义,能选择适当的统计量表示数据的集中趋势。
3、会计算极差和方差,理解它们的统计意义,会用它们表示数据的波动情况。
4、会用样本平均数、方差估计总体的平均数、方差,进一步感受抽样的必要性,体会用样本估计总体的思想。
一、知识点回顾
1、数学期末总评成绩由作业分数,课堂参与分数,期考分数三部分组成,并按3:3:4的比例确定。已知小明的期考80分,作业90分,课堂参与85分,则他的总评成绩为________。
2、样本1、2、3、0、1的平均数与中位数之和等于___.
3、一组数据5,-2,3,x,3,-2,若每个数据都是这组数据的众数,则这组数据的平均数是 .
4、数据1,6,3,9,8的极差是
5、已知一个样本:1,3,5,x,2,它的平均数为3,则这个样本的方差是 。
二、专题练习 1、方程思想:
例:某次考试A、B、C、D、E这5名学生的平均分为62分,若学生A除外,其余学生的平均得分为60分,那么学生A的得分是_____________.
点拨:本题可以用统计学知识和方程组相结合来解决。
同类题连接:一班级组织一批学生去春游,预计共需费用120元,后来又有2人参加进来,总费用不变,于是每人可以少分摊3元,设原来参加春游的学生x人。可列方程:
2、分类讨论法:
例:汶川大地震牵动每个人的心,一方有难,八方支援,5位衢州籍在外打工人员也捐款献爱心。已知5人平均捐款560元(每人捐款数额均为百元的整数倍),捐款数额最少的也捐了200元,最多的(只有1人)捐了800元,其中一人捐600元,600元恰好是5人捐款数额的中位数,那么其余两人的捐款数额分别是___________;
点拨:做题过程中要注意满足的条件。
同类题连接:数据 -1 , 3 , 0 , x 的极差是 5 ,则 x =_____.
3、平均数、中位数、众数在实际问题中的应用
例:某班50人右眼视力检查结果如下表所示:
视力 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 1.0 1.2 1.5
人数 2 2 2 3 3 4 5 6 7 11 5
求该班学生右眼视力的平均数、众数与中位数.发表一下自己的看法。
4、方差在实际问题中的应用
例:甲、乙两名射击运动员在相同条件下各射靶5次,各次命中的环数如下:
甲: 5 8 8 9 10
乙: 9 6 10 5 10
(1)分别计算每人的平均成绩;
(2)求出每组数据的方差;
(3)谁的射击成绩比较稳定?
三、知识点回顾
1、平均数:
练习:在一次英语口试中,已知50分1人、60分2人、70分5人、90分5人、100分1人,其余为84分。已知该班平均成绩为80分,问该班有多少人?
2、中位数和众数
练习:○1.一组数据23、27、20、18、X、12,它的中位数是21,则X的值是 .
○2.如果在一组数据中,23、25、28、22出现的次数依次为2、5、3、4次,并且没有其他的数据,则这组数据的众数和中位数分别是( )
A.24、25 B.23、24 C.25、25 D.23、25
○3.在一次环保知识竞赛中,某班50名学生成绩如下表所示:
得分 50 60 70 80 90 100 110 120
人数 2 3 6 14 15 5 4 1
分别求出这些学生成绩的众数、中位数和平均数.
3.极差和方差
练习:○1.一组数据X 、X …X 的极差是8,则另一组数据2X +1、2X +1…,2X +1的极差是( )
A. 8 B.16 C.9 D.17
○2.如果样本方差 ,
那么这个样本的平均数为 .样本容量为 .
四、自主探究
1、已知:1、2、3、4、5、这五个数的平均数是3,方差是2.
则:101、102、103、104、105、的平均数是 ,方差是 。
2、4、6、8、10、的平均数是 ,方差是 。
你会发现什么规律?
2、应用上面的规律填空:
若n个数据x1x2……xn 的平均数为m,方差为w。
(1)n个新数据x1+100,x2+100, …… xn+100的平均数是 ,方差为 。
(2)n个新数据5x1,5x2, ……5xn的平均数 ,方差为 。