教育巴巴 > 初中教案 > 七年级教案 > 数学教案 >

备课教案模板七年级数学实数

时间: 新华 数学教案

每个七年级数学老师都应该提升学生的数学运用本事和合作创新本事,提高数学教学的有效性。七年级数学老师离不开七年级数学教案,七年级数学教案支持着七年级数学老师教学工作的顺利进行。你是否在找正准备撰写“备课教案模板七年级数学实数”,下面小编收集了相关的素材,供大家写文参考!

备课教案模板七年级数学实数篇1

教学目标:

1.知识与技能

结合具体实例,进一步认识三角形的概念,掌握三角形三条边的关系.

2.过程与方法

通过观察、操作、想象、推理、交流等活动,发展空间观念,推理能力和有条理地表达能力.

3.情感、态度与价值观

联系学生的生活环境、创设情景,帮助学生树立几何知识源于实际、用于实际的观念,激发学生的学习兴趣.

教学重点难点:

1.重点

让学生掌握三角形的概念及三角形的三边关系,并能运用三边关系解决生活中的实际问题.

2.难点

探究三角形的三边关系应用三边关系解决生活中的实际问题.

教学设计:

本节课件设计了以下几个环节:回顾与思考、情境引入、三角形的概念、探索三角形三边关系、练习应用、课堂小结、探究拓展思考、布置作业.

第一环节 回顾与思考

1、如何表示线段、射线和直线?

2、如何表示一个角?

第二环节 情境引入

活动内容:让学生收集生活中有关三角形的图片,课上让学生举例,并观察图片.

活动目的:让学生能从生活中抽象出几何图形,感受到我们生活在几何图形的世界之中.培养学生善于观察生活、乐于探索研究的学习品质,从而更大地激发学生学习数学的兴趣

第三环节 三角形概念的讲解

(1)你能从中找出四个不同的三角形吗?

(2)与你的同伴交流各自找到的三角形.

(3)这些三角形有什么共同的特点?

通过上题的分析引出三角形的概念、三角形的表示方法及三角形的边角的表示方法.并出两道习题加以练习,从练习中归纳出三角形的三要素和注意事项.

第四环节 探索三角形三边关系

备课教案模板七年级数学实数篇2

教学目标: 

1、使学生在现实情境中理解有理数加法的意义

2、经历探索有理数加法法则的过程,掌握有理数加法法则,并能准确地进行加法运算。

3、在教学中适当渗透分类讨论思想。

重点:有理数的加法法则

重点:异号两数相加的法则

教学过程:

二、讲授新课

1、同号两数相加的法则

问题:一个物体作左右方向的运动,我们规定向左为负,向右为正。向右运动5m记作5m,向左运动5m记作-5m。如果物体先向右运动5m,再向右运动3m,那么两次运动后总的结果是多少?

学生回答:两次运动后物体从起点向右运动了8m。写成算式就是5+3=8(m)

教师:如果物体先向左运动5m,再向左运动3m,那么两次运动后总的结果是多少?

学生回答:两次运动后物体从起点向左运动了8m。写成算式就是(-5)+(-3)=-8(m)

师生共同归纳法则:同号两数相加,取与加数相同的符号,并把绝对值相加。

2、异号两数相加的法则

教师:如果物体先向右运动5m,再向左运动3m,那么两次运动后物体从起点向哪个方向运动了多少米?

学生回答:两次运动后物体从起点向右运动了2m。写成算式就是5+(-3)=2(m)

师生借此结论引导学生归纳异号两数相加的法则:异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。

3、互为相反数的两个数相加得零。

教师:如果物体先向右运动5m,再向左运动5m,那么两次运动后总的结果是多少?

学生回答:经过两次运动后,物体又回到了原点。也就是物体运动了0m。

师生共同归纳出:互为相反数的两个数相加得零

教师:你能用加法法则来解释这个法则吗?

学生回答:可用异号两数相加的法则来解释。

一般地,还有一个数同0相加,仍得这个数。

三、巩固知识

课本P18 例1,例2、课本P118 练习1、2题

四、总结

运算的关键:先分类,再按法则运算;

运算的步骤:先确定符号,再计算绝对值。

注意:要借用数轴来进一步验证有理数的加法法则;异号两数相加,首先要确定符号,再把绝对值相加。

五、布置作业

课本P24习题1.3第1、7题。

备课教案模板七年级数学实数篇3

一、知识导航

1、主要概念:变量是 ;自变量是 ;因变量是 。

2、变量之间关系的三种表示方法: 。

其特点是:列表:对于表中自变量的每一个值,可以不通过计算,直接把 的值找到,查询方便;但是欠 ,不能反映变化的全貌,不易看出变量间的对应规律。

关系式:简明扼要、规范准确;但有些变量之间的关系很难或不能用关系式表示。图像:形象直观。可以形象地反映出事物变化的过程、变化的趋势和某些特征;但图像是近似的、局部的,由图像确定因变量的值欠准确。

3、主要数学思想方法:类比和比较的方法(举例说明);数形结合和数学建模思想(举例说明)。

二、学习导航

1、有关概念应用

例1下列各题中,那些量在发生变化?其中自变量和因变量各是什么?

① 用总长为60的篱笆围成一边长为L(m),面积为S(m2)的矩形场地;

②正方形边长是3,若边长增加x,则面积增加为y.

2、利用表格寻找变化规律

例2 研究表明,固定钾肥和磷肥的施用量,土豆的产量与氮肥的施用量有如下关系:

施肥量

(千克/公顷) 0 34 67 101 135 202 259 336 404 471

土豆产量

(吨/公顷) 15.18 21.36 25.72 32.29 30.03 39.45 43.15 43.46 40.83 30.75

上表中反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?根据表格中的数据,你认为氮肥的使用量是多少时比较适宜?

变式(湖南)一辆小汽车在高速公路上从静止到起动10秒后的速度经测量如下表:

时间/秒 0 1 2 3 4 5 6 7 8 9 10

速度/米/秒 0 0.3 1.3 2.8 4.9 7.6 11.0 14.1 18.4 24.2 28.9

①上表反映了哪两个变量之间的关系?哪个是因变量?

②如果用t表示时间,v表示速度,那么随着t的变化,v的变化趋势是什么?

③当t每增加1秒时,v的变化情况相同吗?在哪1秒中,v的增加?

④若高速公路上小汽车行驶的速度的上限为120千米/时,试估计大约还需要几秒小汽车速度就将达到这个上限?

3、用关系式表示两变量的关系

例3.、①设一长方体盒子高为10,底面积为正方形,求这个长方形的体积v与底面边长a的关系。②设地面气温是20℃,如果每升高1km,气温下降6℃,求气温与t高度h的关系。

变式(江西)如图,一个矩形推拉窗,窗高1.5米,则活动窗扇的通风面积A(平方米)与拉开长度b(米)的关系式是: 

4、用图像表示两变量的关系

例4、(桂林)今年,在我国内地发生了“非典型肺炎”疫情,在党和政府的正确领导下,目前疫情已得到有效控制.下图是今年5月1日至5月14日的内地新增确诊病例数据走势图(数据来源:卫生部每日疫情通报).从图中,可知道:

(1)5月6日新增确诊病例人数为 人;

(2)在5月9日至5月11日三天中,共新增确诊病例人数为 人;

(3)从图上可看出,5月上半月新增确诊病例总体呈 趋势.

例5、(陕西) 星期天晚饭后,小红从家里出去散步,下图描述了她散步过程中离家的距离s(米)与散步所用时间t(分)之间的函数关系.依据图象,下面描述符合小红散步情景的是( ).

A.从家出发,到了一个公共阅报栏,看了一会儿报,就回家了

B.从家出发,到了一个公共阅报栏,看了一会儿报后,继续向前走了一段,然后回家了

C.从家出发,一直散步(没有停留),然后回家了

D.从家出发,散了一会儿步,就找同学去了,18分钟后才开始返变式 (成都)右图表示甲骑电动自行车和乙驾驶汽车沿相同路线行驶45千米,由A地到B地时,行驶的路程y(千米)与经过的时间x(小时)之间的关系.请根据这个行驶过程中的图象填空:汽车出发 小时与电动自行车相遇;电动自行车的速度为 千米/时;汽车的速度为 千米/时;汽车比电动自行车早 小时到达B地.

三、一试身手

1、(贵阳)小明根据邻居家的故事写了一首小诗:“儿子学成今日返,老父早早到车站,儿子到后细端详,父子高兴把家还.”如果用纵轴y表示父亲与儿子行进中离家的距离,用横轴 表示父亲离家的时间,那么下面的图象与上述诗的含义大致吻合的是(  )

2、在一次蜡烛燃烧实验中,甲、乙两根蜡烛燃烧时剩余部分的高度y(厘米)与燃烧时间x(小时)

之间的关系如图所示.

请根据图象所提供的信息解答下列问题:

(1)甲、乙两根蜡烛燃烧前的高度分别是______,

从点燃到燃尽所用的时间分别是_______;

(2)燃烧多长时间时,甲、乙两根蜡烛的高度相等(不考虑都燃尽时的情况)?在什么时间段内,甲蜡烛比乙蜡烛高?在什么时间段内,甲蜡烛比乙蜡烛低?

3、(2006宿迁课改)小明从家骑车上学,先上坡到达A地后再下坡到达学校,所用的时间与路程如图所示.如果返回时,上、下坡速度仍然保持不变,那么他从学校回到家需要的时间是(  )

A.8.6分钟 B.9分钟

C.12分钟 D.16分钟

4、某机动车出发前油箱内有油42l,行驶若干小时后,途中在加油站加油若干升.油箱中余油量Q(L)与行驶时间t(L)之间的关系如图8 所示.

回答问题:(1)机动车行驶几小时后加油?

(2)中途中加油_________L;

(3)已知加油站距目的地还有 ,车速为 ,

若要达到目的地,油箱中的油是否够用?并说明原因.

5、在一次实验中,小明把一根弹簧的上端固定.在其下端悬挂物体,下面是测得的弹簧的长度y与所挂物体质量x的一组对应值.

所挂质量

0 1 2 3 4 5

弹簧长度

18 20 22 24 26 28

(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?

(2)当所挂物体重量为 时,弹簧多长?不挂重物时呢?

(3)若所挂重物为 时(在允许范围内),你能说出此时的弹簧长度吗?

6、小明在暑期社会实距活动中,以每千克0.8元的价格从批发市场购进若干千克瓜到市场上去销售,在销售了40千克西瓜之后,余下的每千克降价0.4元,全部售完.销售金额与售出西瓜的千克数之间的关系如图9所示.请你根据图象提供的信息完成以下问题:

(1)求降价前销售金额y(元)与售出西瓜 (千克)之间的关系式;

(2)小明从批发市场共购进多少千克西瓜?

(3)小明这次卖瓜赚子多少钱?

7、如图中的折线ABC是甲地向乙地打长途电话所需要付的电话费y(元)与通话时间t(分钟)之间的关系的图象.

(1)通话1分钟,要付电话费多少元?通话5分钟要付多少电话费?

(2)通话多少分钟内,所支付的电话费不变?

(3)如果通话3分钟以上,电话费y(元)与时间t(分钟)的关系式是 ,那么通话4分钟的电话费是多少元?

8、如图是某水库的蓄水量v(万米3)与干旱持续时间t(天)之间的关系图,回答下列问题:

(1)该水库原蓄水量为多少万米3?持干旱持续时间10天后,水库蓄水量为多少万米3?

(2)若水库的蓄水量小于400万米3时,将发生严重干旱警报,请问:持续干旱多少天后,将发生严重干旱警报?

(3)按此规律,持续干旱多少天时,水库将干涸?

9、(成都市)某移动通信公司开设了两种通信业务,“全球通”:使用时首先缴50元月租费,然后每通话1分钟,自付话费0.4元;“动感地带”:不缴月租费,每通话1分钟,付话费0.6元(本题的通话均指市内通话),若一个月通话x分钟,两种方式的费用分别为 元和 元.

(1)写出 、 与x之间的关系式;

(2)一个月内通话多少分钟,两种移动通讯费用相同?

(3)某人估计一个月内通话300分钟,应选择哪种移动通信合算些?

27961