教育巴巴 > 初中教案 > 七年级教案 > 数学教案 >

七年级数学教科书教案大全

时间: 沐钦 数学教案

七年级数学教科书教案都有哪些?教师通过精心设计,将抽象问题具体化,将复杂问题简单化,充分调动学生学习数学的主动性,使学生由被动听课变为主动探索,下面是小编为大家带来的七年级数学教科书教案七篇,希望大家能够喜欢!

七年级数学教科书教案大全

七年级数学教科书教案(篇1)

一.教学目标:

1.认知目标:

1)了解二元一次方程组的概念。

2)理解二元一次方程组的解的概念。

3)会用列表尝试的方法找二元一次方程组的解。

2.能力目标:

1)渗透把实际问题抽象成数学模型的思想。

2)通过尝试求解,培养学生的探索能力。

3.情感目标:

1)培养学生细致,认真的学习习惯。

2)在积极的教学评价中,促进师生的情感交流。

二.教学重难点

重点:二元一次方程的意义及二元一次方程的解的概念。

难点:把一个二元一次方程形成用关于一个未知数的代数式表示另一个未知数的形式,其实质是解一个含有字母系数的方程。

三.教学过程

(一)创设情景,引入课题

1.本班共有40人,请问能确定男女生各几人吗?为什么?

(1)如果设本班男生_人,女生y人,用方程如何表示?(_+y=40)

(2)这是什么方程?根据什么?

2.男生比女生多了2人。设男生_人,女生y人.方程如何表示? _,y的值是多少?

3.本班男生比女生多2人且男女生共40人.设该班男生_人,女生y人。方程如何表示?

两个方程中的_表示什么?类似的两个方程中的y都表示?

像这样,同一个未知数表示相同的量,我们就应用大括号把它们连起来组成一个方程组。

4.点明课题:二元一次方程组。

(设计意图:从学生身边取数据,让他们感受到生活中处处有数学)

(二)探究新知,练习巩固

1.二元一次方程组的概念

(1)请同学们看课本,了解二元一次方程组的的概念,并找出关键词由教师板书。

[让学生看书,引起他们对教材重视。找关键词,加深他们对概念的了解.]

(2)练习:判断下列是不是二元一次方程组,学生作出判断并要说明理由。

①_2+y=0 ②y=2_+4 ③y+?_ ④_=2/y+1 ⑤(_+y)/3-2=0

(设计意图:这一环节是本课设计的重点,为加深学生对“含有未知数的项的次数”的内涵的理解,我采取的是阅读书本中二元一次方程的概念,形成学生的认知冲突,激发学生对“项的次数的思考”,进而完善血生对二元一次方程概念的理解。)

2.二元一次方程组的解的概念

(1)由学生给出引例的答案,教师指出这就是此方程组的解。

(2)练习:把下列各组数的题序填入图中适当的位置:

方程_+y=0的解,方程2_+3y=2的解,方程组的解。

(3)既满足第一个方程也满足第二个方程的解叫作二元一次方程组的解。

(4)练习:已知是方程组的解,求a,b的值。

(三)合作探索,尝试求解

现在我们一起来探索如何寻找方程组的解呢?

1.已知两个整数_,y,试找出方程组的解.

学生两人一小组合作探索。并让已经找出方程组解的学生利用实物投影,讲明自己的解题思路。

一般思路:由一个方程取适当的_y的值,代到另一个方程尝试.

(设计意图:把课堂还给学生,让他们探索并解答问题,在获取新知识的同时也积累数学活动的经验)

2.据了解,某商店出售两种不同星号的“红双喜”牌乒乓球。其中“红双喜”二星乒乓球每盒6只,三星乒乓球每盒3只。某同学一共买了4盒,刚好有15个球。

(1) 设该同学“红双喜”二星乒乓球买了_盒,三星乒乓球买了y盒,请根据问题中的条件列出关于_、y的方程组。(2)用列表尝试的方法解出这个方程组的解。

由学生独立完成,并分析讲解。

3.例 已知方程3_+2Y=10

⑴当_=2时,求所对应的Y 的值;

⑵取一个你自己喜欢的数作为_的值,求所对应的Y的`值;

⑶用含_的代数式表示Y;

⑷用含Y 的代数式表示_;

⑸当_=-2,0 时,所对应的Y值是多少;

(设计意图:此处设计主要是想让学生形成求二元一次方程的解的一般方法,先让学生展示他们的思维过程,再从他们解一元一次方程的重复步骤中提炼出用一个未知数的代数式表示另一个未知数,然后把它与原方程比较,把一个未知数的值代入哪一个方程计算会更简单,形成“正迁移”,引导学生体会“用关于一个未知数的代数式表示另一个未知数”的过程。)

(四)课堂小结,布置作业

1.这节课学哪些知识和方法?

2.你还有什么问题或想法需要和大家交流?

3.教材P82

教学设计说明:

1.本课设计主线有两条。其一是知识线,内容从二元一次方程组的概念到二元一次方程组解的概念再到列表尝试法,环环相扣,层层递进;第二是能力培养线,学生从看书理解二元一次方程组的概念到学会归纳解的概念,再到自主探索,用列表尝试法解题,循序渐进,逐步提高。

2.“让学生成为课堂的真正主体”是本课设计的主要理念。由学生给出数据,得出结果,再让他们在积极尝试后进行讲解,实现生生互评。把课堂的一切交给学生,相信他们能在已有的知识上进一步学习提高,教师只是点播和引导者。

3.本课在设计时对教材也进行了适当改动。例题方面考虑到数码时代,学生对胶卷已渐失兴趣,所以改为学生比较熟悉的乒乓球为体裁。另一方面,充分挖掘练习的作用,为知识的落实打下轧实的基础,为学生今后的进一步学习做好铺垫。

七年级数学教科书教案(篇2)

一:教材分析

1、教材的内容:本节课是人教版七年级下册第五章第一节的第一课时

2、教材的地位和作用:平面内两条直线的位置关系是“空间与图形”所要研究的基本问题,这些内容学生在前两个学段已经有所接触,本章在学生已有知识和经验的基础上,继续研究平面内两条直线的位置关系,首先研究相交的两条直线,这是后面学习垂直相交的必要基础也为后面学面直角坐标系奠定基石,因此本节课具有承前启后的重要作用

3、教学的重点、难点:

重点:邻补角、对顶角的概念,对顶角的性质和应用。

难点:理解对顶角性质的探索

(确定重难点的依据:本节的学习目的是研究两条相交直线产生的四个角的关系,因此将邻补角、对顶角的概念、性质以及应用作为本节的重点。同学们刚刚开始接触几何,对推理说理不习惯也不熟悉,所以将理解对顶角相等的性质作为难点。)

4、教学目标:

A:知识与技能目标

(1).理解对顶角和邻补角的概念,能在图形中辨认.

(2).掌握对顶角相等的性质和它的推证过程

(3).会用对顶角的性质进行有关的简单推理和计算.

B:过程与方法目标

(1).通过观察、操作、探究、猜想、思考、交流、归纳、推理等培养学生的推理能力和有条理的表达能力,培养操作能力、动手能力。

(2).体会具体到抽象再到具体的思想方法.

C:情感、态度与价值目标

(1).感受图形中和谐美、对称美.

(2).感受合作交流带来的成功感,树立自信心.

(3).感受数学应用的广泛性,使学生更加热爱数学

二、学情分析:

在此之前,学生已经学习了图形的初步认识、对相交线和平行线有了直观的感性认识,且对互补和互余有了清楚的了解,在此基础上来学习邻补角和对顶角,符合学生的认知规律,让学生对新知识的应用充满好奇与期待.

三、教法和学法:

教法:

叶圣陶先生倡导:解放学生的手,解放学生的脑,解放学生的时间.根据这一思想及我校初一学生活泼好动的特点,我采取启发式教学、探究式教学及多媒体辅助教学相结合的方法.

学法:以学生分组实践、自主探究、合作交流为主要形式的探究式学习方法.

四、教学过程:

1课前准备:课件,剪刀,纸片,相交线模型

2教学过程:设置以下六个环节

环节一:情景屋(创设情景,激发学习动机)

请学生欣赏观察图片,图片中有大桥上的钢梁和钢索,窗户的窗格都给我们以相交线平行线的形象,让学生感受到相交线平行线在我们生活中有着广泛的应用,由此产生研究它们了解它们的兴趣和欲望,适时的给出本章课题:相交线和平行线

环节二:问题苑(合作交流,解释发现)

通过一些问题的设置,激发学生探究的欲望,具体操作:

(1):动手尝试:剪纸片,感知剪刀所形成的角在剪纸过程中的变化

(2):给出问题,由剪刀这个实物抽象出几何模型——两条直线相交。

(让学生充分的感知到数学来源于生活,符合初中学生的认识规律和兴趣爱好)

(3):分析研究此模型:

设置以下一系列问题:A、两直线相交构成的4个角两两相配共能组成几对?(6对)

B、对各对角进行分析,首先从位置上去分析————结论:可把这六对角分成两大类,一类为哪些角?——特点?——它们有一条公共边,它们的另一边互为反向延长线——引出概念——邻补角。

另一类是哪些角?———特点?——它们的两边互为反向延长线——引出概念——对顶角

C、再从大小上进行分析——量一量——结论:邻补角互补、对顶角相等。

D、你能阐述它们互补和相等的理由吗?

(一堂好课,是由一系列的真问题组成的,本环节在老师的引导下,由学生自由的发挥,通过观察分析,交流讨论一步一步的解决本节课的重点和难点,学生通过自己探索获得的知识才是自己的知识,让学生在此过程中学会学习,达到教是为了不教的目的)

环节三:快乐房(大胆创设,感悟变换)

(设置见投影,让学生判断形成的两个角是否为邻补角,这一变换让学生充满兴趣,此时一定让学生用邻补角的特点去检验,达到知识的正向迁移,并理解邻补角和补角的关系)

环节四:实例库(拓展应用,升华提高)

例子1:是一组不同形式的角,判断是否为对顶角,此题的目的是巩固对顶角的概念,培养学生的识图能力

例子2:例子2是用对顶角和邻补角的性质进行简单的计算,在这里设置了一组变式题,而且变式题目不是教师直接给出,而是启发学生自己编,让学生过了一把编导的瘾,学生一定非常的开心,这样可以活跃课堂气氛,提高学生的思维能力

(一方面巩固了对顶角的性质;另一方面说明几何里的计算题,需要用到图形的几何性质,因此,要有根有据地计算.例题放手让学生自己解决,比教师单纯地讲解效果会更好.尽管学生书写格式不如课本上的规范,但通过集体讲评纠正后,学生印象会更深刻).

最后安排一个脑筋急转弯:见投影

(让学生始终对课堂充满热情,通过此练习,体会到数学来自于生活又用于生活,提高学习数学的兴趣和热情)

环节五:点金帚(学后反思 感悟收获)

通过本堂课的探究

我经历了......

我体会到......

我感受到......

(学生畅所欲言,在“以生为本”的民主氛围中培养学生归纳、概括能力和语言表达能力;同时引导学生反思探究过程,帮助学生肯定自我,欣赏他人,同时把本节课的内容形成知识体系.)

角的名称

特征

性质

相同点

不同点

对顶角

①两条直线相交而成的角

②有一个公共顶点

③没有公共边

对顶角相等

都是两直线相交而成的角,都有一个公共顶点,它们都是成对出现。

对顶角没有公共边而邻补角有一条公共边;两条直线相交时,一个角的对顶角有一个,而一个角的邻补角有两个

邻补角

①两条直线相交面成的角

②有一个公共顶点

③有一条公共边

邻补角互补

环节六:沉思阁(课后延伸 张扬个性)

此为课后作业:

(适当增加利用对顶角相等解决一些说理的题目,既让学生感受到对顶角相等这个性质在解题中的独特魅力,又为后续学习打下良好的基础.)

五、教学设计说明:

设计理念:面向全体学生,实现:

——人人学有价值的数学

——人人都能获得必需的数学

——不同的人在数学上得到不同的发展

过程设计:学生亲身经历从现实生活的图形中提出数学问题,并抽象其蕴涵的数学本质(相交直线),最后回归生活去运用所学知识的全过程。

设计目的:让学生带着兴趣、带着问题走进课堂,带着新的问题、带着高涨的热情离开课堂,进行不断的探究。

七年级数学教科书教案(篇3)

学习目标

1. 理解有序数对的应用意义,了解平面上确定点的常用方法

2. 培养用数学的意识,激发学习兴趣.

学习重点: 理解有序数对的意义和作用

学习难点: 用有序数对表示点的位置

学习过程

一.问题导入

1.一位居民打电话给供电部门:"卫星路第8根电线杆的路灯坏了,"维修人员很快修好了路灯同学们欣赏下面图案.

2.地质部门在某地埋下一个标志桩,上面写着"北纬44.2°,东经125.7°"。

3.某人买了一张8排6号的电影票,很快找到了自己的座位。

分析以上情景,他们分别利用那些数据找到位置的。

你能举出生活中利用数据表示位置的例子吗?

二.概念确定

有序数对:用含有两个数的词表示一个确定的位置,其中各个数表示不同的含义,我们把这种有顺序的两个数a与b组成的数对,叫做有序数对,记作(a,b)

利用有序数对,可以很准确地表示出一个位置。

1.在教室里,根据座位图,确定数学课代表的位置

2.教材40页练习

三.方法归类

常见的确定平面上的点位置常用的方法

(1)以某一点为原点(0,0)将平面分成若干个小正方形的方格,利用点所在的行和列的位置来确定点的位置。

(2)以某一点为观察点,用方位角、目标到这个点的距离这两个数来确定目标所在的位置。

1.如图,A点为原点(0,0),则B点记为(3,1)

2.如图,以灯塔A为观测点,小岛B在灯塔A北偏东45,距灯塔3km 处。

例2 如图是某次海战中敌我双方舰艇对峙示意图,对我方舰艇来说:

(1)北偏东方向上有哪些目标?要想确定敌舰B的位置,还需要什么数据?

(2)距我方潜艇图上距离为1cm处的敌舰有哪几艘?

(3)要确定每艘敌舰的位置,各需要几个数据?

[巩固练习]

1. 如图是某城市市区的一部分示意图,对市政府来说:

北偏东60的方向有哪些单位?要想确定单位的位置。还需要哪些数据?火车站与学校分别位于市政府的什么方向,怎样确定他们的位置?

结合实际问题归纳方法

学生尝试描述位置

2. 如图,马所处的位置为(2,3).

(1) 你能表示出象的位置吗?

(2) 写出马的下一步可以到达的位置。

[小结]

1. 为什么要用有序数对表示点的位置,没有顺序可以吗?

2. 几种常用的表示点位置的方法.

[作业]

必做题:教科书44页:1题

七年级数学教科书教案(篇4)

初一上册数学教案,欢迎各位老师和学生参考!

学习目标:1、理解有理数的绝对值和相反数的意义。

2、会求已知数的相反数和绝对值。

3、会用绝对值比较两个负数的大小。

4、经历将实际问题数学化的过程,感受数学与生活的联系。

学习重点:1.会用绝对值比较两个负数的大小。

2.会求已知数的相反数和绝对值。

学习难点:理解有理数的绝对值和相反数的意义。

学习过程:

一、创设情境

根据绝对值与相反数的意义填空:

1、

2、

-5的相反数是______,-10.5的相反数是______, 的相反数是______;

3、|0|=______,0的相反数是______。

二、探索感悟

1、议一议

(1)任意说出一个数,说出它的绝对值、它的相反数。

(2)一个数的绝对值与这个数本身或它的相反数有什么关系?

2、想一想

(1)2与3哪个大?这两个数的绝对值哪个大?

(2)-1与-4哪个大?这两个数的绝对值哪个大?

(3)任意写出两个负数,并说出这两个负数哪个大?他们的绝对值哪个大?

(4)两个有理数的大小与这两个数的绝对值的大小有什么关系?

三.例题精讲

例1. 求下列各数的绝对值:

+9,-16,-0.2,0.

求一个数的绝对值,首先要分清这个数是正数、负数还是0,然后才能正确地写出它的绝对值。

议一议:(1)两个数比较大小,绝对值大的那个数一定大吗?

(2)数轴上的点的大小是如何排列的?

例2比较-10.12与-5.2的大小。

例3.求6、-6、14 、-14 的绝对值。

小节与思考:

这节课你有何收获?

四.练习

1. 填空:

⑴ 的符号是 ,绝对值是 ;

⑵10.5的符号是 ,绝对值是

⑶符号是+号,绝对值是 的数是

⑷符号是-号,绝对值是9的数是 ;

⑸符号是-号,绝对值是0.37的数是 .

2. 正式足球比赛时所用足球的质量有严格的规定,下表是6个足球的质量检测结果(用正数记超过规定质量的克数,用负数记不足规定质量的克数).

请指出哪个足球质量最好,为什么?

第1个第2个第3个第4个第5个第6个

-25-10+20+30+15-40

3.比较下面有理数的大小

(1)-0.7与-1.7 (2) (3) (4)-5与0

五、布置作业:

P25 习题2.3 5

家庭作业:《评价手册》 《补充习题》

六、学后记/教后记

这篇初一上册数学教案就为大家分享到这里了。希望对大家有所帮助!

七年级数学教科书教案(篇5)

【教学目标】

知识与技能

了解并掌握数据收集的基本方法。

过程与方法

在调查的过程中,要有认真的态度,积极参与。

情感、态度与价值观

体会统计调查在解决实际问题中的作用,逐步养成用数据说话的良好习惯。

【教学重难点】

重点:掌握统计调查的基本方法。

难点:能根据实际情况合理地选择调查方法。

【教学过程】

一、讲授新课

像前面提到的收集数据的活动中,全班同学是我们要考察的对象,我们采用问卷对全体同学作了逐一调查,像这样对全体对象进行的调查叫做全面调查。

调查、试验如采用普查可以收集到较全面、准确的数据,但普查的工作量比较大,有时受客观条件(人力、财力等)的限制难以进行,有时由于调查具有破坏性,不允许采用。在这些情况下,常常采用抽样调查(samplingsurvey),即从被考察的全体对象中抽出一部分对象进行考察的调查方式。

在一个统计问题中,我们把所要考察对象的全体叫做总体(population),其中的每一个考察对象叫做个体(individual),从总体中所抽取的一部分个体叫做总体的一个样本(sample),样本中个体的数目叫做样本容量(samplesize)。

例如,在通过试验考察500只新工艺生产的灯泡的使用寿命时,从中抽取50只进行试验。这500只灯泡的使用寿命的全体是总体,其中每只灯泡的使用寿命是个体,抽取的50只灯泡的使用寿命是一个样本,50是这个样本的样本容量。

为了使抽取的50只灯泡能很好地反映500只灯泡的情况,抽取时要使每只灯泡逐一进行编号,再把编号写在小纸片上,将小纸片揉成团,放在一个不透明的容器内,充分搅拌后,从中一个个地抽取50个号签。

上面抽取样本的过程中,总体中的各个个体都有相等的机会被抽到,像这样的抽样方法是一种简单随机抽样(simplerandomsampling)。

师:以“你知道父母的生日吗?”为题在班级进行调查,请设计一张问卷调查表。

学生小组合作、讨论,学生代表展示结果。

教师指导、评论。

师:除了问卷调查外,我们还有哪些方法收集到数据呢?

学生小组讨论、交流,学生代表回答。

师:收集数据的直接方法有访问、调查、观察、测量、试验等,间接方法有查阅资料、上网查询等。就以下统计的数据,你认为选择何种方法去收集比较合适?

(1)你班中的同学是如何安排周末时间的?

(2)我国濒临灭绝的植物数量;

(3)某种玉米种子的发芽率;

(4)学校门口十字路口每天7:00~7:10时的车流量。

学生讨论,并举手回答。

师:采用何种方法一定要结合实际问题来定。在解决问题(1)的过程中,不但要同学们动手调查,并且对全班所有学生都要调查,像这样对全体对象进行的调查叫做全面调查(普查)。同学们还知道哪些数据的收集需要全面调查吗?

学生讨论,并回答。

生:如人口普查、本班同学的出生年月、某班学生50米跑成绩等。

师:很好!下列问题也适合采用普查方式来收集数据吗?

(1)了解某批次炮弹的杀伤半径;

(2)某一天全国牛肉的平均价格;

(3)一批罐头产品的质量检查;

(4)对某条河的河水的污染情况的调查。

学生讨论、分析,并举手回答。

师:普查可以收集到较全面、准确的数据,但普查的工作量比较大,有时受到客观条件(如人力、财力等)的限制难以进行,有时由于调查具有破坏性,不允许采用。在这些情况下,常采用抽样调查,即从被考察的全体对象中抽出一部分对象进行考察的调查方式。

二、例题讲解

【例】(1)电视台准备在某市调查一电视节目的收视率,需要对所有看电视的人进行全面调查吗?对一所中学学生的调查结果能否作为该节目的收视率?

(2)对本年级同学是否喜欢某电视节目调查的结果,能代表学校全体同学的意见吗?如果不适用,应如何改进调查方法?

解:(1)电视台不可能对每个看电视的人进行全面调查。对这?所中学学生的调查结果不能作为该节目的收视率,因为调查对象只有中学生,缺乏代表性;

(2)对本年级同学是否喜欢某电视节目的调查结果不能代表

《6。2普查与抽样调查》课时练习

2。下列事件中最适合使用普查方式收集数据的是()

A。为制作校服,了解某班同学的身高情况

B。了解全市初三学生的视力情况

C。了解一种节能灯的使用寿命

D。了解我省农民的年人均收入情况

答案:A

解析:解答:A。人数不多,适合使用普查方式,所以A正确;

B。人数较多,结果的实际意义不大,因而不适用普查方式,所以B错误;

C。是具有破坏性的调查,因而不适用普查方式,所以C错误;

D。人数较多,结果的实际意义不大,因而不适用普查方式,所以D错误。

故选:A。

分析:由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似。此题考查了抽样调查和全面调查,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查选用普查。

《6。2普查与抽样调查》基础巩固

1、(知识点1)要调查某校九年级550名学生周日的睡眠时间,下列调查对象选取最合适的是()

A、选取该校一个班级的学生

B、选取该校50名男生

C、选取该校50名女生

D、随机选取该校50名九年级学生

2、(题型二)下列调查适合用抽样调查的是()

A、了解义乌电视台“同年哥讲新闻”栏目的收视率

B、了解禽流感H7N9确诊病人同机乘客的健康状况

C、了解某班每个学生家庭电脑的数量

D、“神七”载人飞船发射前对重要零部件的检查

3、(题型三)为了了解某市八年级男生的身高,有关部门准备对200名八年级男生的身高做调查,以下调查方案中比较合理的是()

A、查阅外地200名八年级男生的身高统计资料

B、测量该市一所中学200名八年级男生的身高

C、测量该市两所农村中学各100名八年级男生的身高

D、在该市市区任选两所中学,农村任选两所中学,每所中学用抽签的方法分别选出50名八年级男生,然后测量他们的身高

七年级数学教科书教案(篇6)

教学目标

1. 使学生在了解代数式概念的基础上,能把简单的与数量有关的词语用代数式表示出来;

2. 初步培养学生观察、分析和抽象思维的能力。

教学重点和难点

重点:列代数式。

难点:弄清楚语句中各数量的意义及相互关系。

课堂教学过程设计

一、从学生原有的认知结构提出问题

1?用代数式表示乙数:(投影)

(1)乙数比x大5;(x+5)

(2)乙数比x的2倍小3;(2x-3)

(3)乙数比x的倒数小7;( -7)

(4)乙数比x大16%?((1+16%)x)

(应用引导的方法启发学生解答本题)

2?在代数里,我们经常需要把用数字或字母叙述的一句话或一些计算关系式,列成代数式,正如上面的练习中的问题一样,这一点同学们已经比较熟悉了,但在代数式里也常常需要把用文字叙述的一句话或计算关系式(即日常生活语言)列成代数式?本节课我们就来一起学习这个问题?

二、讲授新课

例1 用代数式表示乙数:

(1)乙数比甲数大5; (2)乙数比甲数的2倍小3;

(3)乙数比甲数的倒数小7; (4)乙数比甲数大16%?

分析:要确定的乙数,既然要与甲数做比较,那么就只有明确甲数是什么之后,才能确定乙数,因此写代数式以前需要把甲数具体设出来,才能解决欲求的乙数?

解:设甲数为x,则乙数的代数式为

(1)x+5 (2)2x-3; (3) -7; (4)(1+16%)x?

(本题应由学生口答,教师板书完成)

最后,教师需指出:第4小题的答案也可写成x+16%x?

例2 用代数式表示:

(1)甲乙两数和的2倍;

(2)甲数的 与乙数的 的差;

(3)甲乙两数的平方和;

(4)甲乙两数的和与甲乙两数的差的积;

(5)乙甲两数之和与乙甲两数的差的积?

分析:本题应首先把甲乙两数具体设出来,然后依条件写出代数式?

解:设甲数为a,乙数为b,则

(1)2(a+b); (2) a- b; (3)a2+b2;

(4)(a+b)(a-b); (5)(a+b)(b-a)或(b+a)(b-a)?

(本题应由学生口答,教师板书完成)

此时,教师指出:a与b的和,以及b与a的和都是指(a+b),这是因为加法有交换律?但a与b的差指的是(a-b),而b与a的差指的是(b-a)?两者明显不同,这就是说,用文字语言叙述的句子里应特别注意其运算顺序?

例3 用代数式表示:

(1)被3整除得n的数;

(2)被5除商m余2的数?

分析本题时,可提出以下问题:

(1)被3整除得2的数是几?被3整除得3的数是几?被3整除得n的.数如何表示?

(2)被5除商1余2的数是几?如何表示这个数?商2余2的数呢?商m余2的数呢?

解:(1)3n; (2)5m+2?

(这个例子直接为以后让学生用代数式表示任意一个偶数或奇数做准备)?

例4 设字母a表示一个数,用代数式表示:

(1)这个数与5的和的3倍;(2)这个数与1的差的 ;

(3)这个数的5倍与7的和的一半;(4)这个数的平方与这个数的 的和?

分析:启发学生,做分析练习?如第1小题可分解为“a与5的和”与“和的3倍”,先将“a与5的和”例成代数式“a+5”再将“和的3倍”列成代数式“3(a+5)”?

解:(1)3(a+5); (2) (a-1); (3) (5a+7); (4) a2+ a?

(通过本例的讲解,应使学生逐步掌握把较复杂的数量关系分解为几个基本的数量关系,培养学生分析问题和解决问题的能力?)

例5 设教室里座位的行数是m,用代数式表示:

(1)教室里每行的座位数比座位的行数多6,教室里总共有多少个座位?

(2)教室里座位的行数是每行座位数的 ,教室里总共有多少个座位?

分析本题时,可提出如下问题:

(1)教室里有6行座位,如果每行都有7个座位,那么这个教室总共有多少个座位呢?

(2)教室里有m行座位,如果每行都有7个座位,那么这个教室总共有多少个座位呢?

(3)通过上述问题的解答结果,你能找出其中的规律吗?(总座位数=每行的座位数×行数)

解:(1)m(m+6)个; (2)( m)m个?

三、课堂练习

1?设甲数为x,乙数为y,用代数式表示:(投影)

(1)甲数的2倍,与乙数的 的和; (2)甲数的 与乙数的3倍的差;

(3)甲乙两数之积与甲乙两数之和的差;(4)甲乙的差除以甲乙两数的积的商?

2?用代数式表示:

(1)比a与b的和小3的数; (2)比a与b的差的一半大1的数;

(3)比a除以b的商的3倍大8的数; (4)比a除b的商的3倍大8的数?

3?用代数式表示:

(1)与a-1的和是25的数; (2)与2b+1的积是9的数;

(3)与2x2的差是x的数; (4)除以(y+3)的商是y的数?

〔(1)25-(a-1); (2) ; (3)2x2+2; (4)y(y+3)?〕

四、师生共同小结

首先,请学生回答:

1?怎样列代数式?2?列代数式的关键是什么?

其次,教师在学生回答上述问题的基础上,指出:对于较复杂的数量关系,应按下述规律列代数式:

(1)列代数式,要以不改变原题叙述的数量关系为准(代数式的形式不唯一);

(2)要善于把较复杂的数量关系,分解成几个基本的数量关系;

(3)把用日常生活语言叙述的数量关系,列成代数式,是为今后学习列方程解应用题做准备?要求学生一定要牢固掌握?

五、作业

1?用代数式表示:

(1)体校里男生人数占学生总数的60%,女生人数是a,学生总数是多少?

(2)体校里男生人数是x,女生人数是y,教练人数与学生人数之比是1∶10,教练人数是多?

2?已知一个长方形的周长是24厘米,一边是a厘米,

求:(1)这个长方形另一边的长;(2)这个长方形的面积。

学法探究

已知圆环内直径为acm,外直径为bcm,将100个这样的圆环一个接着一个环套环地连成一条锁链,那么这条锁链拉直后的长度是多少厘米?

分析:先深入研究一下比较简单的情形,比如三个圆环接在一起的情形,看 有没有规律。

当圆环为三个的时候,如图:

此时链长为,这个结论可以继续推广到四个环、五个环、…直至100个环,答案不难得到:

解:

=99a+b(cm)

七年级数学教科书教案(篇7)

问:你会解这个方程吗?你能否从小敏同学的解法中得到启发?

这个方程不像例l中的方程(1)那样容易求出它的解,小敏同学的方法启发了我们,可以用尝试,检验的方法找出方程(2)的解。也就是只要将x=1,2,3,4,……代人方程(2)的两边,看哪个数能使两边的值相等,这个数就是这个方程的解。

把x=3代人方程(2),左边=13+3=16,右边=(45+3)=48=16,

因为左边=右边,所以x=3就是这个方程的解。

这种通过试验的方法得出方程的解,这也是一种基本的数学思想方法。也可以据此检验一下一个数是不是方程的解。

问:若把例2中的“三分之一”改为“二分之一”,那么答案是多少?

同学们动手试一试,大家发现了什么问题?

同样,用检验的方法也很难得到方程的解,因为这里x的值很大。另外,有的方程的解不一定是整数,该从何试起?如何试验根本无法人手,又该怎么办?

这正是我们本章要解决的问题。

三、巩固练习

1、教科书第3页练习1、2。

2、补充练习:检验下列各括号内的数是不是它前面方程的解。

(1)x-3(x+2)=6+x(x=3,x=-4)

(2)2y(y-1)=3(y=-1,y=2)

(3)5(x-1)(x-2)=0(x=0,x=1,x=2)

四、小结。本节课我们主要学习了怎样列方程解应用题的方法,解决一些实际问题。谈谈你的学习体会。

五、作业。

33882