教育巴巴 > 初中教案 > 九年级教案 > 数学教案 >

九年级数学公开课教案

时间: 龚锴 数学教案

时光易逝,不可逆转,教学的新征程即将开始,让我们共同学习如何撰写教学计划。相信大家又在为如何做好教学计划而感到困惑了吧。以下是小编整理的一些九年级数学公开课教案,仅供参考。

九年级数学公开课教案

九年级数学公开课教案(精选篇1)

教学目的

1、通过对多个实际问题的分析,使学生体会到一元一次方程作为实际问题的数学模型的作用。

2、使学生会列一元一次方程解决一些简单的应用题。

3、会判断一个数是不是某个方程的解。

重点、难点

1、重点:会列一元一次方程解决一些简单的应用题。

2、难点:弄清题意,找出“相等关系”。

教学过程

一、复习提问

一本笔记本1.2元。小红有6元钱,那么她最多能买到几本这样的笔记本呢?

解:设小红能买到工本笔记本,那么根据题意,得1.2x=6

因为1.2×5=6,所以小红能买到5本笔记本。

二、新授

问题1:某校初中一年级328名 师生乘车外出春游,已有2辆校车可以乘坐64人,还需租用44座的客车多少辆?(让学生思考后,回答,教师再作讲评)

算术法:(328-64)÷44=264÷44=6(辆)

列方程:设需要租用x辆客车,可得44x+64=328

解这个方程,就能得到所求的结果。

问:你会解这个方程吗?试试看?

问题2:在课外活动中,张老师发现同学们的年龄大多是13岁,就问同学:“我今年45岁,几年以后你们的年龄是我年龄的三分之一?”

通过分析,列出方程:13+x=(45+x)

问:你会解这个方程吗?你能否从小敏同学的解法中得到启发?

把x=3代人方程(2),左边=13+3=16,右边=(45+3)=×48=16,

因为左边=右边,所以x=3就是这个方程的解。

这种通过试验的方法得出方程的解,这也是一种基本的数学思想方法。也可以据此检验一下一个数是不是方程的解。

问:若把例2中的'“三分之一”改为“二分之一”,那么答案是多少?动手试一试,大家发现了什么问题?

同样,用检验的方法也很难得到方程的解,因为这里x的值很大。另外,有的方程的解不一定是整数,该从何试起?如何试验根本无法人手,又该怎么办?

三、巩固练习

教科书第3页练习1、2。

四、小结

本节课我们主要学习了怎样列方程解应用题的方法,解决一些实际问题。谈谈你的学习体会。

五、作业

教科书第3页,习题6.1第1、3题。

九年级数学公开课教案(精选篇2)

一、教材分析

本节课是人民教育出版社义务教育课程标准实验教科书(六三学制)七年级下册第七章第三节多边形内角和。

二、教学目标

1、知识目标:了解多边形内角和公式。

2、数学思考:通过把多边形转化成三角形体会转化思想在几何中的运用,同时让学生体会从特殊到一般的认识问题的方法。

3、解决问题:通过探索多边形内角和公式,尝试从不同角度寻求解决问题的方法并能有效地解决问题。

4、情感态度目标:通过猜想、推理活动感受数学活动充满着探索以及数学结论的确定性,提高学生学习热情。

三、教学重、难点

重点:探索多边形内角和。

难点:探索多边形内角和时,如何把多边形转化成三角形。

四、教学方法:引导发现法、讨论法

五、教具、学具

教具:多媒体课件

学具:三角板、量角器

六、教学媒体:大屏幕、实物投影

七、教学过程:

(一)创设情境,设疑激思

师:大家都知道三角形的内角和是180,那么四边形的内角和,你知道吗?

活动一:探究四边形内角和。

在独立探索的基础上,学生分组交流与研讨,并汇总解决问题的方法。

方法一:用量角器量出四个角的度数,然后把四个角加起来,发现内角和是360。

方法二:把两个三角形纸板拼在一起构成四边形,发现两个三角形内角和相加是360。

接下来,教师在方法二的基础上引导学生利用作辅助线的方法,连结四边形的对角线,把一个四边形转化成两个三角形。

师:你知道五边形的内角和吗?六边形呢?十边形呢?你是怎样得到的?

活动二:探究五边形、六边形、十边形的内角和。

学生先独立思考每个问题再分组讨论。

关注:

(1)学生能否类比四边形的方式解决问题得出正确的结论。

(2)学生能否采用不同的方法。

学生分组讨论后进行交流(五边形的内角和)

方法1:把五边形分成三个三角形,3个180的和是540。

方法2:从五边形内部一点出发,把五边形分成五个三角形,然后用5个180的和减去一个周角360。结果得540。

方法3:从五边形一边上任意一点出发把五边形分成四个三角形,然后用4个180的和减去一个平角180,结果得540。

方法4:把五边形分成一个三角形和一个四边形,然后用180加上360,结果得540。

师:你真聪明!做到了学以致用。

交流后,学生运用几何画板演示并验证得到的方法。

得到五边形的内角和之后,同学们又认真地讨论起六边形、十边形的内角和。类比四边形、五边形的讨论方法最终得出,六边形内角和是720,十边形内角和是1440。

(二)引申思考,培养创新

师:通过前面的`讨论,你能知道多边形内角和吗?

活动三:探究任意多边形的内角和公式。

思考:

(1)多边形内角和与三角形内角和的关系?

(2)多边形的边数与内角和的关系?

(3)从多边形一个顶点引的对角线分三角形的个数与多边形边数的关系?

学生结合思考题进行讨论,并把讨论后的结果进行交流。

发现1:四边形内角和是2个180的和,五边形内角和是3个180的和,六边形内角和是4个180的和,十边形内角和是8个180的和。发现2:多边形的边数增加1,内角和增加180。

发现3:一个n边形从一个顶点引出的对角线分三角形的个数与边数n存在(n-2)的关系。

得出结论:多边形内角和公式:(n-2)·180。

(三)实际应用,优势互补

1、口答:(1)七边形内角和()

(2)九边形内角和()

(3)十边形内角和()

2、抢答:(1)一个多边形的内角和等于1260,它是几边形?

(2)一个多边形的内角和是1440,且每个内角都相等,则每个内角的度数是()。

3、讨论回答:一个多边形的内角和比四边形的内角和多540,并且这个多边形的各个内角都相等,这个多边形每个内角等于多少度?

(四)概括存储

学生自己归纳总结:

1、多边形内角和公式

2、运用转化思想解决数学问题

3、用数形结合的思想解决问题

(五)作业:练习册第93页1、2、3

八、教学反思:

1、教的转变

本节课教师的角色从知识的传授者转变为学生学习的组织者、引导者、合作者与共同研究者,在引导学生画图、测量发现结论后,利用几何画板直观地展示,激发学生自觉探究数学问题,体验发现的乐趣。

2、学的转变

学生的角色从学会转变为会学。本节课学生不是停留在学会课本知识层面,而是站在研究者的角度深入其境。

3、课堂氛围的转变

整节课以“流畅、开放、合作、隐导”为基本特征,教师对学生的思维减少干预,教学过程呈现一种比较流畅的特征。整节课学生与学生,学生与教师之间以“对话”、“讨论”为出发点,以互助合作为手段,以解决问题为目的,让学生在一个比较宽松的环境中自主选择获得成功的方向,判断发现的价值。

九年级数学公开课教案(精选篇3)

问题描述:

初中数学教学案例

初中的,随便那个年级。20__字。案例和反思

1个回答 分类:数学 20__-11-30

问题解答:

我来补答

2.3 平行线的性质

一、教材分析:

本节课是人民教育出版社义务教育课程标准实验教科书(五四学制)七年级上册第2章 第3节 平行线的性质,它是平行线及直线平行的继续,是后面研究平移等内容的基础,是“空间与图形”的重要组成部分。

二、教学目标:

知识与技能:掌握平行线的性质,能应用性质解决相关问题。

数学思考:在平行线的性质的探究过程中,让学生经历观察、比较、联想、分析、归纳、猜想、概括的全过程。

解决问题:通过探究平行线的'性质,使学生形成数形结合的数学思想方法,以及建模能力、创新意识和创新精神。

情感态度与价值观:在探究活动中,让学生获得亲自参与研究的情感体验,从而增强学生学习数学的热情和勇于探索、锲而不舍的精神。

三、教学重、难点:

重点:平行线的性质

难点:“性质1”的探究过程

四、教学方法:

“引导发现法”与“动像探索法”

五、教具、学具:

教具:多媒体课件

学具:三角板、量角器。

六、教学媒体:

大屏幕、实物投影

七、教学过程:

(一)创设情境,设疑激思:

1.播放一组幻灯片。内容:①火车行驶在铁轨上;②游泳池;③横格纸。

2.声音:日常生活中我们经常会遇到平行线,你能说出直线平行的条件吗?

学生活动:

思考回答。①同位角相等两直线平行;②内错角相等两直线平行;③同旁内角互补两直线平行;

教师:首先肯定学生的回答,然后提出问题。

问题:若两直线平行,那么同位角、内错角、同旁内角各有什么关系呢?

引出课题——平行线的性质。

(二)数形结合,探究性质

1.画图探究,归纳猜想

任意画出两条平行线(a‖b),画一条截线c与这两条平行线相交,标出8个角(如图)。

问题一:指出图中的同位角,并度量这些角,把结果填入下表:

第一组

第二组

第三组

第四组

同位角

∠1

∠5

角的度数

数量关系

学生活动:画图——度量——填表——猜想

结论:两直线平行,同位角相等。

问题二:再画出一条截线d,看你的猜想结论是否仍然成立?

学生:探究、讨论,最后得出结论:仍然成立。

2.教师用《几何画板》课件验证猜想

3.性质1.两条直线被第三条直线所截,同位角相等。(两直线平行,同位角相等)

(三)引申思考,培养创新

问题三:请判断内错角、同旁内角各有什么关系?

学生活动:独立探究——小组讨论——成果展示。

教师活动:引导学生说理。

因为a‖b 因为a‖b

所以∠1=∠2 所以∠1=∠2

又 ∠1=∠3 又 ∠1+∠4=180°

所以∠2=∠3 所以∠2+∠4=180°

语言叙述:

性质2 两条直线被第三条直线所截,内错角相等。

(两直线平行,内错角相等)

性质3 两条直线被第三条直线所截,同旁内角互补。

(两直线平行,同旁内角互补)

(四)实际应用,优势互补

1、(抢答)

(1)如图,平行线AB、CD被直线AE所截

①若∠1 = 110°,则∠2 = °。理由:。

②若∠1 = 110°,则∠3 = °。理由:。

③若∠1 = 110°,则∠4 = °。理由:。

(2)如图,由AB‖CD,可得( )

(A)∠1=∠2 (B)∠2=∠3

(C)∠1=∠4 (D)∠3=∠4

(3)如图,AB‖CD‖EF,

那么∠BAC+∠ACE+∠CEF=( )

(A) 180°(B)270° (C)360° (D)540°

(4)谁问谁答:如图,直线a‖b,

如:∠1=54°时,∠2= 。

学生提问,并找出回答问题的同学。

2、(讨论解答)

如图是一块梯形铁片的残余部分,量得∠A=100°,

∠B=115°,求梯形另外两角分别是多少度?

(五)概括存储(小结)

1.平行线的性质1、2、3;

2.用“运动”的观点观察数学问题;

3.用数形结合的方法来解决问题。

(六)作业 第69页 2、4、7.

八、教学反思:

①教的转变:本节课教师的角色从知识的传授者转变为学生学习的组织者、引导者、合作者与共同研究者。在引导学生画图、测量、发现结论后,利用几何画板直观地、动态地展示同位角的关系,激发学生自觉地探究数学问题,体验发现的乐趣。

②学的转变:学生的角色从学会转变为会学。本节课学生不是停留在学会课本知识的层面上,而是站在研究者的角度深入其境。

③课堂氛围的转变:整节课以“流畅、开放、合作、‘隐’导”为基本特征,教师对学生的思维活动减少干预,教学过程呈现一种比较流畅的特征,整节课学生与学生、学生与教师之间以“对话”、“讨论”为出发点,以互助、合作为手段,以解决问题为目的,让学生在一个较为宽松的环境中自主选择获得成功的方向,判断发现的价值。

九年级数学公开课教案(精选篇4)

教学目标:

1、会用待定系数法求反比例函数的解析式。

2、通过实例进一步加深对反比例函数的认识,能结合具体情境,体会反比例函数的意义,理解比例系数的具体的意义。

3、会通过已知自变量的值求相应的反比例函数的值。运用已知反比例函数的值求相应自变量的值解决一些简单的问题。

重点:用待定系数法求反比例函数的解析式。

难点:例3要用科学知识,又要用不等式的知识,学生不易理解。

教学过程:

一。复习

1、反比例函数的定义:

判断下列说法是否正确(对‖√‖,错‖3‖)

(1)一矩形的面积为20cm2,相邻的两条边长分别为x(cm)和y(cm),变量y是变量x的反比例函数。(2)圆的面积公式s??r2中,s与r成正比例。(3)矩形的长为a,宽为b,周长为C,当C为常量时,a是b的反比例函数。方形的边长为x,高为y,当其体积V为常量时,y是x的反比例函数。(4)一个正四棱柱的底面正

定时,商和除数成反比例。(5)当被除数(不为零)一

(6)计划修建铁路1200km,则铺轨天数y(d)是每日铺轨量x(km/d)的反比例函数。

2、思考:如何确定反比例函数的解析式?

(1)已知y是x的反比例函数,比例系数是3,则函数解析式是_______

(2)当m为何值时,函数4是反比例函数,并求出其函数解析式.y?2m?2关键是确定比例系数!x

二。新课

1、例2:已知变量y与x成反比例,且当x=2时y=9,写出y与x之间的函数解析式和自变量的取值范围。小结:要确定一个反比例函数y?k的解析式,只需求出比例系数k。如果已知一对自变量与函数的对应值,x

3时,y=2,求这个函数的解析式和自变量的取值范围。4就可以先求出比例系数,然后写出所要求的反比例函数。2.练习:已知y是关于x的反比例函数,当x=?

3、说一说它们的求法:

(1)已知变量y与x-5成反比例,且当x=2时y=9,写出y与x之间的函数解析式。

(2)已知变量y-1与x成反比例,且当x=2时y=9,写出y与x之间的函数解析式。

4、例3、设汽车前灯电路上的电压保持不变,选用灯泡的电阻为R(Ω),通过电流的强度为I(A)。

(1)已知一个汽车前灯的电阻为30Ω,通过的电流为0.40A,求I关于R的函数解析式,并说明比例系数的.实际意义。

(2)如果接上新灯泡的电阻大于30Ω,那么与原来的相比,汽车前灯的亮度将发生什么变化?

在例3的教学中可作如下启发:

(1)电流、电阻、电压之间有何关系?

(2)在电压U保持不变的前提下,电流强度I与电阻R成哪种函数关系?

(3)前灯的亮度取决于哪个变量的大小?如何决定?

先让学生尝试练习,后师生一起点评。

三。巩固练习:

1、当质量一定时,二氧化碳的体积V与密度p成反比例。且V=5m3时,p=1.98kg/m3

(1)求p与V的函数关系式,并指出自变量的取值范围。

(2)求V=9m3时,二氧化碳的密度。

四。拓展:

1、已知y与z成正比例,z与x成反比例,当x=-4时,z=3,y=-4.求:

(1)Y关于x的函数解析式;

(2)当z=-1时,x,y的值。

2、已知y?y1?y2,y1与x成正例,y2与x成反比例,并且x?2与x?3时,y的

值都等于10,求y与x之间的函数关系。

五。交流反思

求反比例函数的解析式一般有两种情形:一种是在已知条件中明确告知变量之间成反比例函数关系,如例2;另一种是变量之间的关系由已学的数量关系直接给出,如例3中的I?

六。布置作业:P4B组

九年级数学公开课教案(精选篇5)

教学目标:

会用待定系数法求二次函数的解析式,能结合二次函数的图象掌握二次函数的性质,能较熟练地利用函数的性质解决函数与圆、三角形、四边形以及方程等知识相结合的综合题。

重点难点:

重点;用待定系数法求函数的解析式、运用配方法确定二次函数的特征。

难点:会运用二次函数知识解决有关综合问题。

教学过程:

一、例题精析,强化练习,剖析知识点

用待定系数法确定二次函数解析式.

例:根据下列条件,求出二次函数的解析式。

(1)抛物线y=ax2+bx+c经过点(0,1),(1,3),(-1,1)三点。

(2)抛物线顶点P(-1,-8),且过点A(0,-6)。

(3)已知二次函数y=ax2+bx+c的.图象过(3,0),(2,-3)两点,并且以x=1为对称轴。

(4)已知二次函数y=ax2+bx+c的图象经过一次函数y=-3/2x+3的图象与x轴、y轴的交点;且过(1,1),求这个二次函数解析式,并把它化为y=a(x-h)2+k的形式。

学生活动:学生小组讨论,题目中的四个小题应选择什么样的函数解析式?并让学生阐述解题方法。

教师归纳:二次函数解析式常用的有三种形式:(1)一般式:y=ax2+bx+c(a≠0)

(2)顶点式:y=a(x-h)2+k(a≠0)(3)两根式:y=a(x-x1)(x-x2)(a≠0)

当已知抛物线上任意三点时,通常设为一般式y=ax2+bx+c形式。

当已知抛物线的顶点与抛物线上另一点时,通常设为顶点式y=a(x-h)2+k形式。

当已知抛物线与x轴的交点或交点横坐标时,通常设为两根式y=a(x-x1)(x-x2)

强化练习:已知二次函数的图象过点A(1,0)和B(2,1),且与y轴交点纵坐标为m。

(1)若m为定值,求此二次函数的解析式;

(2)若二次函数的图象与x轴还有异于点A的另一个交点,求m的取值范围。

二、知识点串联,综合应用

例:如图,抛物线y=ax2+bx+c过点A(-1,0),且经过直线y=x-3与坐标轴的两个交

九年级数学公开课教案(精选篇6)

公开课教案

授课时间: 20__.11.17早上第二节 授课班级:初三、1班 授课教师:

教学内容: 7.7 直线和圆的位置关系

教学目标:

知识与技能目标:1、理解直线和圆相交、相切、相离的概念。

2. 初步掌握直线和圆的位置关系的`性质和判定及其灵活的应用。

过程与方法目标:1.通过直线和圆的位置关系的探究,向学生渗透分类、数形结合的思

想,培养学生观察、分析、概括、知识迁移的能力;

2. 通过例题教学,培养学生灵活运用知识的解决能力。

情感与态度目标:让学生从运动的观点来观察直线和圆相交、相切、相离的关系、关注知识的生成,发展与变化的过程,主动探索,勇于发现。从而领悟世界上的一切物体都是运动变化着的,并且在一定的条件下可以转化的辩证唯物主义观点。

[1][2][3][4][5][6][7][8][9][10] ... 下一页 >>

九年级数学公开课教案(精选篇7)

一、教材分析

A、教材的地位与作用:①本节教材是初三代数第十四章统计初步第二节,它是上节平均数的延续。平均数、众数及中位数都是描述一组数据的集中趋势的特征数,但描述的角度和适用范围有所不同。本节教学使学生进一步体会用样本估计总体的统计思想方法,形成运用数学知识解决简单应用问题的能力。学好本节课,也将为本章后继内容的学习打下良好的基础。②本节内容在中考命题中也占有重要地位,如:20__年河南中考选择题16题.20__年河南中考选择题19题,1997年河南中考选择题3题,1996年河南中考填空题9题。“20__一高英才杯” 选择题3题。

B.教学目标

1、知识目标:

①使学生理解众数与中位数的意义。

②会求一组数据的众数和中位数。

2、能力目标:培养学生的观察能力、计算能力。

3、德育目标:

①培养学生认真、耐心、细致的学习态度和学习习惯。

②渗透数学知识来源于生活,反过来又服务于生活的思想。

C、重点·难点·疑点

1.教学重点:定义的理解及求一组数据的众数与中位数。

2.教学难点:

①平均数、众数、中位数这三数之间的区别与联系。

②偶数个数据的中位数的求法。

3.教学疑点:学生容易把一组数据中出现次数最多的数据的次数当做众数。

二、教法设计

问题情景教学法

三、教学过程

【引导回顾 搭建桥梁】

①怎样求一组数据的平均数?

②平均数与一组数据中的每个数据均有关系吗?

这节课,我们将进一步学习另两个反映一组数据的集中趋势的特征数——众数和中位数。

14.2众数与中位数(课件)

【创设情境 探究新知】

问题情景一:一家童鞋店在一段时间内销售了某种童鞋30双,其中各种尺码的鞋的销售量如下表所示:

鞋的尺码(单位:厘米)

18

19

20

21

21.5

22

22.5

销售量(单位:双)

1

2

5

11

7

3

1

在这个问题里,如果你是鞋店老板,你最关心的是什么?

问题情景二:某面包房,在一天内销售面包100个,各类面包销售量如下表:

面包种类

奶油

巧克力

豆沙

香稻

三色

椰茸

销售量(单位:个)

10

15

25

5

15

30

在这个问题中,如果你是店主,你最关心的是什么?

定义:在一组数据中,出现次数最多的数据叫做这组数据的众数。

同时要强调众数的功能,即“当一组数据中不少数据多次重复出现时,常用众数来描述这组数据的集中趋势”。

注意:①.众数是一组数据中出现次数最多的数据,是一组数据中的原数据,而不是相应的次数。例如:问题一中众数是(21厘米),不要把21厘米的鞋的销售量11当作所求的众数。

②一组数据中的众数有时不只一个,如数据2、3、-1、2、1、3中,2和3都出现了2次,它们都是这组数据的众数。

例1、在一次英语口试中,20名学生的得分如下:

70 80 100 60 80 70 90 50 80 70

80 70 90 80 90 80 70 90 60 80

求这次英语口试中学生得分的众数.

请用观察法找出这组数据中哪些数据出现的频数较多,从而进一步找出它的众数;也可仿照问题一画表格找出众数。强调一下这个结论反映了得80分的学生最多。

问题情景三:在初三数学竞赛中,我班其中5名学生的成绩从低分到高分排列名次是: 55 57 61 62 98,其中哪一个数据能用来描述这组数据的集中趋势?

观察在这5个数据中,前4个数据的大小比较接近,最后1个数据与它们的差异较大。这时如果用其中最中间的数据61来描述这组数据的集中趋势,可以不受个别数据较大变动的影响。

中位数定义:将一组数据按大小依次排列,把处在最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数。

注意:1.求中位数要将一组数据按大小顺序,而不必计算,顾名思义,中位数就是位置处于最中间的一个数(或最中间的两个数的平均数),排序时,从小到大或从大到小都可以。

2.在数据个数为奇数的情况下,中位数是这组数据中的一个数据;如情景三的中位数是61。但在数据个数为偶数的情况下,其中位数是最中间两个数据的平均数,它不一定与这组数据中的某个数据相等。

例2 10名工人某天生产同一零件,生产的件数是:

15 17 14 10 15 19 17 16 14 12

求这一一天10名工人生产的零件的中位数.

请观察分析后,自解.

【诱向深入 拓展思维】

例3在一次中学生田径运动会上,参加男子跳高的17名运动员的成绩如下表所示:

成绩(单位:米)

1.50

1.60

1.65

1.70

1.75

1.80

1.85

1.90

人数

2

3

2

3

4

1

1

1

分别求这些运动员成绩的众数,中位数与平均数(平均数的计算结果保留到小数点后第2位)。

观察表格,分析回答下列问题:①表中国共产党有多少个数据?其中哪个数据出现的次数最多?这组数据的众数是什么?说明什么?

②表里的17个数据可看成是按什么顺序排列的?其中第几个数是最中间的数据?这组数据的中位数是多少?说明什么?

③可选用哪个公式求这组数据的平均数?所求得的平均数能说明什么?这样分析例题,可使学生加深理解平均数、众数、中位数的概念之间的联系与区别,体会到这三个数在描述一组数据集中趋势时的不同角度。

【展示应用 评价自我】

补充练习1、已知一组数据10,10,x,8(由大到小排列)的中位数与平均数相等,求x值及这组数据的中位数。

解:∵10,10,x,8的中位数与平均数相等

∴ (10+x)= (10+10+x+8)

∴x=8, (10+x)=9

∴这组数据中的中位数是9。

补充练习2、当5个整数从小到大排列,其中位数是4,如果这个数集的唯一众数是6,则这5个整数可能的最大的和是( )

A.21 B.22 C.23 D.24

分析:设这5个整数按从小到大排列为a1,a2,a3,a4,a5,由于中位数是4,所以a3=4,又6是唯一众数,所以a4=a5=6,此时,a2最大只能取3,a1最大取2,故a1+a2+a3+a4+a5=2+3+4+6+6=21

解:选(A)

3、教材P159中1、2、3

【链接知识 归纳小结】

1.知识小结:这节课我们学习了众数、中位数的概念,了解了它们在描述一组数据集中趋势时的不同角度和适用范围。

2.方法小结:①众数由所给数据可直接求出,(一组数据中的众数可能不止一个,众数是一组数据中出现的次数最多的数据,而不是该数据出现的次数.如果有两个数据出现的次数相同,并且比其他数据出现次数都多,那么这两个数据都是这组数据的众数)。②求中位数时,首先要先排序(从小到大或从大到小),然后计算中位数的序号,分数据为奇数个与偶数个两种来求.(既找出最中间的一个数据或最中间两个数并算出它们的平均数)。

3.知识网络:平均数、众数及中位数都是描述一组数据的集中趋势的特征数,但描述的角度和适用范围有所不同。平均数的大小与一组数据里的每个数据均有关系,其中任何数据的变动都会相应引起平均数的变动;众数着眼于对各数据出现的频数的`考察,其大小只与这组数据中的部分数据有关。当一组数据中有不少数据多次重复出现时,其众数往往是我们关心的一种统计量;中位数则仅与数据的排列位置有关,某些数据的变动对它的中位数没有影响。当一组数据中的个别数据变动较大时,可用它来描述其集中趋势。

【布置作业】教材P163A组1、2、3,B组。

【板书设计】

14.2 众数与中位数

1.定义 例1 例2 例3

众数: 练习1 练习2

中位数

一、教材分析

A、教材的地位与作用:①本节教材是初三代数第十四章统计初步第二节,它是上节平均数的延续。平均数、众数及中位数都是描述一组数据的集中趋势的特征数,但描述的角度和适用范围有所不同。本节教学使学生进一步体会用样本估计总体的统计思想方法,形成运用数学知识解决简单应用问题的能力。学好本节课,也将为本章后继内容的学习打下良好的基础。②本节内容在中考命题中也占有重要地位,如:20__年河南中考选择题16题.20__年河南中考选择题19题,1997年河南中考选择题3题,1996年河南中考填空题9题。“20__一高英才杯” 选择题3题。

B.教学目标

1、知识目标:

①使学生理解众数与中位数的意义。

②会求一组数据的众数和中位数。

2、能力目标:培养学生的观察能力、计算能力。

3、德育目标:

①培养学生认真、耐心、细致的学习态度和学习习惯。

②渗透数学知识来源于生活,反过来又服务于生活的思想。

C、重点·难点·疑点

1.教学重点:定义的理解及求一组数据的众数与中位数。

2.教学难点:

①平均数、众数、中位数这三数之间的区别与联系。

②偶数个数据的中位数的求法。

3.教学疑点:学生容易把一组数据中出现次数最多的数据的次数当做众数。

二、教法设计

问题情景教学法

三、教学过程

【引导回顾 搭建桥梁】

①怎样求一组数据的平均数?

②平均数与一组数据中的每个数据均有关系吗?

这节课,我们将进一步学习另两个反映一组数据的集中趋势的特征数——众数和中位数。

14.2众数与中位数(课件)

【创设情境 探究新知】

问题情景一:一家童鞋店在一段时间内销售了某种童鞋30双,其中各种尺码的鞋的销售量如下表所示:

鞋的尺码(单位:厘米)

18

19

20

21

21.5

22

22.5

销售量(单位:双)

1

2

5

11

7

3

1

在这个问题里,如果你是鞋店老板,你最关心的是什么?

问题情景二:某面包房,在一天内销售面包100个,各类面包销售量如下表:

面包种类

奶油

巧克力

豆沙

香稻

三色

椰茸

销售量(单位:个)

10

15

25

5

15

30

在这个问题中,如果你是店主,你最关心的是什么?

定义:在一组数据中,出现次数最多的数据叫做这组数据的众数。

同时要强调众数的功能,即“当一组数据中不少数据多次重复出现时,常用众数来描述这组数据的集中趋势”。

注意:①.众数是一组数据中出现次数最多的数据,是一组数据中的原数据,而不是相应的次数。例如:问题一中众数是(21厘米),不要把21厘米的鞋的销售量11当作所求的众数。

②一组数据中的众数有时不只一个,如数据2、3、-1、2、1、3中,2和3都出现了2次,它们都是这组数据的众数。

例1、在一次英语口试中,20名学生的得分如下:

70 80 100 60 80 70 90 50 80 70

80 70 90 80 90 80 70 90 60 80

求这次英语口试中学生得分的众数.

请用观察法找出这组数据中哪些数据出现的频数较多,从而进一步找出它的众数;也可仿照问题一画表格找出众数。强调一下这个结论反映了得80分的学生最多。

问题情景三:在初三数学竞赛中,我班其中5名学生的成绩从低分到高分排列名次是: 55 57 61 62 98,其中哪一个数据能用来描述这组数据的集中趋势?

观察在这5个数据中,前4个数据的大小比较接近,最后1个数据与它们的差异较大。这时如果用其中最中间的数据61来描述这组数据的集中趋势,可以不受个别数据较大变动的影响。

中位数定义:将一组数据按大小依次排列,把处在最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数。

注意:1.求中位数要将一组数据按大小顺序,而不必计算,顾名思义,中位数就是位置处于最中间的一个数(或最中间的两个数的平均数),排序时,从小到大或从大到小都可以。

2.在数据个数为奇数的情况下,中位数是这组数据中的一个数据;如情景三的中位数是61。但在数据个数为偶数的情况下,其中位数是最中间两个数据的平均数,它不一定与这组数据中的某个数据相等。

例2 10名工人某天生产同一零件,生产的件数是:

15 17 14 10 15 19 17 16 14 12

求这一天10名工人生产的零件的中位数.

请观察分析后,自解.

【诱向深入 拓展思维】

例3在一次中学生田径运动会上,参加男子跳高的17名运动员的成绩如下表所示:

成绩(单位:米)

1.50

1.60

1.65

1.70

1.75

1.80

1.85

1.90

人数

2

3

2

3

4

1

1

1

分别求这些运动员成绩的众数,中位数与平均数(平均数的计算结果保留到小数点后第2位)。

观察表格,分析回答下列问题:①表中国共产党有多少个数据?其中哪个数据出现的次数最多?这组数据的众数是什么?说明什么?

②表里的17个数据可看成是按什么顺序排列的?其中第几个数是最中间的数据?这组数据的中位数是多少?说明什么?

③可选用哪个公式求这组数据的平均数?所求得的平均数能说明什么?这样分析例题,可使学生加深理解平均数、众数、中位数的概念之间的联系与区别,体会到这三个数在描述一组数据集中趋势时的不同角度。

【展示应用 评价自我】

补充练习1、已知一组数据10,10,x,8(由大到小排列)的中位数与平均数相等,求x值及这组数据的中位数。

解:∵10,10,x,8的中位数与平均数相等

∴ (10+x)= (10+10+x+8)

∴x=8, (10+x)=9

∴这组数据中的中位数是9。

补充练习2、当5个整数从小到大排列,其中位数是4,如果这个数集的唯一众数是6,则这5个整数可能的最大的和是( )

A.21 B.22 C.23 D.24

分析:设这5个整数按从小到大排列为a1,a2,a3,a4,a5,由于中位数是4,所以a3=4,又6是唯一众数,所以a4=a5=6,此时,a2最大只能取3,a1最大取2,故a1+a2+a3+a4+a5=2+3+4+6+6=21

解:选(A)

3、教材P159中1、2、3

【链接知识 归纳小结】

1.知识小结:这节课我们学习了众数、中位数的概念,了解了它们在描述一组数据集中趋势时的不同角度和适用范围。

2.方法小结:①众数由所给数据可直接求出,(一组数据中的众数可能不止一个,众数是一组数据中出现的次数最多的数据,而不是该数据出现的次数.如果有两个数据出现的次数相同,并且比其他数据出现次数都多,那么这两个数据都是这组数据的众数)。②求中位数时,首先要先排序(从小到大或从大到小),然后计算中位数的序号,分数据为奇数个与偶数个两种来求.(既找出最中间的一个数据或最中间两个数并算出它们的平均数)。

3.知识网络:平均数、众数及中位数都是描述一组数据的集中趋势的特征数,但描述的角度和适用范围有所不同。平均数的大小与一组数据里的每个数据均有关系,其中任何数据的变动都会相应引起平均数的变动;众数着眼于对各数据出现的频数的考察,其大小只与这组数据中的部分数据有关。当一组数据中有不少数据多次重复出现时,其众数往往是我们关心的一种统计量;中位数则仅与数据的排列位置有关,某些数据的变动对它的中位数没有影响。当一组数据中的个别数据变动较大时,可用它来描述其集中趋势。

【布置作业】教材P163A组1、2、3,B组。

【板书设计】

14.2 众数与中位数

1.定义 例1 例2 例3

众数: 练习1 练习2

中位数

九年级数学公开课教案(精选篇8)

一、教育教学中的得:

(一)能制定正确教学目标:平时教学中,不仅根据教学大纲的要求,更注重初三(4)班多数学生的学习基础、水平来制定教学目标。根据我校实际情况,我把平时的教学目标要求定在中等偏下水平,重点内容适当提高,使较尖的学生能取得优秀成绩,对于基础太差的学生,对他们的复习目标只要求达到教学大纲的最基本的要求,强调熟记重要的概念、定理、公式等基础知识,并能掌握基础题的基本解法。通过努力,使全班学生的数学成绩均有所提高。

(二)寓复习于平时教学过程中:为了完成初三两本书的教学任务,又要减轻学生在集中复习时间的负担,我把复习内容有计划地分散在平时学习中。从初三开始教学就有目的地回顾总结。复习了与初三知识相关联的初一、初二年级的重要数学知识,结合教材,因势利导进行复习。如在讲特殊的`三角函数值得计算时就出了一道这样的数学题,求|1-3|+1-tan60+(tan30的值,这时就复习了绝对值、零次幂等基础知识。平时在课堂复习、提问、小测验中有目的的检查复习初一、初二等知识点。这样做能使初一、初二等已学过的重要知识反复在学生头脑中出现,可以减少遗忘率。

(三)编写切合学生实际的训练题:目前我校初三学生每人手中均有《一课一练》、《堂堂练》、《试题宝典》、《复习点要》等学习资料,这些资料中如《一课一练》和《复习点要》基础知识偏少,较难的题目偏多,解题方法着重技巧性而不突出基本思路和方法,总的情况是要求偏高、偏深,脱离学生的实际,也不符合中考的学习要求。因此平时在备课中我注意重点备好学生的练习及复习训练题。布置作业做到了有布置就一定有批改,提高了学生的作业质量.自编习题要求中等偏下,多数题目是基本训练,重点题型反复训练,逐步提高,达到了预期的教学效果。

(四)注重课堂教学信息的及时反馈和矫正:由于初三(4)学生之间思维的差异及基础知识掌握的差异特别大,给课堂教学带来了很大的难度,因此课堂教学必须从学生实际水平出发,分层次、有针对性地进行复习指导,最终使不同层次的学生通过复习学习达到不同水平。因此我在课堂教学中,注重了解学生的思维过程,对于学生回答的问题要进一步追问,对学生做的选择题和填空题的答案要进一步追问为什么。课堂教学中对学生的练习及时给予积极的评价,提高学生的内驱力,同时及时矫正学生中存在的问题,这样既加深了对知识的理解,同时又使学生及时纠正错误,达到复习的基本要求。

二、教学工作的失:

(一)错误的估计了初三(4)班学生的学习情况,乐观的认为学生的学习过程及作业过程是正常化的,结果导致走了一段弯路。

(二)在初三数学教学过程中,为了赶教学进度,因此课堂教学中还是出现了讲的多、练的少的现象,结果导致课堂教学的巩固率仅为50%。

(三)没有很好的把握教育管理与初三数学教学的关系。平时在初三数学教学中花的时间较少,特别是后进生的辅导工作没有真正落到实处。有时对存在问题讲道理多了,具体辅导工作少了.(四)测验及模拟考试注重了对学生的得分情况分析,对学生知识缺漏情况少了统计及分析,少了针对性的评讲,更少了针对性的进行跟踪训练及检查。(五)在平时的课堂教学中没有很好的运用多媒体教学手段,课堂教学的容量总是很小,教学效果不大。

三、今后的教学思路:

(一)进一步激发学生的学习动机,培养学生良好的学习习惯

(二)融洽师生情感,提供平等的学习机会,诚心实意的为学生提供优质的服务。

(三)健全学生完整的知识结构。一方面加强基础知识教学,注重抓盲点,,另一方面重视解题模式的总结,注意突破难点,这是数学学习的关键。

(四)切实做好提优补差工作。对后进生格外关心,注意辅导其学习方法,并针对其学习上的缺漏予以辅导纠正,做好测验及模拟考试中成绩不理想的学生知识缺漏情况的统计及分析,进行针对性的评讲,并进行针对性的跟踪训练和检查.

(五)继续贯彻学校领导的工作决策,不断注重教育教学的理论学习,使之教学质量有所提高。

(六)进一步发扬教学工作中的优点,改正过去工作的不足,虚心学习,不断提高运用多媒体辅助教学的能力,扩大课堂教学容量。

九年级数学公开课教案(精选篇9)

教师的真正本领,主要不在于讲授知识,而在于激发学生的学习动机,唤起学生的求知欲望,让他们兴趣盎然地参与到教学全过程中来,经过自己的思维活动和动手操作获得知识。新一轮课程改革很重要的一个方面是改变学生的学习状态,在教学中更重要的是关注学生的学习过程以及情感、态度、价值观、能力等方面的发展。就学习数学而言,学生一旦"学会",享受到教学活动的成功喜悦,便会强化学习动机,从而更喜欢数学。因此,教学设计要促使学生的情感和兴趣始终处于最佳状态,从而保证施教活动的有效性和预见性。

新课程提倡学生初步学会从数学的角度提出问题、理解问题,并能综合应用所学的知识和技能解决问题,发展应用意识。随着社会主义市场经济体制的逐步形成,股票、利息、保险、有奖储蓄、分期付款等经济方面的数学问题,已日渐成为人们的常识,因此,数学教学不能视而不见,不管实际应用,这样恐怕就太不合时宜了。

学生学知识是为了用知识。但长期的应试教育使大多数学生不知道为什么学数学,学数学有什么用。因此在教学时,我针对学生的年龄特点、心理特征,密切联系学生的生活实际,精心创设情境,让学生在实际生活中运用数学知识,切实提高学生解决实际问题的能力。如在"代数式"这节课中,由上节课的一个习题引入,带领学生一起探究得出一个规律5n+2,由此引出代数式的概念。在举例时,老师指出,"其实,代数式不仅在数学中有用,而且在现实生活中也大量存在。下面,老师说几个事实,谁能用代数式表示出来。这些式子除了老师刚才说的事实外,还能表示其他的意思吗?"学生们开始活跃起来,一位学生举起了手,"一本书p元,6p可以表示6本书价值多少钱",受到启发,每个学生都在生活中找实例,大家从这节课中都能深深感受到"人人学有用的数学"的新理念。经常这样训练,使学生深刻地认识到数学对于我们的生活有多么重要,学数学的价值有多大,从而激发了他们学好数学的强烈欲望,变"学数学"为"用数学"。

合作探究会给学生带来成功的愉悦。例:"统计图的选择"教学设计和教学中,要求学生以4人小组为单位,调查、了解生活中各行各业、各学科中应用的各种统计图,调查、收集你生活中最感兴趣的一件事情的有关数据,必须通过实际调查收集数据,保证数据来源的准确。学生或通过报刊、电视广播等媒体,或对他们感兴趣的问题展开调查采访或查阅资料,经历搜集数据的过程,搜集的统计图丰富多彩,内容涉及各行各业。学生从中能体会统计图在社会生活中的实际意义,培养善于观察生活、乐于探索研究的学习品质及与他人合作交流的.意识。

在学生上网查询,精心设计、指导下,成功地进行了"我是小小设计师"的课堂活动:这节课是以七年级数学上册第26页3题的作业为课题内容设计的一节课,以圆、多边形设计一幅图,并说明你想表现什么。事先由老师将课题内容布置给学生。由两位学生作为这节课的主持人,其他学生将自己的作品展示出来,并说明自己的创意。最后,老师作为特约指导,对学生的几何图形图案设计及创意、发言等进行总结,学生再自己进行小结、反思。整节课学生体验了图形来自生活、服务于生活的现代数学观,较好地体现了学生主动探究、交流、学会学习的有效学习方式,同时这也是跨学科综合学习的一种尝试。

在新课程的实施过程中,我们欣喜地看到传统的接受式教学模式已被生动活泼的数学活动所取代。课堂活起来了,学生动起来了:敢想、敢问、敢说、敢做、敢争论,充满着求知欲和表现欲。

九年级数学公开课教案(精选篇10)

本学年担任初三16班的数学教学工作和班主任工作,由于工作能力和经验的限制,工作中有得也有失,现反思如下,以便更好地进行教育教学工作。

一、教育教学中的得:

(一)能制定正确教学目标:平时教学中,不仅根据教学大纲的要求,更注重初三(16)班多数学生的学习基础、水平来制定教学目标。根据我校实际情况,我把平时的教学目标要求定在中等偏下水平,重点内容适当提高,使较尖的学生能取得优秀成绩,对于基础太差的学生,对他们的复习目标只要求达到教学大纲的最基本的要求,强调熟记重要的概念、定理、公式等基础知识,并能掌握基础题的基本解法。通过努力,使全班学生的数学成绩均有所提高。

(二)寓复习于平时教学过程中:为了完成初三两本书的教学任务,又要减轻学生在集中复习时间的负担,我把复习内容有计划地分散在平时学习中。从初三开始教学就有目的地回顾总结。复习了与初三知识相关联的初一、初二年级的重要数学知识,结合教材,因势利导进行复习。如在讲特殊的三角函数值得计算时就出了一道这样的.数学题,求|1-√3|+1-tan60°+(tan30°)°的值,这时就复习了绝对值、零次幂等基础知识。平时在课堂复习、提问、小测验、月考中有目的的检查复习初一、初二等知识点。这样做能使初一、初二等已学过的重要知识反复在学生头脑中出现,可以减少遗忘率。

(三)编写切合学生实际的训练题:目前我校初三学生每人手中均有学校购买的课课练等学习资料,这些资料中基础知识偏少,较难的题目偏多,解题方法着重技巧性而不突出基本思路和方法,总的情况是要求偏高、偏深,脱离我校学生的实际,也不符合我校的学习要求。因此平时在备课中我注意重点备好学生的练习及复习训练题。布置作业做到了有布置就一定有批改,提高了学生的作业质量。自编习题要求中等偏下,多数题目是基本训练,重点题型反复训练,逐步提高,达到了预期的教学效果。

(四)注重课堂教学信息的及时反馈和矫正:由于初三(16)学生之间思维的差异及基础知识掌握的差异特别大,给课堂教学带来了很大的难度,因此课堂教学必须从学生实际水平出发,分层次、有针对性地进行复习指导,最终使不同层次的学生通过复习学习达到不同水平。因此我在课堂教学中,注重了解学生的思维过程,对于学生回答的问题要进一步追问,对学生做的选择题和填空题的答案要进一步追问为什么。课堂教学中对学生的练习及时给予积极的评价,提高学生的内驱力,同时及时矫正学生中存在的问题,这样既加深了对知识的理解,同时又使学生及时纠正错误,达到复习的基本要求。

二、教学工作的失:

(一)接班时错误的估计了初三(16)班学生的学习情况,乐观的认为学生的学习过程及作业过程是正常化的,结果导致走了一段弯路。

(二)在初三数学教学过程中,为了赶教学进度,因此课堂教学中还是出现了讲的多、练的少的现象,结果导致课堂教学的巩固率仅为50%。

(三)没有很好的把握教育管理与初三数学教学的关系。平时在初三数学教学中花的时间较少,特别是后进生的辅导工作没有真正落到实处。有时对存在问题讲道理多了,具体辅导工作少了。

(四)月考及模拟考试注重了学生的得分情况分析,对学生知识缺漏情况少了统计及分析,少了针对性的评讲,更少了针对性的进行跟踪训练及检查。

(五)在平时的课堂教学中没有很好的运用多媒体教学手段,课堂教学的容量总是很小,教学效果不大。

三、今后的教学思路:

(一)进一步激发学生的学习动机,培养学生良好的学习习惯

(二)融洽师生情感,提供平等的学习机会,诚心实意的为学生提供优质的服务。

(三)健全学生完整的知识结构。一方面加强基础知识教学,注重抓盲点,另一方面重视解题模式的总结,注意突破难点,这是数学学习的关键。

(四)切实做好提优补差工作。对后进生格外关心,注意辅导其学习方法,并针对其学习上的缺漏予以辅导纠正,做好月考及模拟考试中成绩不理想的学生知识缺漏情况的统计及分析,进行针对性的评讲,并进行针对性的跟踪训练和检查。

(五)继续贯彻学校领导的工作决策,不断注重教育教学的理论学习,使之教学质量有所提高。

(六)进一步发扬教学工作中的优点,改正过去工作的不足,虚心学习,不断提高运用多媒体辅助教学的能力。扩大课堂教学容量。

九年级数学公开课教案(精选篇11)

反比例函数图像的性质是反比例函数的教学重点,把握好本节课的内容对于学生解决许多问题有很好的帮助,在学生已有的正比例函数性质的基础上,学生学习性质比较轻松,但运用该性质解决问题存在难度。学生需要在理解的基础上熟练运用。为此应加强反比例函数与正比例函数的对比:应该有意识地加强反比例函数与正比例函数之间的对比,对比可以从以下几个方面进行:

(1)两种函数的关系式有何不同?两种函数的图像所在位置是否相同?两种函数的增减性是否有区别?

(2)两种函数的取值范围有什么不同,常数的符号的改变对两种函数图像的变化趋势有什么影响?

(3)利用待定系数法求函数的解析式对于两个函数知道几点就可以求的。

从这些方面去比较理解反比例函数与一次函数,帮助学生将所学知识串 联起来,提高学生

综合能力。运用多媒比较两函数图像,使学生更直观、更清楚地看清两函数的区别。从而使学生加深对两函数性质的理解。

通过本案例的`教学,使我深刻地体会到了信息技术在数学课堂教学中的灵活性、直观性。特别是反比例函数中k值对函数图像的位置教学和无交点坐标的教学起到一定的作用。虽然制作起来比较麻烦,但能使课堂教学达到预想不到的效果,使课堂教学效率也明显提高。提高学生对数学学习的兴趣和深入研究的习惯。当然在教学中,由于小部分同学的数学基础薄弱,导致学习比较吃力,通过这种直观演示能较好的掌握知识,课后还应加强对性质运用的训练。

九年级数学公开课教案(精选篇12)

回顾上学期我们的工作中,好的做法有如下几方面:

1.注重集体备课,资源共享

我们整个备组非常注重集体备课,在每周每次的集备过程协调好备课组各个老师的教学工作,统一各个阶段的教学进度,安排好教学资料,能对相对应要解决的问题达成共识,并在日常的教学工作中很好地落实和执行。负责某章节备课的老师能认真细读教材资料,给出详细的章节上课计划,落实重点难点和常考的中考题型并出好单元测验卷。通过资源共享,集中了团队的力量,发挥了集体的智慧。备课组是一个积极向上、注重交流、有着良好教研氛围的团队。

2.课外的分类辅导实现有效的分层教学

由于是经过科任老师自己挑选出的学生,都是接受能力较好,又还有进步空间。备课时也讨论定下了辅导的内容,这样我们的辅导针对性强,资料用得很称心,学生的进步较为明显。

3. 交流合作,配合默契

课前课后经常交流,通过经常的碰面探讨,很好地舒缓了工作压力及时调整好工作状态,并且在交谈的过程互相学习总结好的处理方法,带来教学的灵感。比如上完课的老师回到办公室会说一说哪道题出得比较好,老师互相之间合作做习题互相提供答案等,节省了老师泡在题海的时间,腾出更多的时间思考手上的`工作。

4. 准确把握考点,把好资料的质量关

备组中科长连续多年担任初三的教学,非常熟悉初三的各个章节知识、各环节的处理,经常牵头探讨知识点常见的中考题型,大家交流过后对开展教学工作尤其复习课方向明确,紧紧围绕住考点。另一方面我们出的单元测验卷,复习卷和分类辅导资料至少是由两个老师跟进,大大减少了以往出题的一些问题,筛选出更优质的好题。另外我们备组中同时兼任班主任工作的于老师每次出教学资料特认真,都能按时提前“交货”且质量公认最好,“知识点全面”。在敬业的于老师的影响带动下,大家都更认真的按时提前完成出卷任务,留出再修改习题和查漏补缺的时间,保证了教学资料的质量。

5.各人有效教学的具体举措

(1)立足课本,注重基础。踏踏实实地过好课本上的例题和习题,尽量挖掘课本题目的价值。复习课上集中一两个知识点,讲透难点,课堂上加大训练量。向学生灌输“熟能生巧,勤能补拙”的理念。

(2)让学生使用集题本,课堂上充当笔记本,记下典型题;单元测验后改正重点的好题。

(3)经常找学生谈话。采用攻心为上的策略,说服学生好好听课,交作业等。

(4)课堂教学时及时小结解题方法,-帮助学生避免盲目做题,提高解题能力。

(5)把题目的所有条件标识在图上,对着图来想题。培养学生快速找出关键信息的能力。

九年级数学公开课教案通用12篇

将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档文档为doc格式
98228