教育巴巴 > 初中教案 > 七年级教案 > 数学教案 >

七年级数学下册教案10篇

时间: 陈翠 数学教案

七年级是适应中学学习生活,适应新的环境,适应新老师的讲课方式的一个环节,下面给大家带来一些关于七年级数学下册教案,欢迎阅读与借鉴,希望对你们有帮助!

七年级数学下册教案10篇

七年级数学下册教案篇1

教学目标:

(1)能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。

(2)注重学生参与,联系实际,丰富学生的感性认识,培养学生的良好的学习习惯

重点难点:

能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。

教学过程:

一、试一试

1.设矩形花圃的垂直于墙的一边AB的长为xm,先取x的一些值,算出矩形的另一边BC的长,进而得出矩形的面积ym2.试将计算结果填写在下表的空格中,

2.x的值是否可以任意取?有限定范围吗?

3.我们发现,当AB的长(x)确定后,矩形的面积(y)也随之确定,y是x的函数,试写出这个函数的关系式,

对于1.,可让学生根据表中给出的AB的长,填出相应的BC的长和面积,然后引导学生观察表格中数据的变化情况,提出问题:(1)从所填表格中,你能发现什么?(2)对前面提出的问题的解答能作出什么猜想?让学生思考、交流、发表意见,达成共识:当AB的长为5cm,BC的长为10m时,围成的矩形面积最大;最大面积为50m2。对于2,可让学生分组讨论、交流,然后各组派代表发表意见。形成共识,x的值不可以任意取,有限定范围,其范围是0<x<10。对于3,教师可提出问题,(1)当ab=xm时,bc长等于多少m?(2)面积y等于多少?并指出y=x(20-2x)(0<x<10)就是所求的函数关系式.< p="">

二、提出问题

某商店将每件进价为8元的某种商品按每件10元出售,一天可销出约100件.该店想通过降低售价、增加销售量的办法来提高利润,经过市场调查,发现这种商品单价每降低0.1元,其销售量可增加10件。将这种商品的售价降低多少时,能使销售利润最大?在这个问题中,可提出如下问题供学生思考并回答:

1.商品的利润与售价、进价以及销售量之间有什么关系?

[利润=(售价-进价)×销售量]

2.如果不降低售价,该商品每件利润是多少元?一天总的利润是多少元?

[10-8=2(元),(10-8)×100=200(元)]

3.若每件商品降价x元,则每件商品的利润是多少元?一天可销

售约多少件商品?

[(10-8-x);(100+100x)]

4.x的值是否可以任意取?如果不能任意取,请求出它的范围,

[x的值不能任意取,其范围是0≤x≤2]

5.若设该商品每天的利润为y元,求y与x的函数关系式。

[y=(10-8-x)(100+100x)(0≤x≤2)]

将函数关系式y=x(20-2x)(0<x<10=化为:< p="">

y=-2x2+20x(0<x<10)……………………………(1)将函数关系式y=(10-8-x)(100+100x)(0≤x≤2)化为:y=-100x2+100x+20d(0≤x≤2)……………………(2)< p="">

三、观察;概括

1.教师引导学生观察函数关系式(1)和(2),提出以下问题让学生思考回答;

(1)函数关系式(1)和(2)的自变量各有几个?

(各有1个)

(2)多项式-2x2+20和-100x2+100x+200分别是几次多项式?(分别是二次多项式)

(3)函数关系式(1)和(2)有什么共同特点?

(都是用自变量的二次多项式来表示的)

(4)本章导图中的问题以及P1页的问题2有什么共同特点?让学生讨论、交流,发表意见,归结为:自变量x为何值时,函数y取得最大值。

2.二次函数定义:形如y=ax2+bx+c(a、b、c是常数,a≠0)的函数叫做x的二次函数,a叫做二次函数的系数,b叫做一次项的系数,c叫作常数项.

四、课堂练习

1.(口答)下列函数中,哪些是二次函数?

(1)y=5x+1(2)y=4x2-1

(3)y=2x3-3x2(4)y=5x4-3x+1

2.P3练习第1,2题。

五、小结

1.请叙述二次函数的定义.

2,许多实际问题可以转化为二次函数来解决,请你联系生活实际,编一道二次函数应用题,并写出函数关系式。

六、作业:略

七年级数学下册教案篇2

教学目标:

1、使学生学会较熟炼地运用切线的判定方法和切线的性质证明问题.

2、掌握运用切线的性质和切线的判定的有关问题中辅助线引法的基本规律.

教学重点:

使学生准确、熟炼、灵活地运用切线的判定方法及其性质.教学难点:学生对题目不能准确地进行论证.证题中常会出现不知如何入手,不知往哪个方向证的情形.

教学过程:

一、新课引入:

我们已经系统地学习了切线的判定方法和切线的性质,现在我们来利用这些知识证明有关几何问题.

二、新课讲解:

实际上在几何证明题中,我们更多地将切线的判定定理和性质定理应用在具体的问题中,而一道几何题的分析过程,是证题中的最关键步骤.p.109例3如图7-58,已知:ab是⊙o的直径,bc是⊙o的切线,切点为b,oc平行于弦ad.求证:dc是⊙o的切线.

分析:欲证cd是⊙o的切线,d是⊙o的弦ad的一个端点当然在⊙o上,属于公共点已给定,而证直线是圆的切线的情形.所以辅助线应该是连结oc.只要证od⊥cd即可.亦就是证∠odc=90°,所以只要证∠odc=∠obc即可,观察图形,两个角分别位于△odc和△obc中,如果两个三角形相似或全等都可以产生对应角相等的结果.而图形中已存在明显的条件od=ob,oc=oc,只要证∠3=∠4,便可造成两个三角形全等.

∠3如何等于∠4呢?题中还有一个已知条件ad∥oc,平行的位置关系,可以造成角的相等关系,从而导致∠3=∠4.命题得证.证明:连结od.教师向学生解释书上的证题格式属于推出法和因为所以法的联用,以后证题中同学可以借鉴.p.110例4如图7-59,在以o为圆心的两个同心圆中,大圆的弦ab和cd相等,且ab与小圆相切于点e求证:cd与小圆相切.

分析:欲证cd与小⊙o相切,但读题后发现直线cd与小⊙o并未已知公共点.这个时候我们必须从圆心o向cd作垂线,设垂足为f.此时f点在直线cd上,如果我们能证得of等于小⊙o的半径,则说明点f必在小⊙o上,即可根据切线的判定定理认定cd与小⊙o相切.题目中已告诉我们ab切小⊙o于e,连结oe,便得到小⊙o的一条半径,再根据大⊙o中弦相等则弦心距也相等,则可得到of=oe.证明:连结oe,过o作of⊥cd,重足为f.

请同学们注意本题中证一条直线是圆的切线时,这种证明途径是由直线与圆的公共点来给定所决定的.

练习一

p.111,1.已知:oc平分∠aob,d是oc上任意一点,⊙d与oa相切于点e.求证:ob与⊙d相切.分析:审题后发现欲证的ob与⊙d相切,属于ob与⊙d无公共点的情况.这时应从圆心d向⊙b作垂线,垂足为f,然后证垂线段df等于⊙b的一条半径,而题目中已给oa与⊙d切于点e,只要连结de.再根据角平分线的性质,问题便得到解决.证明:连结de,作df⊥ob,重足为f.p.111中2.已知如图7-61,△abc为等腰三角形,o是底边bc的中点,⊙o与腰ab相切于点d.求证:ac与⊙o相切.

分析:欲证ac与⊙o相切,同第1题一样,同属于直线与圆的公共点未给定情况.辅助线的方法同第1题,证法类同.只不过要针对本题特点还要连结oa.从等腰三角形的”三线合一”的性质出发,证得oa平分∠bac,然后再根据角平分线的性质,使问题得到证明.证明:连结od、oa,作oe⊥ac,垂足为e.同学们想一想,在证明oe=od时,还可以怎样证?

(答案)可通过“角、角、边”证rt△odb≌rt△oec.

三、新课讲解

为培养学生阅读教材的习惯让学生阅读109页到110页.从中总结出本课的主要内容:

1.在证题中熟练应用切线的判定方法和切线的性质.

2.在证明一条直线是圆的切线时,只能遇到两种情形之一,针对不同的情形,选择恰当的证明途径,务必使同学们真正掌握.

(1)公共点已给定.做法是“连结”半径,让半径“垂直”于直线.

(2)公共点未给定.做法是从圆心向直线“作垂线”,证“垂线段等于半径”.

四、布置作业

1.教材p.116中8、9.2.教材p.117中2.

七年级数学下册教案篇3

一、教学目标

1、了解二次根式的意义;

2、掌握用简单的一元一次不等式解决二次根式中字母的取值问题;

3、掌握二次根式的性质和,并能灵活应用;

4、通过二次根式的计算培养学生的逻辑思维能力;

5、通过二次根式性质和的介绍渗透对称性、规律性的数学美。

二、教学重点和难点

重点:

(1)二次根的意义;

(2)二次根式中字母的取值范围。

难点:确定二次根式中字母的取值范围。

三、教学方法

启发式、讲练结合。

四、教学过程

(一)复习提问

1、什么叫平方根、算术平方根?

2、说出下列各式的意义,并计算

(二)引入新课

新课:二次根式

定义:式子叫做二次根式。

对于请同学们讨论论应注意的问题,引导学生总结:

(1)式子只有在条件a≥0时才叫二次根式,是二次根式吗?呢?

若根式中含有字母必须保证根号下式子大于等于零,因此字母范围的限制也是根式的一部分。

(2)是二次根式,而,提问学生:2是二次根式吗?显然不是,因此二次

根式指的是某种式子的“外在形态”。请学生举出几个二次根式的例子,并说明为什么是二次根式。下面例题根据二次根式定义,由学生分析、回答。

例1当a为实数时,下列各式中哪些是二次根式?

例2x是怎样的实数时,式子在实数范围有意义?

解:略。

说明:这个问题实质上是在x是什么数时,x—3是非负数,式子有意义。

例3当字母取何值时,下列各式为二次根式:

分析:由二次根式的定义,被开方数必须是非负数,把问题转化为解不等式。

解:(1)∵a、b为任意实数时,都有a2+b2≥0,∴当a、b为任意实数时,是二次根式。

(2)—3x≥0,x≤0,即x≤0时,是二次根式。

(3),且x≠0,∴x>0,当x>0时,是二次根式。

(4),即,故x—2≥0且x—2≠0,∴x>2。当x>2时,是二次根式。

例4下列各式是二次根式,求式子中的字母所满足的条件:

分析:这个例题根据二次根式定义,让学生分析式子中字母应满足的条件,进一步巩固二次根式的定义,。即:只有在条件a≥0时才叫二次根式,本题已知各式都为二次根式,故要求各式中的被开方数都大于等于零。

解:(1)由2a+3≥0,得。

(2)由,得3a—1>0,解得。

(3)由于x取任何实数时都有|x|≥0,因此,|x|+0。1>0,于是,式子是二次根式。所以所求字母x的取值范围是全体实数。

(4)由—b2≥0得b2≤0,只有当b=0时,才有b2=0,因此,字母b所满足的条件是:b=0。

七年级数学下册教案篇4

一、内容简介

本节课的主题:通过一系列的探究活动,引导学生从计算结果中总结出完全平方公式的两种形式。

关键信息:

1、以教材作为出发点,依据《数学课程标准》,引导学生体会、参与科学探究过程。首先提出等号左边的两个相乘的多项式和等号右边得出的三项有什么关系。通过学生自主、独立的发现问题,对可能的答案做出假设与猜想,并通过多次的检验,得出正确的结论。学生通过收集和处理信息、表达与交流等活动,获得知识、技能、方法、态度特别是创新精神和实践能力等方面的发展。

2、用标准的数学语言得出结论,使学生感受科学的严谨,启迪学习态度和方法。

二、学习者分析:

1、在学习本课之前应具备的基本知识和技能:

①同类项的定义。

②合并同类项法则

③多项式乘以多项式法则。

2、学习者对即将学习的内容已经具备的水平:

在学习完全平方公式之前,学生已经能够整理出公式的右边形式。这节课的目的就是让学生从等号的左边形式和右边形式之间的关系,总结出公式的应用方法。

三、教学/学习目标及其对应的课程标准:

(一)教学目标:

1、经历探索完全平方公式的过程,进一步发展符号感和推力能力。

2、会推导完全平方公式,并能运用公式进行简单的计算。

(二)知识与技能:经历从具体情境中抽象出符号的过程,认识有理数、实数、代数式、防城、不等式、函数;掌握必要的运算,(包括估算)技能;探索具体问题中的数量关系和变化规律,并能运用代数式、防城、不等式、函数等进行描述。

(四)解决问题:能结合具体情景发现并提出数学问题;尝试从不同角度寻求解决问题的方法,并能有效地解决问题,尝试评价不同方法之间的差异;通过对解决问题过程的反思,获得解决问题的经验。

(五)情感与态度:敢于面对数学活动中的困难,并有独立克服困难和运用知识解决问题的成功体验,有学好数学的自信心;并尊重与理解他人的见解;能从交流中获益。

四、教育理念和教学方式:

1、教师是学生学习的组织者、促进者、合作者:学生是学习的主人,在教师指导下主动的、富有个性的学习,用自己的身体去亲自经历,用自己的心灵去亲自感悟。

教学是师生交往、积极互动、共同发展的过程。当学生迷路的时候,教师不轻易告诉方向,而是引导他怎样去辨明方向;当学生登山畏惧了的时候,教师不是拖着他走,而是唤起他内在的精神动力,鼓励他不断向上攀登。

2、采用“问题情景—探究交流—得出结论—强化训练”的模式展开教学。

3、教学评价方式:

(1)通过课堂观察,关注学生在观察、总结、训练等活动中的主动参与程度与合作交流意识,及时给与鼓励、强化、指导和矫正。

(2)通过判断和举例,给学生更多机会,在自然放松的状态下,揭示思维过程和反馈知识与技能的掌握情况,使老师可以及时诊断学情,调查教学。

(3)通过课后访谈和作业分析,及时查漏补缺,确保达到预期的教学效果。

五、课后反思

本节课虽然算不上课本中的难点,但在整式一章中是个重点。它是多项式乘法特殊形式下的一种简便运算。学生需要熟练掌握公式两种形式的使用方法,以提高运算速度。授课过程中,应注重让学生总结公式的等号两边的特点,让学生用语言表达公式的内容,让学生说明运用公式过程中容易出现的问题和特别注意的细节。然后再通过逐层深入的练习,巩固完全平方公式两种形式的应用。为完全平方公式第二节课的实际应用和提高应用做好充分的准备

七年级数学下册教案篇5

教学目标:

1、了解公式的意义,使学生能用公式解决简单的实际问题;

2、初步培养学生观察、分析及概括的能力;

3、通过本节课的教学,使学生初步了解公式来源于实践又反作用于实践。

教学建议:

一、教学重点、难点

重点:通过具体例子了解公式、应用公式。

难点:从实际问题中发现数量之间的关系并抽象为具体的公式,要注意从中反应出来的归纳的思想方法。

二、重点、难点分析

人们从一些实际问题中抽象出许多常用的、基本的数量关系,往往写成公式,以便应用。如本课中梯形、圆的面积公式。应用这些公式时,首先要弄清楚公式中的字母所表示的意义,以及这些字母之间的数量关系,然后就可以利用公式由已知数求出所需的未知数。具体计算时,就是求代数式的值了。有的公式,可以借助运算推导出来;有的公式,则可以通过实验,从得到的反映数量关系的一些数据(如数据表)出发,用数学方法归纳出来。用这些抽象出的具有一般性的公式解决一些问题,会给我们认识和改造世界带来很多方便。

三、知识结构

本节一开始首先概述了一些常见的公式,接着三道例题循序渐进的讲解了公式的直接应用、公式的先推导后应用以及通过观察归纳推导公式解决一些实际问题。整节内容渗透了由一般到特殊、再由特殊到一般的辨证思想。

四、教法建议

1、对于给定的可以直接应用的公式,首先在给出具体例子的前提下,教师创设情境,引导学生清晰地认识公式中每一个字母、数字的意义,以及这些数量之间的对应关系,在具体例子的基础上,使学生参与挖倔其中蕴涵的思想,明确公式的应用具有普遍性,达到对公式的灵活应用。

2、在教学过程中,应使学生认识有时问题的解决并没有现成的公式可套,这就需要学生自己尝试探求数量之间的关系,在已有公式的基础上,通过分析和具体运算推导新公式。

3、在解决实际问题时,学生应观察哪些量是不变的,哪些量是变化的,明确数量之间的对应变化规律,依据规律列出公式,再根据公式进一步地解决问题。这种从特殊到一般、再从一般到特殊认识过程,有助于提高学生分析问题、解决问题的能力。

教学设计示例:

一、教学目标

(一)知识教学点

1、使学生能利用公式解决简单的实际问题。

2、使学生理解公式与代数式的关系。

(二)能力训练点

1、利用数学公式解决实际问题的能力。

2、利用已知的公式推导新公式的能力。

(三)德育渗透点

数学来源于生产实践,又反过来服务于生产实践。

(四)美育渗透点

数学公式是用简洁的数学形式来阐明自然规定,解决实际问题,形成了色彩斑斓的多种数学方法,从而使学生感受到数学公式的简洁美。

二、学法引导

1、数学方法:引导发现法,以复习提问小学里学过的公式为基础、突破难点。

2、学生学法:观察→分析→推导→计算。

三、重点、难点、疑点及解决办法

1、重点:利用旧公式推导出新的图形的计算公式。

2、难点:同重点。

3、疑点:把要求的图形如何分解成已经熟悉的图形的和或差。

四、课时安排

1课时

五、教具学具准备

投影仪,自制胶片。

六、师生互动活动设计

教者投影显示推导梯形面积计算公式的图形,学生思考,师生共同完成例1解答;教者启发学生求图形的面积,师生总结求图形面积的公式。

七、教学步骤

(一)创设情景,复习引入

师:同学们已经知道,代数的一个重要特点就是用字母表示数,用字母表示数有很多应用,公式就是其中之一,我们在小学里学过许多公式,请大家回忆一下,我们已经学过哪些公式,教法说明,让学生一开始就参与课堂教学,使学生在后面利用公式计算感到不生疏。

在学生说出几个公式后,师提出本节课我们应在小学学习的基础上,研究如何运用公式解决实际问题。

板书:公式

师:小学里学过哪些面积公式?

板书:S=ah

(出示投影1)。解释三角形,梯形面积公式

【教法说明】让学生感知用割补法求图形的面积。

七年级数学下册教案篇6

教材分析:

一元二次方程根与系数的关系的知识内容主要是以前一单元中的求根公式为基础的。教材通过一元二次方程ax2+bx+c=0(a≠0)的根x1、x2得出一元二次方程根与系数的关系,以及以数x1、x2为根的一元二次方程的求方程模型。然后通过4个例题介绍了利用根与系数的关系简化一些计算的知识。

学情分析:

1.学生已学习用求根公式法解一元二次方程。

2.本课的教学对象是九年级学生,学生对事物的认识多是直观、形象的,他们所注意的多是事物外部的、直接的、具体形象的特征。

3.在教学初始,出示一些学生所熟悉和感兴趣的东西,结合一元二次方程求根公式使他们在现代化的教学模式和传统的教学模式相结合的基础上掌握一元二次方程根与系数的关系。

教学目标:

1、知识目标:要求学生在理解的基础上掌握一元二次方程根与系数的关系式,能运用根与系数的关系由已知一元二次方程的一个根求出另一个根与未知数,会求一元二次方程两个根的倒数和与平方数,两根之差。

2、能力目标:通过韦达定理的教学过程,使学生经历观察、实验、猜想、证明等数学活动过程,发展推理能力,能有条理地、清晰地阐述自己的观点,进一步培养学生的创新意识和创新精神。

3、情感目标:通过情境教学过程,激发学生的求知欲望,培养学生积极学习数学的态度。体验数学活动中充满着探索与创造,体验数学活动中的成功感,建立自信心。

教学重难点:

1、重点:一元二次方程根与系数的关系。

2、难点:让学生从具体方程的根发现一元二次方程根与系数之间的关系,并用语言表述,以及由一个已知方程求作新方程,使新方程的根与已知的方程的根有某种关系,比较抽象,学生真正掌握有一定的难度,是教学的难点。

板书设计:

一元二次方程根与系数的关系如果ax+bx+c=0(a≠0)的两根是x1,x2,那么x1+x2=,x1x2=。

问题6.在方程ax+bx+c=0(a≠0)中,a、b、c的作用吗?①二次项系数a是否为零,决定着方程是否为二次方程;②当a≠0时,b=0,a、c异号,方程两根互为相反数;③当a≠0时,△=b-4ac可判定根的情况;④当a≠0,b-4ac≥0时,x1+x2=,x1x2=。⑤当a≠0,c=0时,方程必有一根为0。

学生学习活动评价设计:

本节课充分让学生分析、观察、提高了学生的归纳能力及推理论证的能力。

教学反思:

1.一元二次方程根与系数的关系的推导是在求根公式的基础上进行。它深化了两根的和与积同系数之间的关系,是我们今后继续研究一元二次方程根的情况的主要工具,必须熟记,为进一步使用打下基础。

2.以一元二次方程根与系数的关系的探索与推导,向学生展示认识事物的一般规律,提倡积极思维,勇于探索的精神,借此锻炼学生分析、观察、归纳的能力及推理论证的能力。

3.一元二次方程的根与系数的关系,在中考中多以填空,选择,解答题的形式出现,考查的频率较高,也常与几何、二次函数等问题结合考查,是考试的热点,它是方程理论的重要组成部分。

4.使学生体会解题方法的多样性,开阔解题思路,优化解题方法,增强择优能力。力求让学生在自主探索和合作交流的过程中进行学习,获得数学活动经验,教师应注意引导。

七年级数学下册教案篇7

一、教学目标:

1、理解二元一次方程及二元一次方程的解的概念;

2、学会求出某二元一次方程的几个解和检验某对数值是否为二元一次方程的解;

3、学会把二元一次方程中的一个未知数用另一个未知数的一次式来表示;

4、在解决问题的过程中,渗透类比的思想方法,并渗透德育教育。

二、教学重点、难点:

重点:二元一次方程的意义及二元一次方程的解的概念。

难点:把一个二元一次方程变形成用关于一个未知数的代数式表示另一个未知数的形式,其实质是解一个含有字母系数的方程。

三、教学方法与教学手段:

通过与一元一次方程的比较,加强学生的类比的思想方法;通过“合作学习”,使学生认识数学是根据实际的需要而产生发展的观点。

四、教学过程:

1、情景导入:

新闻链接:x70岁以上老人可领取生活补助。

得到方程:80a+150b=902880、

2、新课教学:

引导学生观察方程80a+150b=902880与一元一次方程有异同?

得出二元一次方程的概念:含有两个未知数,并且所含未知数的项的次数都是1次的方程叫做二元一次方程。

做一做:

(1)根据题意列出方程:

①小明去看望奶奶,买了5kg苹果和3kg梨共花去23元,分别求苹果和梨的单价、设苹果的单价x元/kg,梨的单价y元/kg;

②在高速公路上,一辆轿车行驶2时的路程比一辆卡车行驶3时的路程还多20千米,如果设轿车的速度是a千米/小时,卡车的速度是b千米/小时,可得方程:

(2)课本P80练习2、判定哪些式子是二元一次方程方程。

合作学习:

活动背景爱心满人间——记求是中学“学雷锋、关爱老人”志愿者活动。

问题:参加活动的36名志愿者,分为劳动组和文艺组,其中劳动组每组3人,文艺组每组6人、团支书拟安排8个劳动组,2个文艺组,单从人数上考虑,此方案是否可行?为什么?把x=8,y=2代入二元一次方程3x+6y=36,看看左右两边有没有相等?由学生检验得出代入方程后,能使方程两边相等、得出二元一次方程的解的概念:使二元一次方程两边的值相等的'一对未知数的值叫做二元一次方程的一个解。

并提出注意二元一次方程解的书写方法。

3、合作学习:

给定方程x+2y=8,男同学给出y(x取绝对值小于10的整数)的值,女同学马上给出对应的x的值;接下来男女同学互换、(比一比哪位同学反应快)请算的最快最准确的同学讲他的计算方法、提问:给出x的值,计算y的值时,y的系数为多少时,计算y最为简便?

出示例题:已知二元一次方程x+2y=8。

(1)用关于y的代数式表示x;

(2)用关于x的代数式表示y;

(3)求当x=2,0,—3时,对应的y的值,并写出方程x+2y=8的三个解。

(当用含x的一次式来表示y后,再请同学做游戏,让同学体会一下计算的速度是否要快)

4、课堂练习:

(1)已知:5xm—2yn=4是二元一次方程,则m+n=;

(2)二元一次方程2x—y=3中,方程可变形为y=当x=2时,y=;

5、你能解决吗?

小红到邮局给远在农村的爷爷寄挂号信,需要邮资3元8角、小红有票额为6角和8角的邮票若干张,问各需要多少张这两种面额的邮票?说说你的方案。

6、课堂小结:

(1)二元一次方程的意义及二元一次方程的解的概念(注意书写格式);

(2)二元一次方程解的不定性和相关性;

(3)会把二元一次方程化为用一个未知数的代数式表示另一个未知数的形式。

7、布置作业:

七年级数学下册教案篇8

在初中的数学教学过程中,函数教学是比较难的章节,我们该如何设计我们的教学过程呢?下面我来谈谈我的一些很浅的看法:首先函数是刻画和研究现实世界变化规律的重要模型,也是初中数学里代数领域的重要内容,它在初中数学中具有较强的综合性。在教学中,学生常常觉得函数抽象深奥,高不可攀,老师也觉得函数难讲,讲了学生也理解不了,理解了也不会解题。事实果真如此难教又难学吗?下面我谈谈在教学设计方面一些方法和实践。

一、注重类比教学

不同的事物往往具有一些相同或相似的属性,人们正是利用相似事物具有的这种属性,通过对一事物的认识来认识与它相似的另一事物,这种认识事物的思维方法就是类比法,利用类比的思想进行教学设计实施教学,可称为类比教学。在函数教学中我们期望的是通过对前面知识的学习方法的传授,达到对后续知识的学习产生影响,使学生达到举一反三,触类旁通的目的,让学生顺利地由学会到会学,真正实现教是为了不教的目的。有经验的老师都会发现,初中学习的正比例函数、一次函数、反比例函数、二次函数在概念的得来、图象性质的研究、及基本解题方法上都有着本质上的相似。因此采用类比的教学方法不但省时、省力,还有助于学生的理解和应用。是一种既经济又实效的教学方法。下面我就举例说明如何采用类比的方法实现函数的教学。

首先是正比例函数,它是一次函数特例,也是初中数学中的一种简单最基本的函数。但是,我们有些教师却因为正比例函数过于简单,而轻视。匆匆给出概念,然后应用。等到讲到一次函数、反比例函数、二次函数又感到力不从心,学生接受起来概念模糊,性质混乱,解题方法不明确。造成这种困扰的原因是因为忽视正比例函数的基础作用,我们应该借助正比例函数这个最简单的函数载体,把函数研究经典流程完整呈现,正所谓麻雀虽小,五脏俱全。再学习其他函数时,在此基础上类比学习,循序渐进,螺旋上升。例如:

《正比例函数》教学流程

(一)环节一:概念的建立

通过对问题的处理用函数y=200x来反映汽车的行程与时间的对应规律引入新课。学生自觉思考教师提问,共同得出每个问题的函数关系式。引导学生观察以上函数关系式的特点得出正比例函数的描述定义及解析式特点。

(二)环节二:函数图象

这个环节是教学的重点,由学生先动手按列表——描点——连线的过程画函数y=2x和y=-2x的图象,相互交流比较然后教师利用多媒体展示画函数图象的过程并通过比较使学生正确掌握画函数图象的方法。

(三)环节三:探究函数性质

让学生观察函数图象并引导学生通过比较来归纳正比例函数的性质,这个环节是本课的难点,教师要引导学生从图象的形状,从左往右的升降情况,经过的象限及自变量变化时函数值的变化规律。这几个方面来归纳,最终得出正比例函数的性质。

(四)环节四:概念的归纳

将观察、探究出的函数图象的特征、函数的性质等做出系统的归纳。

二、注重数形结合的教学

数形结合的思想方法是初中数学中一种重要的思想方法。数学是研究现实世界数量关系和空间形式的科学。而数形结合就是通过数与形之间的对应和转化来解决数学问题。它包含以形助数和以数解形两个方面,利用它可使复杂问题简单化,抽象问题具体化,它兼有数的严谨与形的直观之长。

函数的三种表示方法:解析法、列表法、图象法本身就体现着函数的数形结合。函数图象就是将变化抽象的函数拍照下来研究的有效工具,函数教学离不开函数图象的研究。在借助图象研究函数的过程中,我们需要注意以下几点原则:

(1)让学生经历绘制函数图象的具体过程。首先,对于函数图象的意义,只有学生在亲身经历了列表、描点、连线等绘制函数图象的具体过程,才能知道函数图象的由来,才能了解图象上点的横、纵坐标与自变量值、函数值的对应关系,为学生利用函数图象数形结合研究函数性质打好基础。其次,对于具体的一次函数、反比例函数、二次函数的图象的认识,学生通过亲身画图,自己发现函数图象的形状、变化趋势,感悟不同函数图象之间的关系,为发现函数图象间的规律,探索函数的性质做好准备。

(2)切莫急于呈现画函数图象的简单画法。首先,在探索具体函数形状时,不能取得点太少,否则学生无法发现点分布的规律,从而猜想出图象的形状;其次,教师过早强调图象的.简单画法,追求方法的最优化,缩短了学生知识探索的经历过程。所以,在教新知识时,教师要允许学生从最简单甚至最笨拙的方法做起,渐渐过渡到最佳方法的掌握,达到认识上的最佳状态。

(3)注意让学生体会研究具体函数图象规律的方法。初中阶段一般采用两种方法研究函数图象:一是有特殊到一般的归纳法,二是控制参数法。

函数是一个整体,各个具体函数是函数的特例,研究方法应是相同的,通过类比和数形结合的方法,对比性质的差异性,将具体函数逐步纳入到整个函数学习中去,这也符合教材设计的螺旋式上升的理念。这样自然使二次函数变得难着不难,水到渠成。

关于待定系数法,首先要让学生理解感受到待定系数法的本质:对于某些数学问题,如果已知所求结果具有某种确定的形式,则可引进一些尚待确定的系数来表示这种结果,通过已知条件建立起给定的算式和结果之间的恒等式,得到以待定系数为元的方程或方程组,解之即得待定的系数。待定系数法在确定各种函数解析式中有着重要的作用,不论是正、反比例函数,还是一次函数、二次函数,确定函数解析式时都离不开待定系数法。因此我们要重视简单的正比例函数、一次函数的待定系数法的.应用。要在简单的函数中讲出待定系数法的本质来,等到了反比例函数和二次函数及综合情况,学生已能形成能力,自如使用此方法,这时就是技巧的点拨。

七年级数学下册教案篇9

近年来,命题改革中加强对学生阅读能力的考核,特别是阅读理解题成了中考数学的新题不仅在各级各类的命题改革中加强对学生阅读能力的考核,对数学阅读教学提出了新的要求,而且从人的发展、人才的培养角度思考,也需要加强数学阅读能力的培养。特别是阅读理解题成了中考数学的新题型,具有很强的选拔功能。因此,在初中数学教学中,应当重视阅读教学,充分利用阅读的形式,加强数学阅读能力的培养。

一、加强广大师生对数学阅读重要性的理解

数学教科书是专家在充分考虑学生生理心理特征、教育教学原理、数学学科特点等因素的基础上精心编写而成,具有极高的阅读价值。数学教学活动中,数学阅读是“人——本”对话的数学交流形式。在这种形式中,学生能通过教科书的标准语言来规范自己的数学用语,能有效地促进数学阅读水平的发展,准确叙述解题过程中有关的观点和进行严谨的逻辑推理。因此,数学阅读不仅能促进学生数学语言水平的发展,而且有助于学生更好地掌握数学。另外,每年一度的中考试题中都设置了数学应用题,阅读理解题,而学生每遇到应用题的问答便觉得困难重重,其主要原因是学生缺乏阅读数学的方法。因此,数学教学有必要重视数学阅读。

二、初中数学阅读教学的教学原则

在初中数学教学中进行阅读教学,应当遵循如下的教学原则:

1.主体性原则。从根本上承认和尊重受学生的主体性,使学生能动地参与到数学阅读活动的全过程中来,将自己进行的阅读活动作为意识对象,不断对其进行积极的监控,调节;规划阅读进程,独自获得必要的信息和资料;不断培养自我监控,自我调节的习惯,逐步学会探索地进行数学阅读与数学学习。

2.差异性原则。学生在个体发展区、学习方式、知识基础、思维品质等多种因素上的差异导致学生阅读能力的差异。也决定了教师必须对不同层面学生给以不同的关注,在阅读过程中,学生独立阅读的过程为教师提供了充足的课堂巡视时间,使教师能够将统一学习变成个别指导,重点对个别阅读能力较差进行指导。

3.内化性原则。内化的基本条件是对数学语言的感知水平,不仅包括对数学学科本身的概念、法则、定律、公式等的理解,而且包括学生的元认知水平的控制和调节。因此,在阅读过程中要不断地使学生充分实践监控的各种具体策略和技能,进而逐步内化为自我监控能力,使其能在新的条件下,灵活运用这些策略和技能进行自我监控。

4.反馈性原则。个体的自我反馈,自我评价的意识和能力是至关重要的。教师应及时、准确、适当地对学生的自我监控做出评价,指导他们逐步学会对学习方法,策略运用及结果进行反馈和评价。同时,学生根据教师的指导,对自己的阅读监控过程,所用的策略及结果进行调控和改进,不断提高思维的抽象概括水平,从而不断发展与完善自己的数学认知结构。

5.建构性原则。阅读过程是数学建构的过程,是通过对数学材料进行部分与整体的交替感知去构建数学结构,领悟形式化运动的过程。在阅读过程中学生主动探索,充分利用数学知识特有的逻辑性和数学内容的结构特点,不断在课文的适当地方由上文做出猜想、估计,再通过与已知相对照,加以修正,从而获得新知识。

三、实施数学阅读教学的具体途径

1.预习的阅读指导

在课堂教学中存在这样的现象:部分学生认为,没有预习的必要,反正教师都要讲,上课认真听就是了。这是一种错误的认识。预习的作用主要表现在以下几个方面:能提高学生听课的效率,有利于他们更好地做课堂笔记;培养学生的自学能力;可以巩固学生对知识的记忆。那么,怎样指导学生预习呢?可以按如下步骤进行:首先选择好预习的时间,指导学生迅速地浏览即将学习的教材,然后让他们带着问题详细阅读第二遍,并在阅读过程中做好预习笔记,以便于接下来学生能有目的地听课。

2.数学教材的阅读指导

(1)阅读目录标题。目录标题是课本的纲目,是每一章节的精华。阅读目录标题就等于了解了全文的框架结构。阅读了课本内容就使目录标题具体化了。逐步养成“标题联想”的习惯。

(2)阅读概念

我们所希望达到的指导效果是:让学生在阅读概念时能够正确理解概念中的字、词、句,能正确进行文字语言、图形语言和符号语言的互译,并能注意到联系实际找出反例或实物;学生能弄清数学概念的内涵和外延,也就是既能区分相近的概念,又能知道其适用范围。

(3)阅读代数式

大多数学生在阅读代数式时,只是按照代数式的顺序去读。教师应教会学生用多种方法读同一个代数式,同时,在阅读的过程中要注意式子本身的特点及其普遍性。

(4)阅读例题

对于初中学生例题阅读的指导,应按以下几个步骤进行:首先,要让学生认真审题;分析解题过程的关键所在,尝试解题;其次,要让学生比较例题和教材解法的优劣,对一组相关联的例题要相互比较,着力寻找,领悟解题规律,掌握规范书写格式。并使解题过程的表达即简洁又符合书写格式;最后,还要引导学生总结解题规律,并努力探求新的解题途径。

(5)阅读公式

不要让学生死记硬背公式,关键是要让他们看清教材是怎样把公式一步一步推导出来的,要提醒学生注意认真阅读公式的推导过程。同时要让学生明白公式的特征并能设法记住,另外还要让他们注意公式的应用条件,弄明白有关公式的内在联系,了解公式的运用、通用、合用、变用和巧用。

(6)阅读数学定理。注意分清定理的条件和结论;探讨定理的证明途径和方法,通过与课本对照,分析证法的正误、优劣;注意联系类似定理,进行分析比较、掌握其应用;要思考定理可否逆用,推广及引伸。

(7)阅读提示与说明

教材中相关知识及许多习题的后面都附有说明或小括号式的提示语。例如,代数式概念中的“运算符号”,教材特指加、减、乘、除、乘方运算;要告诉学生对于这些说明或提示语,千万不可忽视,往往解题的某一条件或关键正隐藏在这里,同时对选学内容,教师也应在自习课上给出相关的阅读材料。

(8)阅读章头图和小结

章头图让学生对本章要学的知识有一个初步的认识和了解,明确要学的内容,做到心中有数、目的明确;而认真阅读小结,则能教学生学会自我总结,这是一个归纳、总结、提升的过程。

3.加强课外阅读,丰富学生知识

近年来应用题的考试情况告诉我们,数学阅读不能仅仅局限于教材。教师应向学生推荐适宜的课外阅读材料,给学生提供一些数学应用题让学生阅读,不一定要求他们全会做,但必须弄清题意,对于当今社会实践中出现的新名词有所了解,如“低炭”、“环保”、“利息税”、“利润”、“毛利润”等。

四、数学阅读教学的价值

重视数学阅读,培养阅读能力,有助于个别化学习,使每个学生都能够通过自身的努力达到他所能达到的最高水平,实现素质教育的目标。要想使数学素质教育的目标得到落实,使学生不再感到数学难学,就必须重视数学阅读教学。教师应加强指导学生认真阅读课文,强调学生对数学课文的阅读和理解,以促使学生养成良好的自学能力,即终身学习的能力。这将在整个中学数学教学中形成一种以培养自学能力为目的的教学风气,同时有利于转变数学教师的教学观念,改变传统的教学方式,优化过程,提高技巧,提高课堂教学的效率,拓展教师的视野及知识结构。

七年级数学下册教案篇10

一、教学目标:

1、知道一次函数与正比例函数的定义。

2、理解掌握一次函数的图象的特征和相关的性质。

3、弄清一次函数与正比例函数的区别与联系。

4、掌握直线的平移法则简单应用。

5、能应用本章的基础知识熟练地解决数学问题。

二、教学重、难点:

重点:初步构建比较系统的函数知识体系。

难点:对直线的平移法则的理解,体会数形结合思想。

三、教学过程:

1、一次函数与正比例函数的定义:

一次函数:一般地,若y=kx+b(其中k,b为常数且k≠0),那么y是一次函数。

正比例函数:对于y=kx+b,当b=0,k≠0时,有y=kx,此时称y是x的正比例函数,k为正比例系数。

2、一次函数与正比例函数的区别与联系:

(1)从解析式看:y=kx+b(k≠0,b是常数)是一次函数;而y=kx(k≠0,b=0)是正比例函数,显然正比例函数是一次函数的特例,一次函数是正比例函数的推广。

(2)从图象看:正比例函数y=kx(k≠0)的图象是过原点(0,0)的一条直线;而一次函数y=kx+b(k≠0)的图象是过点(0,b)且与y=kx

平行的一条直线。

基础训练:

1、写出一个图象经过点(1,—3)的函数解析式为:

2、直线y=—2X—2不经过第象限,y随x的增大而。

3、如果P(2,k)在直线y=2x+2上,那么点P到x轴的距离是:

4、已知正比例函数y=(3k—1)x,,若y随x的增大而增大,则k是:

5、过点(0,2)且与直线y=3x平行的直线是:

6、若正比例函数y=(1—2m)x的图像过点A(x1,y1)和点B(x2,y2)当x1y2,则m的取值范围是:

7、若y—2与x—2成正比例,当x=—2时,y=4,则x=时,y=—4。

8、直线y=—5x+b与直线y=x—3都交y轴上同一点,则b的值为。

9、已知圆O的半径为1,过点A(2,0)的直线切圆O于点B,交y轴于点C。

(1)求线段AB的长。

(2)求直线AC的解析式。


七年级数学下册教案10篇相关文章:

二年级数学下册五单元教案

《认识图形》一年级数学上册教案

小学数学四年级优秀教案模板5篇

四年级数学教案及教学设计5篇

小学教案模板

小学教案模板

22636