中考数学学生复习教案
中考数学学生复习教案都有哪些?为了加深学生的使用和理解,我们将继续引导学生思考是否有其他解决问题的思路。老师肯定学生的想法并组织学生做计算,这个时候就需要一份教学设计,下面是小编为大家带来的中考数学学生复习教案七篇,希望大家能够喜欢!
中考数学学生复习教案(精选篇1)
教学目标:
1、使学生在现实情境中初步认识负数,了解负数的作用,感受运用负数的需要和方便。
2、使学生知道正数和负数的读法和写法,知道0既不是正数,又不是负数。正数都大于0,负数都小于0。
3、使学生体验数学和生活的密切联系,激发学生学习数学的兴趣,培养学生应用数学的能力。
教学重点:
初步认识正数和负数以及读法和写法。
教学难点:
理解0既不是正数,也不是负数。
教学具准备:
多媒体课件、温度计、练习纸、卡片等。
教学过程:
一、游戏导入(感受生活中的相反现象)
1、游戏:我们来玩个游戏轻松一下,游戏叫做《我反我反我反反反》。游戏规则:老师说一句话,请你说出与它相反意思的话。
①向上看(向下看)
②向前走200米(向后走200米)
③电梯上升15层(下降15层)。
2、下面我们来难度大些的,看谁反应最快。
①我在银行存入了500元(取出了500元)。
②知识竞赛中,五(1)班得了20分(扣了20分)。
③10月份,学校小卖部赚了500元。(亏了500元)。
④零上10摄氏度(零下10摄氏度)。
说明什么是相反意义的量(意义正好相反)
3、谈话:周老师的一位朋友喜欢旅游,11月下旬,他又打算去几个旅游城市走一走。我呢,特意帮他留意了一下这几个地方在未来某天的最低气温,以便做好出门前衣物的准备。下面就请大家一起和我走进天气预报。(天气预报片头)
二、教学例1
(1)认识温度计,理解用正负数来表示零上和零下的温度。
课件出示地图:点击南京出示温度计和南京的图片。首先来看一下南京的气温。
这里有个温度计。我们先来认识温度计,请大家仔细观察:这样的一小格表示多少摄氏度呢?5小格呢?10小格呢?
B、现在你能看出南京是多少摄氏度吗?(是0℃。)你是怎么知道的?(那里有个0,表示0摄氏度)。
(2)上海的气温:上海的最低气温是多少摄氏度呢?(在温度计上拨一拨)拨的时候是怎样想的呢?(在零刻度线以上四格)
指出:上海的气温比0℃要高,是零上4摄氏度。(教师结合课件,突出上海的气温在零刻度线以上)。
(3)了解首都北京的最低气温:北京又是多少摄氏度呢?与南京的0℃比起来,又怎样了呢?(比南京的0℃要低)你能用一个手势来表示它和0℃的关系吗?(对,北京的气温比0度低,是零下4摄氏度)你能在温度计上拨出来吗?
(4)比较:“4℃”和“—4℃”的意义相同吗?有什么不同?(不一样,一个在0℃以上,一个在0℃以下)。
①上海的气温比0℃高,是零上4摄氏度,我们可以记作+4℃,读作正四摄氏度,写的时候先写一个正号(指出是正号不是加号,意义和读法都不同了)再写一个4(板书),大家跟我一起来比划一下。+4也可以直接写成4,把正号省略了。所以同学们所说的4℃也就是+4℃。(板书)负号能不能省略不写?为什么?
②北京的气温比0℃低,是零下4摄氏度。我们可以用—4℃来表示零下4摄氏度(板书—4)。跟老师一起来读一下。写的时候可以先写一个负号(指出是负号不是减号)再写一个4就可以了,同桌互相比划一下。
(5)小结:通过刚才对三个城市的温度的了解,我们知道记录温度时,以0℃为界线,用象+4或4这些数可以来表示零上温度,用—4这样的数可以表示零下温度。
2、试一试:学生看温度计,写出各地的温度,并读一读。(写在卡片上)
3、听一段中央台的天气预报,将你听到城市的最低和温度记录下来。
4、小结:通过刚才的学习,我们得出:以零摄氏度为界线,零上温度用正几或直接用几来表示,零下温度用负几来表示。
三、学习珠峰、吐鲁番盆地的海拔表达方法(P4第2题)
1、同学们你们知道吗?世界第一高峰——珠穆朗玛峰从山脚到山顶,气温相差很大,这是和它的海拔高度有关的。最近经国家测绘局公布了珠峰的最新海拔高度。老师把有关网页带来了。(课件出现网页,上面有简单的文字介绍)。谁来读一读这段介绍。
2、今天老师还带来一张珠穆朗玛峰的海拔图,请看。(课件动态地演示珠穆朗玛峰的海拔图)。从图上,你看懂了些什么?
3、我们再来看新疆的吐鲁番盆地的海拔图。(动态演示吐鲁番盆地的海拔情况)。
你又能从图上看懂些什么呢?(引导学生交流,回答珠穆朗玛峰比海平面高8844.43米;吐鲁番盆地比海平面低155米)。
4、珠穆朗玛峰比海平面高,吐鲁番盆地比海平面低。大家再想想:你能用一种简单的方法来记录一下这两个地方的海拔吗?
(1)交流:珠穆朗玛峰的海拔可以记作:+8844.43米或8844.43米。
吐鲁番盆地的海拔可以记作:—155米。(板书)
(2)小结:以海平面为界线,+8844.43米或8844.43米这样的数可以表示海平面以上的高度,—155米这样的数可以表示海平面以下的高度。
四、小组讨论,归纳正数和负数。
1、通过刚才的学习,我们收集到了一些数据(课件显示)我们可以用这些数来表示零上温度和零下温度,还可以表示海平面以上的高度和海平面以下的高度。那么你们观察一下这些数,它们一样吗?你们想帮它们分分类吗?
2、学生交流、讨论。
3、指出:因为+8844.43也可以写成8844.43米,所以有正号和没正号都可以归于一类。提出疑问:0到底归于哪一类?(引导学生争论,各自发表意见)
①如果都同意分三类的,老师可以出难题:我觉得0可以分在4它们一类啊,你们怎么来说服我?
②如果有学生发表分三类的,有的分两类的,可以引导他们互相争论。
4、小结:什么是正数、负数?
师:(结合图)我们从温度计上观察,以0℃为界限线,0℃以上的温度用正几表示,0℃以下的温度用负几表示。同样,以海平面为界线,高于海平面的高度我们用正几来表示,低于海平面我们用负几表示。0是正负数的分界点,把正数和负数分开了,它谁都不属于。但对于正数和负数来说,它却必不可少。我们把以前学过的,象+4、16、3/8、0。5、+8844。43等这样的数叫做正数;象—4、—155等这样的数我们叫做负数;而0既不是正数,也不是负数。(板书)这节课我们就和大家一起来认识正数和负数。(板书:认识正数和负数)
五、联系生活,巩固练习
1、练习一第2、3题
2、你知道吗:水沸腾时的温度是__。水结冰时的温度是__。地球表面的最低温度是。
3、讨论生活中的正数和负数
(1)存折:这里的—800表示什么意思?(以原来的钱为标准,取出了800元记作—800;存入了1200元记作1200元,还可以记作+1200元)
(2)电梯:这里的1和—1表示什么意思?(以地平面为界线,地平面以上一层我们用1或+1来表示,—1就表示地下一层)。老师现在要到33层应该按几啊?要到地下3层呢?
六、课堂小结
这节课我们一起认识了正数和负数。在我们的生活中,零摄氏度以上和零摄氏度以下,海平面以上和海平面以下,得分与失分等都具有相反的意义,我们都可以用正数和负数来表示。
中考数学学生复习教案(精选篇2)
【教学目标】
引导学生通过常规分析,得出解题思路,经历提出问题,自探问题,应用知识的过程,自主总结出解题办法;
【教学难点】
找出题目中的可有可无的已知条件,说一说为什么可以这样认为
【教学过程】
问:以前学过的有关路程,时间,和速度之间的关系是怎么样的?你能写出它们之间的关系吗?
出示例题:甲、乙两地公路全长352千米。汽车原来从甲地到乙地要11小时,建成高速公路后,汽车每小时速度是原来的2.5倍。现在汽车从甲地到乙地需要多少小时?
分析:要求现在汽车从甲地到乙地需要多少小时,那么先要求出汽车现在的速度,而汽车现在的速度是原来的2.5倍,那么还得先求出汽车原来的速度。根据`甲乙两地公路全长352千米。汽车原来从甲地到乙要11小时',可以求出汽车原来的速度。
学生写出解答过程:汽车原来的速度:352÷1=32(千米); 汽车现在的速度:32×2.5=80(千米)
现在的时间:352÷80=4.4(小时)
问:用比例的思路该怎么样理解这道题目呢?
分析:甲、乙两地的公路长度一定,汽车的速度和所需的时间成反比例。因为现在的速度是原来的2.5倍,所以原来的时间是现在的2.5倍。即:11÷2.5=4.4(小时)。
这样解答使得`甲乙两地公路全长352千米'成了多余条件,但是又不影响解答问题。
【我们来探索】
一批零件有240个,王师傅单独做需要6小时,李师傅的工作效率是王师傅的1.5倍,那么如果让李师傅单独做这批零件,需要几小时?
【总结】
在解答应用题时要善于应用不同的思路和技巧,巧解问题
【作业】
丁阿姨打一份稿件需4小时,王阿姨的速度是丁阿姨的,那么如果由王阿姨打这份稿件,需要几小时?
丁阿姨打一份稿件需要4小时,王阿姨的速度与丁阿姨的速度比是4:5,那么如果由王阿姨打这份稿件,需要几小时?
中考数学学生复习教案(精选篇3)
教学目标
1.经历不同的拼图方法验证公式的过程,在此过程中加深对因式分解、整式运算、面积等的认识。
2.通过验证过程中数与形的结合,体会数形结合的思想以及数学知识之间内在联系,每一部分知识并不是孤立的。
3.通过丰富有趣的拼图活动,经历观察、比较、拼图、计算、推理交流等过程,发展空间观念和有条理地思考和表达的能力,获得一些研究问题与合作交流方法与经验。
4.通过获得成功的体验和克服困难的经历,增进数学学习的信心。通过丰富有趣拼的图活动增强对数学学习的兴趣。
重点
1.通过综合运用已有知识解决问题的过程,加深对因式分解、整式运算、面积等的认识。
2.通过拼图验证公式的过程,使学习获得一些研究问题与合作交流的方法与经验。
难点
利用数形结合的方法验证公式
教学方法
动手操作,合作探究课型新授课教具投影仪
教师活动
学生活动
情景设置:
你已知道的关于验证公式的拼图方法有哪些?(教师在此给予学生独立思考和讨论的时间,让学生回想前面拼图。)
新课讲解:
把几个图形拼成一个新的图形,再通过图形面积的计算,常常可以得到一些有用的式子。美国第二十任总统伽菲尔德就由这个图(由两个边长分别为a、b、c的直角三角形和一个两条直角边都是c的直角三角形拼成一个新的图形)得出:c2=a2+b2他的证法在数学史上被传为佳话。他是这样分析的,如图所示:
教师接着在介绍教材第94页例题的拼法及相关公式
提问:还能通过怎样拼图来解决以下问题
(1)任意选取若干块这样的硬纸片,尝试拼成一个长方形,计算它的面积,并写出相应的等式;
(2)任意写出一个关于a、b的二次三项式,如a2+4ab+3b2
试用拼一个长方形的方法,把这个二次三项式因式分解。
这个问题要给予学生充足的时间和空间进行讨论和拼图,教师在这要引导适度,不要限制学生思维,同时鼓励学生在拼图过程中进行交流合作
了解学生拼图的情况及利用自己的拼图验证的情况。教师在巡视过程中,及时指导,并让学生展示自己的拼图及让学生讲解验证公式的方法,并根据不同学生的不同状况给予适当的引导,引导学生整理结论。
小结:
从这节课中你有哪些收获?
(教师应给予学生充分的时间鼓励学生畅所欲言,只要是学生的感受和想法,教师要多鼓励、多肯定。最后,教师要对学生所说的进行全面的总结。)
学生回答
a(b+c+d)=ab+ac+ad
(a+b)(c+d)=ac+ad+bc+bd
(a+b)2=a2+2ab+b2
学生拿出准备好的硬纸板制作
给学生充分的时间进行拼图、思考、交流经验,对于有困难的学生教师要给予适当引导。
中考数学学生复习教案(精选篇4)
教学目的
1、使学生了解无理数和实数的概念,掌握实数的分类,会准确判断一个数是有理数还是无理数。
2、使学生能了解实数绝对值的意义。
3、使学生能了解数轴上的点具有一一对应关系。
4、由实数的分类,渗透数学分类的思想。
5、由实数与数轴的一一对应,渗透数形结合的思想。
教学分析
重点:无理数及实数的概念。
难点:有理数与无理数的区别,点与数的一一对应。
教学过程
一、复习
1、什么叫有理数?
2、有理数可以如何分类?
(按定义分与按大小分。)
二、新授
1、无理数定义:无限不循环小数叫做无理数。
判断:无限小数都是无理数;无理数都是无限小数;带根号的数都是无理数。
2、实数的定义:有理数与无理数统称为实数。
3、按课本中列表,将各数间的联系介绍一下。
除了按定义还能按大小写出列表。
4、实数的相反数:
5、实数的绝对值:
6、实数的运算
讲解例1,加上(3)若|x|=π(4)若|x-1|= ,那么x的值是多少?
例2,判断题:
(1)任何实数的偶次幂是正实数。( )
(2)在实数范围内,若| x|=|y|则x=y。( )
(3)0是最小的实数。( )
(4)0是绝对值最小的实数。( )
解:略
三、练习
P148 练习:3、4、5、6。
四、小结
1、今天我们学习了实数,请同学们首先要清楚,实数是如何定义的,它与有理数是怎样的关系,二是对实数两种不同的分类要清楚。
2、要对应有理数的相反数与绝对值定义及运算律和运算性质,来理解在实数中的运用。
五、作业
1、P150 习题A:3。
2、基础训练:同步练习1。
中考数学学生复习教案(精选篇5)
一、教材分析:
反比例函数的图象与性质是对正比例函数图象与性质的复习和对比,也是以后学习二次函数的基础。本课时的学习是学生对函数的图象与性质一个再知的过程,由于初二学生是首次接触双曲线这种函数图象,所以教学时应注意引导学生抓住反比例函数图象的特征,让学生对反比例函数有一个形象和直观的认识。
二、教学目标分析
根据二期课改“以学生为主体,激活课堂气氛,充分调动起学生参与教学过程”的精神。在教学设计上,我设想通过使用多媒体课件创设情境,在掌握反比例函数相关知识的同时激发学生的学习兴趣和探究欲望,引导学生积极参与和主动探索。因此把教学目标确定为:
1、掌握反比例函数的概念,能够根据已知条件求出反比例函数的解析式;学会用描点法画出反比例函数的图象;掌握图象的特征以及由函数图象得到的函数性质。
2、在教学过程中引导学生自主探索、思考及想象,从而培养学生观察、分析、归纳的综合能力。
3、通过学习培养学生积极参与和勇于探索的精神。
三、教学重点难点分析
本堂课的重点是掌握反比例函数的定义、图象特征以及函数的性质;
难点则是如何抓住特征准确画出反比例函数的图象。
为了突出重点、突破难点。我设计并制作了能动态演示函数图象的多媒体课件。让学生亲手操作,积极参与并主动探索函数性质,帮助学生直观地理解反比例函数的性质。
四、教学方法
鉴于教材特点及初二学生的年龄特点、心理特征和认知水平,设想采用问题教学法和对比教学法,用层层推进的提问启发学生深入思考,主动探究,主动获取知识。同时注意与学生已有知识的联系,减少学生对新概念接受的困难,给学生充分的自主探索时间。通过教师的引导,启发调动学生的积极性,让学生在课堂上多活动、多观察,主动参与到整个教学活动中来,组织学生参与“探究——讨论——交流——总结”的学习活动过程,同时在教学中,还充分利用多媒体教学,通过演示,操作,观察,练习等师生的共同活动中启发学生,让每个学生动手、动口、动眼、动脑,培养学生直觉思维能力。
五、学法指导
本堂课立足于学生的“学”,要求学生多动手,多观察,从而可以帮助学生形成分析、对比、归纳的思想方法。在对比和讨论中让学生在“做中学”,提高学生利用已学知识去主动获取新知识的能力。因此在课堂上要采用积极引导学生主动参与,合作交流的方法组织教学,使学生真正成为教学的主体,体会参与的乐趣,成功的喜悦,感知数学的奇妙。
六、教学过程
(一)复习引入——反函数解析式
练习1:写出下列各题的关系式:
(1)正方形的周长C和它的一边的长a之间的关系
(2)运动会的田径比赛中,运动员小王的平均速度是8米/秒,他所跑过的路程s和所用时间t之间的关系
(3)矩形的面积为10时,它的长x和宽y之间的关系
(4)王师傅要生产100个零件,他的工作效率x和工作时间t之间的关系
问题1:请大家判断一下,在我们写出来的这些关系式中哪些是正比例函数?
问题1主要是复习正比例函数的定义,为后面学生运用对比的方法给出反比例函数的定义打下基础。
问题2:那么请大家再仔细观察一下,其余两个函数关系式有什么共同点吗?
通过问题2来引出反比例函数的解析式,请学生对比正比例函数的定义来给出反比例函数的定义,这不仅有助于对旧知识的复习和巩固,同时还可以培养学生的对比和探究能力。
例题1:已知变量y与x成反比例,且当x=2时,y=9
(1)写出y与x之间的函数解析式
(2)当x=3、5时,求y的值
(3)当y=5时,求x的值
通过对例1的学习使学生掌握如何根据已知条件来求出反比例函数的解析式。在解题过程中,引导学生运用在求正比例函数的解析式时用到的“待定系数法”,先设反比例函数为,再把相应的x,y值代入求出k,k值的确定,函数解析式也就确定了。
课堂练习:已知x与y成反比例,根据以下条件,求出y与x之间的函数关系式
(1)x=2,y=3(2)x=,y=
通过此题,对学生掌握如何根据已知条件去求反比例函数的解析式的学习情况做一个简单的反馈。
(二)探究学习1——函数图象的画法
问题3:如何画出正比例函数的图象?
通过问题3来复习正比例函数图象的画法主要分为列表、描点、连线三个步骤,为学习反比例函数图像的画法打下基础。
问题4:那反比例函数的图象应该怎样去画呢?
在教学过程中可以引导学生仿照正比例函数图象的的画法。
设想的教学设计是:
(1)引导学生运用在画正比例函数图象中所学到的方法,分小组讨论尝试,采用列表、描点、连线的方法画出函数和的图象;
(2)老师边巡视,边指导,用实物投影仪反映一些学生在函数图象中出现的典型错误,和学生一起找出错误的地方,分析原因;
(3)随后老师在黑板上演示画好反比例函数图像的步骤,展示正确的函数图象,引导学生观察其图象特征(双曲线有两个分支)。
初二学生是首次接触到双曲线这种比较特殊函数图象,设想学生可能会在下面几个环节中出错:
(1)在“列表”这一环节
在取点时学生可能会取零,在这里可以引导学生结合代数的方法得出x不能为零。也可能由于在取点时的不恰当,导致函数图象的不完整、不对称。在这里应该要指导学生在列表时,自变量x的取值可以选取绝对值相等而符号相反的数,相应的就得到绝对相等而符号相反的对应的函数值,这样可以简化计算的手续,又便于在坐标平面内找到点。
(2)在“连线”这一环节
学生画的点与点之间连线可能会有端点,未能用光滑的线条连接。因而在这里要特别要强调在将所选取的点连结时,应该是“光滑曲线”,为以后学习二次函数的图像打下基础。为了使函数图象清晰明显,可以引导学生注意尽量选取较多的自变量x的值和对应的函数值y,以便在坐标平面内得到较多的“点”,画出曲线。
从而引导学生画出正确的函数图象。
(3)图象与x轴或y轴相交
在这里我认为可以埋下一个伏笔,给学生留下一个悬念,为后面学习函数的性质打下基础。
需要说明的是:利用多媒体课件学习能吸引学生的注意力,引起学生进一步学习的兴趣。不过,尽管多媒体的演示既快又准确,我认为在学生第学画反比例函数图象的过程中,老师还是应该在黑板上认真示范画出图象的每一个步骤,毕竟多媒体还是不能替代我们平时老师在黑板上板书。
巩固练习:画出函数和的图象
通过巩固练习,让学生再次动手画出函数图象,改正在初次画图象时出现在一些问题。老师使用函数图象的课件,用屏幕显示的函数图象验证学生画出的函数图象的准确性。
(三)探究学习2——函数图象性质
1、图象的分布情况
问题5:请大家回忆一下正比例函数的分布情况是怎么样的呢?
提出问题5主要是起到巩固复习,为引导学生学习反比例函数图象的分布情况打下基础。
问题6:观察刚才所画的图象我们发现反比例函数的图象有两个分支,那么它的分布情况又是怎么样的呢?
在这一环节中的设计:
(1)引导学生对比正比例函数图象的分布,启发他们主动探索反比例函数的分布情况,给学生充分考虑的时间;
(2)充分运用多媒体的优势进行教学,使用函数图象的课件试着任意输入几个k的值,观察函数图象的不同分布,观察函数图象的动态演变过程。把不同的函数图象集中到一个屏幕中,便于学生对比和探究。学生通过观察及对比,对反比例函数图象的分布与k的关系有一个直观的了解;
(3)组织小组讨论来归纳出反比例函数的一条性质:当k>0时,函数图象的两支分别在第一、三象限内;当k<0时,函数图象的两支分别在第二、四象限内。
2、图象的变化情况
问题7:正比例函数图象的变化情况是怎么样的呢?
提出问题7主要是起到巩固复习,为引导学生学习反比例函数图象的变化情况打下基础。
问题8:那反比例函数的图象,是否也具有这样的性质呢?
在这一环节的教学设计是:
(1)回顾反比例函数和的图象,通过实际观察;
(2)根据解析式对行取值,比较x在取不同值时函数值的变化情况;
(3)电脑演示及学生小组讨论,请学生给出结论。即这个问题必须分成两种情况讨论即当k>0时,自变量x逐渐增大时,y的值则随着逐渐减小;当k<0时,自变量x逐渐增大时,y的值也随着逐渐增大。
(4)对于学生做出的结论,老师应该要给予肯定,同时可以提出:有没有同学需要补充的呢?若没有,则可以举例:当k>0,分别比较在第三象限x=—2,第一象限x=2时的y的值的大小,则以上性质是否依然成立?学生的回答应该是:不成立。这时老师再请学生做小结:必须限定在每一个象限内,才有以上性质成立。
问题9:当函数图象的两个分支无限延伸时,它与x轴、y轴相交吗?为什么?
在这个环节中,可以结合刚才学生所画的错误图象,引导学生可以通过代数的方法分析反比例函数的解析式,由分母不能为零,得x不能为零。由k≠0,得y必不为零,从而验证了反比例函数的图象。当两个分支无限延伸时,可以无限地逼近x轴、y轴,但永远不会与两轴相交。随即强调画图时要注意准确性。
(四)备用思考题
1、反比例函数的图象在第一、三象限,求a的取值范围
2、当m为何值时,y是x的正比例函数;当m为何值时,y是x的反比例函数
(五)小结:
中考数学学生复习教案(精选篇6)
一、教材分析
(一)教材地位
这节课是九年制义务教育初级中学教材北师大版七年级第二章第一节《探索勾股定理》第一课时,勾股定理是几何中几个重要定理之一,它揭示的是直角三角形中三边的数量关系。它在数学的发展中起过重要的作用,在现时世界中也有着广泛的作用。学生通过对勾股定理的学习,可以在原有的基础上对直角三角形有进一步的认识和理解。
(二)教学目标
知识与能力:掌握勾股定理,并能运用勾股定理解决一些简单实际问题。
过程与方法:经历探索及验证勾股定理的过程,了解利用拼图验证勾股定理的方法,发展学生的合情推理意识、主动探究的习惯,感受数形结合和从特殊到一般的思想。
情感态度与价值观:激发学生爱国热情,让学生体验自己努力得到结论的成就感,体验数学充满探索和创造,体验数学的美感,从而了解数学,喜欢数学。
(三)教学重点:经历探索及验证勾股定理的过程,并能用它来解决一些简单的实际问题。
教学难点:用面积法(拼图法)发现勾股定理。
突出重点、突破难点的办法:发挥学生的主体作用,通过学生动手实验,让学生在实验中探索、在探索中领悟、在领悟中理解。
二、教法与学法分析:
学情分析:七年级学生已经具备一定的观察、归纳、猜想和推理的能力。他们在小学已学习了一些几何图形的面积计算方法(包括割补、拼接),但运用面积法和割补思想来解决问题的意识和能力还不够。另外,学生普遍学习积极性较高,课堂活动参与较主动,但合作交流的能力还有待加强。
教法分析:结合七年级学生和本节教材的特点,在教学中采用“问题情境————建立模型————解释应用———拓展巩固”的模式,选择引导探索法。把教学过程转化为学生亲身观察,大胆猜想,自主探究,合作交流,归纳总结的过程。
学法分析:在教师的组织引导下,学生采用自主探究合作交流的研讨式学习方式,使学生真正成为学习的主人。
三、教学过程设计
1、创设情境,提出问题
2、实验操作,模型构建
3、回归生活,应用新知
4、知识拓展,巩固深化
5。感悟收获,布置作业
(一)创设情境提出问题
(1)图片欣赏勾股定理数形图1955年希腊发行美丽的勾股树20__年国际数学的一枚纪念邮票大会会标设计意图:通过图形欣赏,感受数学美,感受勾股定理的文化价值。
(2)某楼房三楼失火,消防队员赶来救火,了解到每层楼高3米,消防队员取来6。5米长的云梯,如果梯子的底部离墙基的距离是2、5米,请问消防队员能否进入三楼灭火?
设计意图:以实际问题为切入点引入新课,反映了数学来源于实际生活,产生于人的需要,也体现了知识的发生过程,解决问题的过程也是一个“数学化”的过程,从而引出下面的环节。
(二)实验操作模型构建
1、等腰直角三角形(数格子)
2、一般直角三角形(割补)
问题一:对于等腰直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面积有何关系?
设计意图:这样做利于学生参与探索,利于培养学生的语言表达能力,体会数形结合的思想。
问题二:对于一般的直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面积也有这个关系吗?(割补法是本节的难点,组织学生合作交流)
设计意图:不仅有利于突破难点,而且为归纳结论打下基础,让学生的分析问题解决问题的能力在无形中得到提高。
通过以上实验归纳总结勾股定理。
设计意图:学生通过合作交流,归纳出勾股定理的雏形,培养学生抽象、概括的能力,同时发挥了学生的主体作用,体验了从特殊——一般的认知规律。
(三)回归生活应用新知
让学生解决开头情景中的问题,前呼后应,增强学生学数学、用数学的意识,增加学以致用的乐趣和信心。
四、知识拓展巩固深化
基础题,情境题,探索题。
设计意图:给出一组题目,分三个梯度,由浅入深层层练习,照顾学生的个体差异,关注学生的个性发展。知识的运用得到升华。
基础题:直角三角形的一直角边长为3,斜边为5,另一直角边长为X,你可以根据条件提出多少个数学问题?你能解决所提出的问题吗?
设计意图:这道题立足于双基。通过学生自己创设情境,锻炼了发散思维。
情境题:小明妈妈买了一部29英寸(74厘米)的电视机。小明量了电视机的屏幕后,发现屏幕只有58厘米长和46厘米宽,他觉得一定是售货员搞错了。你同意他的想法吗?
设计意图:增加学生的生活常识,也体现了数学源于生活,并用于生活。
探索题:做一个长,宽,高分别为50厘米,40厘米,30厘米的木箱,一根长为70厘米的木棒能否放入,为什么?试用今天学过的知识说明。
设计意图:探索题的难度相对大了些,但教师利用教学模型和学生合作交流的方式,拓展学生的思维、发展空间想象能力。
五、感悟收获布置作业:
这节课你的收获是什么?
作业:
1、课本习题
2、12、搜集有关勾股定理证明的资料。
六、板书设计:探索勾股定理
如果直角三角形两直角边分别为a,b,斜边为c,那么
七、设计说明:
1、探索定理采用面积法,为学生创设一个和谐、宽松的情境,让学生体会数形结合及从特殊到一般的思想方法。
2、让学生人人参与,注重对学生活动的评价,一是学生在活动中的投入程度;二是学生在活动中表现出来的思维水平、表达水平。
中考数学学生复习教案(精选篇7)
教学内容分析:
⑴学习特殊的平行四边形—正方形,它的特殊的性质和判定。
⑵前面学习了平行四边形、矩形菱形,类比他们的性质与判断,有利于对正方形的研究。
⑶对本节的学习,继续培养学生分类研究的思想,并且建立新旧知识的联系,类比的基础上进行归纳,梳理知识,进一步发展学生的推理能力。
学生分析:
⑴学生在小学初步认识了正方形,并且本节课之前,学生又学习了几种平行四边形,已经具备了观察研究平行四边形的经验与知识基础。
⑵学生在上几节已有了推理的经历,但是对于证明,学生的思维能力还不成熟,有待于提高。
教学目标:
⑴知识与技能:了解正方形是特殊的平行四边形,掌握它的性质和判定,会利用性质与判定进行简单的说理。
⑵过程与方法:通过类比前边的四边形的研究,探索并归纳正方形的性质与判定。通过运用提高学生的推理能力。
⑶情感态度与价值观:在学习中体会正方形的完美性,通过活动获得成功的喜悦与自信。
重点:掌握正方形的性质与判定,并进行简单的推理。
难点:探索正方形的判定,发展学生的推理能
教学方法:类比与探究
教具准备:可以活动的四边形模型。
一、教学分析
(一)教学内容分析
1.教材:义务教育课程标准实验教科书《数学》九年级上册(人民教育出版社)
2.本课教学内容的地位、作用,知识的前后联系
《中心对称图形》是新人教版九年级数学上册第二十三章第二单元第二节课的内容。本节教材属于图形变换的内容,是在学习了“轴对称和轴对称图形”、“旋转和中心对称”后的一种对称图形,因此涉及归纳、类比等思想方法,对激发学生探索精神和创新意识等方面都有重要意义。
3.本课教学内容的特点,重点分析体现新课程理念的特点
本节课主要介绍中心对称图形的概念、中心对称图形的识别、中心对称图形与轴对称图形与中心对称的比较、中心对称图形的性质。为使学生感受、理解知识的产生和发展过程,培养学生的抽象思维,我将通过:(1)例举日常生活中的一些旋转对称图形引出中心对称图形的概念;(2)引导学生观察、猜想、实验、归纳、类比等方法探究中心对称图形的性质,(3)通过多媒体演示使学生对中心对称图形的性质有直观的表象。我认为这环环相扣、层层深入、循序渐进的活动过程,符合新课程标准理念和学生建构知识的规律,有利于激发学生的学习情趣。
(二)教学对象分析
1.学生所在地区、学校及班级的特色
我授课的班级是西安市阎良区振兴中学九年级一班,作为九年级的学生,在图形的对称方面已经积累一些经验,已经具有一定的观察、猜想、实验、归纳、类比等研究图形对称变换的能力;班级学生具有个性活泼,思维活跃,对各种事物充满好奇,学习情绪易于调动,学习积极性高的特点,但学生的抽象思维能力个体差异较大,并且班级中已出现分化现象。
2.学生的年龄特点和认知特点
班级学生的年龄大多在15岁到17岁间。他们已具备了一定的独立分析、解决问题的能力,表现欲望较为强烈,喜好发表个人见解并且具有一定的合作交流、共同探讨的意识与经验,因此在课程内容的安排中,适当地创设一些具有一定思维深度的问题,加强学生在学习过程中自主探索与合作交流的紧密结合,促使学生在探究的过程中,更多地获得成功的体验,感受学习思考的乐趣。
教学过程:
一:复习巩固,建立联系。
【教师活动】
问题设置:①平行四边形、矩形,菱形各有哪些性质?
②()的四边形是平行四边形。()的平行四边形是矩形。()的平行四边形是菱形。()的四边形是矩形。()的四边形是菱形。
【学生活动】
学生回忆,并举手回答,对于填空题,让更多的学生参与,说出更多的答案。
【教师活动】
评析学生的结果,给予表扬。
总结性质从边角对角线考虑,在填空时也考虑这几方面之外,还应该考虑三者之间的联系与区别。
演示平行四边形变为矩形菱形的过程。
二:动手操作,探索发现。
活动一:拿出一张矩形纸片,拉起一角,使其宽AB落在长AD边上,如下图所示,沿着B′E剪下,能得到什么图形?
【学生活动】
学生拿出自备矩形纸片,动手操作,不难发现它是正方形。
设置问题:①什么是正方形?
观察发现,从活动中体会。
【教师活动】:演示矩形变为正方形的过程,菱形变为正方形的过程。
【学生活动】认真观察变化过程,思考之间的联系,举手回答设置问题。
设置问题②正方形是矩形吗,是菱形吗?是平行四边形吗?为什么?
【学生活动】
小组讨论,分组回答。
【教师活动】
总结板书:㈠(一组邻边相等)的矩形是正方形,(一个角是直角)的菱形是正方形。
设置问题③正方形有那些性质?
【学生活动】
小组讨论,举手抢答。
【教师活动】
表扬学生发言,板书学生发现,㈡正方形每一条对角线平分一组对角
活动二:拿出活动一得到的正方形折一折,正方形是轴对称图形吗?有几条对称轴?
学生活动
折纸发现,说出自己的发现。得到正方形的又一性质。正方形是轴对称图形。
教师活动
演示从平行四边形变为正方形的过程,擦去板书㈠中的括号内容,出示一下问题:你还可以怎样填空?
()的菱形是正方形,()的矩形是正方形,()的平行四边形是正方形,()的四边形是正方形。
学生活动
小组充分交流,表达不同的意见。
教师活动
评析活动,总结发现:
一组邻边相等的矩形是正方形,对角线互相平分的矩形是正方形;
有一个角是直角的菱形是正方形,对角线相等的菱形是正方形,;
有一组邻边相等且有一个角是直角的平行四边形是正方形,对角线相等且互相平分的平行四边形是正方形;
四边相等且有一角是直角的四边形是正方形,对角线相等且互相垂直平分的四边形是正方形。
以上是正方形的判定方法。
正方形是一个多么完美的平行四边形呀?大家互相说一说,它的完美体现在哪里?生活中有哪些利用正方形的例子?
学生交流,感受正方形
三,应用体验,推理证明。
出示例一:正方形ABCD的两条对角线AC,BD交与O,AB长4cm,求AC,AO长,及的度数。
方法一解:∵四边形ABCD是正方形
∴∠ABC=90°(正方形的四个角是直角)
BC=AB=4cm(正方形的四条边相等)
∴=45°(等腰直角三角形的底角是45°)
∴利用勾股定理可知,AC===4cm
∵AO=AC(正方形的对角线互相平分)
∴AO=×4=2cm
方法二:证明△AOB是等腰直角三角形,即可得证。
学生活动
独立思考,写出推理过程,再进行小组讨论,并且各小组指派代表写在黑板上,共同交流。
教师活动
总结解题方法,从正方形的性质全面考虑,准确利用条件,减少麻烦。评析解题步骤,表扬突出学生。
出示例二:在正方形ABCD中,E、F、G、H分别在它的四条边上,且AE=BF=CG=DH,四边形EFGH是什么特殊的四边形,你是如何判断的?
学生活动
小组交流,分析题意,整理思路,指名口答。
教师活动
说明思路,从已知出发或者从已有的判定加以选择。
四,归纳新知,梳理知识。
这一节课你有什么收获?
学生举手谈论自己的收获。
请把平行四边形,矩形,菱形,正方形分别填写在下图的ABCDC处,说明它们的关系。
发表评论
教学目标:
情意目标:培养学生团结协作的精神,体验探究成功的乐趣。
能力目标:能利用等腰梯形的性质解简单的几何计算、证明题;培养学生探究问题、自主学习的能力。
认知目标:了解梯形的概念及其分类;掌握等腰梯形的性质。
教学重点、难点
重点:等腰梯形性质的探索;
难点:梯形中辅助线的添加。
教学课件:PowerPoint演示文稿
教学方法:启发法、
学习方法:讨论法、合作法、练习法
教学过程:
(一)导入
1、出示图片,说出每辆汽车车窗形状(投影)
2、板书课题:5梯形
3、练习:下列图形中哪些图形是梯形?(投影)
结梯形概念:只有4、总结梯形概念:一组对边平行另以组对边不平行的四边形是梯形。
5、指出图形中各部位的名称:上底、下底、腰、高、对角线。(投影)
6、特殊梯形的分类:(投影)
(二)等腰梯形性质的探究
【探究性质一】
思考:在等腰梯形中,如果将一腰AB沿AD的方向平移到DE的位置,那么所得的△DEC是怎样的三角形?(投影)
猜想:由此你能得到等腰梯形的内角有什么样的性质?(学生操作、讨论、作答)
如图,等腰梯形ABCD中,AD∥BC,AB=CD。求证:∠B=∠C
想一想:等腰梯形ABCD中,∠A与∠D是否相等?为什么?
等腰梯形性质:等腰梯形的同一条底边上的两个内角相等。
【操练】
(1)如图,等腰梯形ABCD中,AD∥BC,AB=CD,∠B=60o,BC=10cm,AD=4cm,则腰AB=cm。(投影)
(2)如图,在等腰梯形ABCD中,AD∥BC,AB=CD,DE∥AC,交BC的延长线于点E,CA平分∠BCD,求证:∠B=2∠E.(投影)
【探究性质二】
如果连接等腰梯形的两条对角线,图中有哪几对全等三角形?哪些线段相等?(学生操作、讨论、作答)
如上图,等腰梯形ABCD中,AD∥BC,AB=CD,AC、BD相交于O,求证:AC=BD。(投影)
等腰梯形性质:等腰梯形的两条对角线相等。
【探究性质三】
问题一:延长等腰梯形的两腰,哪些三角形是轴对称图形?为什么?对称轴呢?(学生操作、作答)
问题二:等腰梯是否轴对称图形?为什么?对称轴是什么?(重点讨论)
等腰梯形性质:同以底上的两个内角相等,对角线相等
(三)质疑反思、小结
让学生回顾本课教学内容,并提出尚存问题;
学生小结,教师视具体情况给予提示:性质(从边、角、对角线、对称性等角度总结)、解题方法(化梯形问题为三角形及平行四边形问题)、梯形中辅助线的添加方法。