九年级数学课的优秀教案
初中阶段的数学教学中,学生应该具备一些基本的数学知识,熟练地掌握相应计算技巧,为学生进一步的学习和实践奠定一个坚实的基础。今天小编在这给大家整理了一些九年级数学课的优秀教案,我们一起来看看吧!
九年级数学课的优秀教案1
教学目标:
〈一〉知识与技能
1.知道通过大量重复试验时的频率可以作为事件发生概率的估计值
2.在具体情境中了解概率的意义
〈二〉教学思考
让学生经历猜想试验--收集数据--分析结果的探索过程,丰富对随机现象的体验,体会概率是描述不确定现象规律的数学模型.初步理解频率与概率的关系.
〈三〉解决问题
在分组合作学习过程中积累数学活动经验,发展学生合作交流的意识与能力.锻炼质疑、独立思考的习惯与精神,帮助学生逐步建立正确的随机观念.
〈四〉情感态度与价值观
在合作探究学习过程中,激发学生学习的好奇心与求知欲.体验数学的价值与学习的乐趣.通过概率意义教学,渗透辩证思想教育.
【教学重点】在具体情境中了解概率意义.
【教学难点】对频率与概率关系的初步理解
【教具准备】壹元硬币数枚、图钉数枚、多媒体课件
【教学过程】
一、创设情境,引出问题
教师提出问题:周末市体育场有一场精彩的篮球比赛,老师手中只有一张球票,小强与小明都是班里的篮球迷,两人都想去.我很为难,真不知该把球给谁.请大家帮我想个办法来决定把球票给谁.
学生:抓阄、抽签、猜拳、投硬币,……
教师对同学的较好想法予以肯定.(学生肯定有许多较好的想法,在众多方法中推举出大家较认可的方法.如抓阄、投硬币)
追问,为什么要用抓阄、投硬币的方法呢?
由学生讨论:这样做公平.能保证小强与小明得到球票的可能性一样大
在学生讨论发言后,教师评价归纳.
用抛掷硬币的方法分配球票是个随机事件,尽管事先不能确定"正面朝上"还上"反面朝上",但同学们很容易感觉到或猜到这两个随机事件发生的可能性是一样的,各占一半,所以小强、小明得到球票的可能性一样大.
质疑:那么,这种直觉是否真的是正确的呢?
引导学生以投掷壹元硬币为例,不妨动手做投掷硬币的试验来验证一下.
说明:现实中不确定现象是大量存在的, 新课标指出:"学生数学学习内容应当是现实的、有意义、富有挑战的",设置实际生活问题情境贴近学生的生活实际,很容易激发学生的学习热情,教师应对此予以肯定,并鼓励学生积极思考,为课堂教学营造民主和谐的气氛,也为下一步引导学生开展探索交流活动打下基础.
二 、动手实践,合作探究
1.教师布置试验任务.
(1)明确规则.
把全班分成10组,每组中有一名学生投掷硬币,另一名同学作记录,其余同学观察试验必须在同样条件下进行.
(2)明确任务,每组掷币50次,以实事求是的态度,认真统计"正面朝上" 的频数及 "正面朝上"的频率,整理试验的数据,并记录下来..
2.教师巡视学生分组试验情况.
注意:
(1).观察学生在探究活动中,是否积极参与试验活动、是否愿意交流等,关注学生是否积极思考、勇于克服困难.
(2).要求真实记录试验情况.对于合作学习中有可能产生的纪律问题予以调控.
3.各组汇报实验结果.
由于试验次数较少,所以有可能有些组试验获得的"正面朝上"的频率与先前的猜想有出入.
提出问题:是不是我们的猜想出了问题?引导学生分析讨论产生差异的原因.
在学生充分讨论的基础上,启发学生分析讨论产生差异的原因.使学生认识到每次随机试验的频率具有不确定性,同时相信随机事件发生的频率也有规律性, 引导他们小组合作,进一步探究.
解决的办法是增加试验的次数,鉴于课堂时间有限,引导学生进行全班交流合作.
4.全班交流.
把各组测得数据一一汇报,教师将各组数据记录在黑板上.全班同学对数据进行累计,按照书上P140要求填好25-2.并根据所整理的数据,在25.1-1图上标注出对应的点,完成统计图.
表25-2
抛掷次数 50 100 150 200 250 300 350 400 450 500
"正面向上"的频数
"正面向上"的频率
想一想1(投影出示). 观察统计表与统计图,你发现"正面向上"的频率有什么规律?
注意学生的语言表述情况,意思正确予以肯定与鼓励."正面朝上"的频率在0.5上下波动.
想一想2(投影出示)
随着抛掷次数增加,"正面向上"的频率变化趋势有何规律?
在学生讨论的基础上,教师帮助归纳.使学生认识到每次试验中随机事件发生的频率具有不确定性,同时发现随机事件发生的频率也有规律性.在试验次数较少时,"正面朝上"的频率起伏较大,而随着试验次数的逐渐增加,一般地,频率会趋于稳定,"正面朝上"的频率越来越接近0.5. 这也与我们刚开始的猜想是一致的.我们就用0.5这个常数表示"正面向上"发生的可能性的大小.
说明:注意帮助解决学生在填写统计表与统计图遇到的困难.通过以上实践探究活动,让学生真实地感受到、清楚地观察到试验所体现的规律,即大量重复试验事件发生的频率接近事件发生的可能性的大小(概率).鼓励学生在学习中要积极合作交流,思考探究.学会倾听别人意见,勇于表达自己的见解.
为了给学生提供大量的、快捷的试验数据,利用计算机模拟掷硬币试验的课件,丰富学生的体验、提高课堂教学效率,使他们能直观地、便捷地观察到试验结果的规律性--大量重复试验中,事件发生的频率逐渐稳定到某个常数附近 .
其实,历有许多着名数学家也做过掷硬币的试验.让学生阅读历数学家做掷币试验的数据统计表(看书P141表25-3).
表25-3
试验者 抛掷次数(n) "正面朝上"次数(m) "正面向上"频率(m/n)
棣莫弗 2048 1061 0.518
布丰 4040 2048 0.5069
费勒 10000 4979 0.4979
皮尔逊 12000 6019 0.5016
皮尔逊 24000 12012 0.5005
通过以上学生亲自动手实践,电脑辅助演示,历史材料展示, 让学生真实地感受到、清楚地观察到试验所体现的规律,大量重复试验中,事件发生的频率逐渐稳定到某个常数附近,即大量重复试验事件发生的频率接近事件发生的可能性的大小(概率).同时,又感受到无论试验次数多么大,也无法保证事件发生的频率充分地接近事件发生的概率.
在探究学习过程中,应注意评价学生在活动中参与程度、自信心、是否愿意交流等,鼓励学生在学习中不怕困难积极思考,敢于表达自己的观点与感受,养成实事求是的科学态度.
5.下面我们能否研究一下"反面向上"的频率情况?
学生自然可依照"正面朝上"的研究方法,很容易总结得出:"反面向上"的频率也相应稳定到0.5.
教师归纳:
(1)由以上试验,我们验证了开始的猜想,即抛掷一枚质地均匀的硬币时,"正面向上"与"反面向上"的可能性相等(各占一半).也就是说,用抛掷硬币的方法可以使小明与小强得到球票的可能性一样.
(2)在实际生活还有许多这样的例子,如在足球比赛中,裁判用掷硬币的办法来决定双方的比赛场地等等.
说明:这个环节,让学生亲身经历了猜想试验--收集数据--分析结果的探索过程,在真实数据的分析中形成数学思考,在讨论交流中达成知识的主动建构,为下一环节概率意义的教学作了很好的铺垫.
三、评价概括,揭示新知
问题1.通过以上大量试验,你对频率有什么新的认识?有没有发现频率还有其他作用?
学生探究交流.发现随机事件的可能性的大小可以用随机事件发生的频率逐渐稳定到的值(或常数)估计或去描述.
通过猜想试验及探究讨论,学生不难有以上认识.对学生可能存在语言上、描述中的不准确等注意予以纠正,但要求不高.
归纳:以上我们用随机事件发生的频率逐渐稳定到的常数刻画了随机事件的可能性的大小.
那么我们给这样的常数一个名称,引入概率定义.给出概率定义(板书):一般地,在大量重复试验中,如果事件A发生的频率 会稳定在某个常数p附近,那么这个常数p就叫做事件A的概率(probability), 记作P(A)= p.
注意指出:
1.概率是随机事件发生的可能性的大小的数量反映.
2.概率是事件在大量重复试验中频率逐渐稳定到的值,即可以用大量重复试验中事件发生的频率去估计得到事件发生的概率,但二者不能简单地等同.
想一想(学生交流讨论)
问题2.频率与概率有什么区别与联系?
从定义可以得到二者的联系, 可用大量重复试验中事件发生频率来估计事件发生的概率.另一方面,大量重复试验中事件发生的频率稳定在某个常数(事件发生的概率)附近,说明概率是个定值,而频率随不同试验次数而有所不同,是概率的近似值,二者不能简单地等同.
说明:猜想试验、分析讨论、合作探究的学习方式十分有益于学生对概率意义的理解,使之明确频率与概率的联系,也使本节课教学重难点得以突破.为下节课进一步研究概率和今后的学习打下了基础. 当然,学生随机观念的养成是循序渐进的、长期的.这节课教学应把握教学难度,注意关注学生接受情况.
四.练习巩固,发展提高.
学生练习
1.书上P143.练习.1. 巩固用频率估计概率的方法.
2.书上P143.练习.2 巩固对概率意义的理解.
教师应当关注学生对知识掌握情况,帮助学生解决遇到的问题.
五.归纳总结,交流收获:
1.学生互相交流这节课的体会与收获,教师可将学生的总结与板书串一起,使学生对知识掌握条理化、系统化.
2.在学生交流总结时,还应注意总结评价这节课所经历的探索过程,体会到的数学价值与合作交流学习的意义.
【作业设计】
(1)完成P144 习题25.1 2、4
(2)课外活动分小组活动,用试验方法获得图钉从一定高度落下后钉尖着地的概率
九年级数学课的优秀教案2
教学目标
1. 了解整式方程和一元二次方程的概念;
2. 知道一元二次方程的一般形式,会把一元二次方程化成一般形式。
3. 通过本节课引入的教学,初步培养学生的数学来源于实践又反过来作用于实践的辨证唯物主义观点,激发学生学习数学的兴趣。
教学重点和难点:
重点:一元二次方程的概念和它的一般形式。
难点:对一元二次方程的一般形式的正确理解及其各项系数的确定。
教学建议:
1. 教材分析:
1)知识结构:本小节首先通过实例引出一元二次方程的概念,介绍了一元二次方程的一般形式以及一元二次方程中各项的名称。
2)重点、难点分析
理解一元二次方程的定义:
是一元二次方程 的重要组成部分。方程 ,只有当 时,才叫做一元二次方程。如果 且 ,它就是一元二次方程了。解题时遇到字母系数的方程可能出现以下情况:
(1)一元二次方程的条件是确定的,如方程 ( ),把它化成一般形式为 ,由于 ,所以 ,符合一元二次方程的定义。
(2)条件是用“关于 的一元二次方程”这样的语句表述的,那么它就隐含了二次项系数不为零的条件。如“关于 的一元二次方程 ”,这时题中隐含了 的条件,这在解题中是不能忽略的。
(3)方程中含有字母系数的 项,且出现“关于 的方程”这样的语句,就要对方程中的字母系数进行讨论。如:“关于 的方程 ”,这就有两种可能,当 时,它是一元一次方程 ;当 时,它是一元二次方程,解题时就会有不同的结果。
教学目的
1.了解整式方程和一元二次方程的概念;
2.知道一元二次方程的一般形式,会把一元二次方程化成一般形式。
3.通过本节课引入的教学,初步培养学生的数学来源于实践又反过来作用于实践的辨证唯物主义观点,激发学生学习数学的兴趣。
教学难点和难点:
重点:
1.一元二次方程的有关概念
2.会把一元二次方程化成一般形式
难点: 一元二次方程的含义.
教学过程设计
一、引入新课
引例:剪一块面积是150cm2的长方形铁片,使它的长比宽多5cm、这块铁片应该怎样剪?
分析:1.要解决这个问题,就要求出铁片的长和宽。
2.这个问题用什么数学方法解决?(间接计算即列方程解应用题。
3.让学生自己列出方程 ( x(x十5)=150 )
深入引导:方程x(x十5)=150有人会解吗?你能叫出这个方程的名字吗?
二、新课
1.从上面的引例我们有这样一个感觉:在解决日常生活的计算问题中确需列方程解应用题,但有些方程我们解不了,但必须想办法解出来。事实上初中代数研究的主要对象是方程。这部分内容从初一一直贯穿到初三。到目前为止我们对方程研究的还很不够,从今天起我们就开始研究这样一类方程--------一元一二次方程(板书课题)
2.什么是—元二次方程呢?现在我们来观察上面这个方程:它的左右两边都是关于未知数的整式,这样的方程叫做整式方程,就这一点来说它与一元一次方程没有什么区别、也就是说一元二次方程首先必须是一个整式方程,但是一个整式方程未必就是一个一元二次方程、这还取决于未知数的次数是几。如果方程未知数的次数是2、这样的整式方程叫做一元二次方程.(板书一元二次方程的定义)
3.强化一元二次方程的概念
下列方程都是整式方程吗?其中哪些是一元一次方程?哪些是一元二次方程?
(1)3x十2=5x—3: (2)x2=4
(2)(x十3)(3x·4)=(x十2)2; (4)(x—1)(x—2)=x2十8
从以上4例让学生明白判断一个方程是否是一元二次方程不能只看表面、而是能化简必须先化简、然后再查看这个方程未知数的次数是否是2。
4. 一元二次方程概念的延伸
提问:一元二次方程很多吗?你有办法一下写出所有的一元二次方程吗?
引导学生回顾一元二次方程的定义,分析一元二次方程项的情况,启发学生运用字母,找到一元二次方程的一般形式
ax2+bx+c=0 (a≠0)
1).提问a=0时方程还是一无二次方程吗?为什么?(如果a=0、b≠就成了一元一次方程了)。
2).讲解方程中ax2、bx、c各项的名称及a、b的系数名称.
3).强调:一元二次方程的一般形式中“=”的左边最多三项、其中一次项、常数项可以不出现、但二次项必须存在、而且左边通常按x的降幂排列:特别注意的是“=”的右边必须整理成0。
强化概念(课本P6)
1.说出下列一元二次方程的二次项系数、一次项系数、常数项:
(1)x2十3x十2=O (2)x2—3x十4=0; (3)3x2-5=0
(4)4x2十3x—2=0; (5)3x2—5=0; (6)6x2—x=0。
2.把下列方程先化成二元二次方程的一般形式,再写出它的二次项系数、一次项系数、常数项:
(1)6x2=3-7x; (3)3x(x-1)=2(x十2)—4;(5)(3x十2)2=4(x-3)2
课堂小节
(1)本节课主要介绍了一类很重要的方程—一一元二次方程(如果方程未知数的次数为2,这样的整式方程叫做一元一二次方程);
(2)要知道一元二次方程的一般形式ax2十bx十c=0(a≠0)并且注意一元二次方程的一般形式中“=”的左边最多三项、其中二次项、常数项可以不出现、但二次项必须存在。特别注意的是“=”的右边必须整理成0;
(3)要很熟练地说出随便一个一元二次方程中一二次项、一次项、常数项:二次项系数、一次项系数.
课外作业:略
九年级数学课的优秀教案3
教学目标
【知识与技能】
1.会用描点法画反比例函数图象;2.理解反比例函数的性质.
【过程与方法】
观察、比较、合作、交流、探索.
【情感态度】
通过对反比例函数的图象的分析,探索并掌握反比例函数的图象的性质.
【教学重点】
画反比例函数的图象,理解反比例函数的性质.
【教学难点】
理解反比例函数的性质,并能灵活应用.
教学过程
一、情景导入,初步认知
你还记得一次函数的图象吗?一次函数的图象怎样画呢?一次函数有什么性质呢?反比例函数的图象又会是什么样子呢?
【教学说明】在回忆与交流中,进一步认识函数,图象的直观有助于理解函数的性质.
二、思考探究,获取新知
探究1:反比例函数图象的画法画出反比例函数y=的图象.分析∶画出函数图象一般分为列表、描点、连线三个步骤.
(1)列表:取自变量x的哪些值?
x是不为零的任何实数,所以不能取x的值为零,但仍可以以零为基准,左右均匀,对称地取值.
(2)描点:用表里各组对应值作为点的坐标,在直角坐标系中描出各点(-6,-1)、(-3,-2)、(-2,-3)等.
(3)连线:用平滑的曲线将第一象限各点依次连起来,得到图象的第一个分支;用平滑的曲线将第三象限各点依次连起来,得到图象的另一个分支.这两个分支合起来,就是反比例函数的图象.
思考:
(1)观察上图,y轴右边的各点,当横坐标x逐渐增大时,纵坐标y如何变化?y轴左边的各点是否也有相同的规律?
(2)这两条曲线会与x轴、y轴相交吗?为什么?探究2:反比例函数所在的象限画出函数y=的图形,并思考下列问题:
(1)函数图形的两个分支分别位于哪些象限?
(2)在每一象限内,函数值y随自变量x的变化是如何变化的?
【归纳结论】一般地,当k>0时,反比例函数y=的图象由分别在第一、三象限内的两支曲线组成,它们与x轴、y轴都不相交,在每个象限内,函数值y随自变量x的增大而减小.
探究3:反比例函数y=-的图象.可以引导学生采用多种方式进行自主探索活动:
(1)可以用画反比例函数y=-的图象的方式与步骤进行自主探索其图象;
(2)可以通过探索函数y=与y=-之间的关系,画出y=-的图象.
【归纳结论】一般地,当k<0时,反比例函数y=的图象由分别在第二、四象限内的两支曲线组成,它们与x轴、y轴都不相交,在每个象限内,函数值y随自变量x的增大而增大.
探究4:反比例函数的性质反比例函数y=-与y=的图象有什么共同特征?
【教学说明】引导学生从通过与一次函数的图象的对比感受反比例函数图象“曲线”及“两支”的特征.
【归纳结论】反比例函数y=(k≠0)的图象是由两个分支组成的曲线.当k>0时,图象在一、三象限;当k<0时,图象在二、四象限.反比例函数y=与y=-(k≠0)的图象关于x轴或y轴对称.
【教学说明】学生动手画反比函数图象,进一步掌握画函数图象的步骤.观察函数图象,掌握反比例函数的性质.
九年级数学课的优秀教案4
教学目标:
1.探索直角三角形中锐角三角函数值与三边之间的关系。
2.掌握三角函数定义式 : sinA= , cosA= ,tanA= 。
重点和难点
重点: 三角函数定义的理解 。
难点:直角三角形中锐角三角函数值与三边之间的关系及求三角函数值。
【教学过程】
一、情境导入
如图是两个自动扶梯,甲、乙两人分别从1、2号自动扶梯上楼,谁 先到达楼顶?如果AB和A′B′相 等而∠α和∠ β大小不同,那么它们的高度AC 和A′C′相等吗?AB、 AC、BC与∠α,A′B′、A′C′、B′C′与∠β之间有什么关系呢? --- ---导出新课
二、新课教学
1、合作探究
见课本
2、三角函数 的定义在Rt△ABC中,如果锐角A确定,那么∠A的对边与斜边的比、邻边与斜边的比也随之确定.
∠A 的对边与邻边的比叫 做∠A的正弦(sine),记作s inA,即s in A=
∠A的邻边与斜边的比叫做∠A的余弦(cosine),记作cosA,即cosA=
∠A的对边与∠A的邻边的比叫做∠A的正切(tangent) ,记作tanA,即
锐角A的正弦、余弦和正切统称∠A的三角函数.
注意 :sinA,cosA, tanA都是一个完整的符号,单独的 “sin”没有意义 ,其中A前面的“∠”一般省略不写。
师:根据上面的三角函数定义,你知道正弦与余弦三角函数值的取值范围吗 ?
师:(点拨)直角三角形中,斜边大于直角边.
生:独立思考,尝试回答 ,交流结果.
明确:0<sina<1,0 p="" <cosa<1.
巩固练 习:课内练习T1、作业题T1、2
3、如图,在Rt△ABC中,∠C=90°,AB=5,BC=3, 求∠A, ∠B的正弦,余弦和正切.
分析:由勾股定理求出AC的长度,再根据直角三角形中锐角三角函数值与三边之间的关系求出各函数值。
师:观察以上 计算结果,你 发现了什么?
明确:sinA=cosB,cosA=sinB,tanA•ta nB=1
4 、课堂练习:课本课内练习T2、3,作业题T3、4、5、6
三、课 堂小结:谈谈今天 的收获
1、内容总结
(1)在RtΔA BC中,设∠C= 900,∠α为RtΔABC的一个锐角,则
∠α的正弦 , ∠α的余弦 ,
∠α的正切
(2)一般地,在Rt△ ABC中, 当∠C=90°时,sinA=cosB,cosA=sinB,tanA•tanB=1
2、 方法归纳
在涉及直角三角形边角关系时, 常借助三角函数定义来解
九年级数学课的优秀教案5
一、素质教育目标
(一)知识教学点
使学生知道当直角三角形的锐角固定时,它的对边、邻边与斜边的比值也都固定这一事实.
(二)能力训练点
逐步培养学生会观察、比较、分析、概括等逻辑思维能力.
(三)德育渗透点
引导学生探索、发现,以培养学生独立思考、勇于创新的精神和良好的学习习惯.
二、教学重点、难点
1.重点:使学生知道当锐角固定时,它的对边、邻边与斜边的比值也是固定的这一事实.
2.难点:学生很难想到对任意锐角,它的对边、邻边与斜边的比值也是固定的事实,关键在于教师引导学生比较、分析,得出结论.
三、教学步骤
(一)明确目标
1.如图6-1,长5米的梯子架在高为3米的墙上,则A、B间距离为多少米?
2.长5米的梯子以倾斜角∠CAB为30°靠在墙上,则A、B间的距离为多少?
3.若长5米的梯子以倾斜角40°架在墙上,则A、B间距离为多少?
4.若长5米的梯子靠在墙上,使A、B间距为2米,则倾斜角∠CAB为多少度?
前两个问题学生很容易回答.这两个问题的设计主要是引起学生的回忆,并使学生意识到,本章要用到这些知识.但后两个问题的设计却使学生感到疑惑,这对初三年级这些好奇、好胜的学生来说,起到激起学生的学习兴趣的作用.同时使学生对本章所要学习的内容的特点有一个初步的了解,有些问题单靠勾股定理或含30°角的直角三角形和等腰直角三角形的知识是不能解决的,解决这类问题,关键在于找到一种新方法,求出一条边或一个未知锐角,只要做到这一点,有关直角三角形的其他未知边角就可用学过的知识全部求出来.
通过四个例子引出课题.
(二)整体感知
1.请每一位同学拿出自己的三角板,分别测量并计算30°、45°、60°角的对边、邻边与斜边的比值.
学生很快便会回答结果:无论三角尺大小如何,其比值是一个固定的值.程度较好的学生还会想到,以后在这些特殊直角三角形中,只要知道其中一边长,就可求出其他未知边的长.
2.请同学画一个含40°角的直角三角形,并测量、计算40°角的对边、邻边与斜边的比值,学生又高兴地发现,不论三角形大小如何,所求的比值是固定的.大部分学生可能会想到,当锐角取其他固定值时,其对边、邻边与斜边的比值也是固定的吗?
这样做,在培养学生动手能力的同时,也使学生对本节课要研究的知识有了整体感知,唤起学生的求知欲,大胆地探索新知.
(三)重点、难点的学习与目标完成过程
1.通过动手实验,学生会猜想到“无论直角三角形的锐角为何值,它的对边、邻边与斜边的比值总是固定不变的”.但是怎样证明这个命题呢?学生这时的思维很活跃.对于这个问题,部分学生可能能解决它.因此教师此时应让学生展开讨论,独立完成.
2.学生经过研究,也许能解决这个问题.若不能解决,教师可适当引导:
若一组直角三角形有一个锐角相等,可以把其
顶点A1,A2,A3重合在一起,记作A,并使直角边AC1,AC2,AC3……落在同一条直线上,则斜边AB1,AB2,AB3……落在另一条直线上.这样同学们能解决这个问题吗?引导学生独立证明:易知,B1C1∥B2C2∥B3C3……,∴△AB1C1∽△AB2C2∽△AB3C3∽……,∴
形中,∠A的对边、邻边与斜边的比值,是一个固定值.
通过引导,使学生自己独立掌握了重点,达到知识教学目标,同时培养学生能力,进行了德育渗透.
而前面导课中动手实验的设计,实际上为突破难点而设计.这一设计同时起到培养学生思维能力的作用.
练习题为 作了孕伏同时使学生知道任意锐角的对边与斜边的比值都能求出来.
(四)总结与扩展
1.引导学生作知识总结:本节课在复习勾股定理及含30°角直角三角形的性质基础上,通过动手实验、证明,我们发现,只要直角三角形的锐角固定,它的对边、邻边与斜边的比值也是固定的.
教师可适当补充:本节课经过同学们自己动手实验,大胆猜测和积极思考,我们发现了一个新的结论,相信大家的逻辑思维能力又有所提高,希望大家发扬这种创新精神,变被动学知识为主动发现问题,培养自己的创新意识.
2.扩展:当锐角为30°时,它的对边与斜边比值我们知道.今天我们又发现,锐角任意时,它的对边与斜边的比值也是固定的.如果知道这个比值,已知一边求其他未知边的问题就迎刃而解了.看来这个比值很重要,下节课我们就着重研究这个“比值”,有兴趣的同学可以提前预习一下.通过这种扩展,不仅对正、余弦概念有了初步印象,同时又激发了学生的兴趣.
四、布置作业
本节课内容较少,而且是为正、余弦概念打基础的,因此课后应要求学生预习正余弦概念.