教育巴巴 > 初中教案 > 九年级教案 > 数学教案 >

中考数学教案模板

时间: 沐钦 数学教案

中考数学教案如何写?在古代,数学的主要原理是研究天文学、土地的合理分配、粮食作物、税收、贸易等相关计算。下面是小编为大家带来的中考数学教案模板七篇,希望大家能够喜欢!

中考数学教案模板

中考数学教案模板(篇1)

一.一元一次不等式组:关于同一个未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组。一元一次不等式组的概念可以从以下几个方面理解:

(1)组成不等式组的不等式必须是一元一次不等式;

(2)从数量上看,不等式的个数必须是两个或两个以上;

(3)每个不等式在不等式组中的位置并不固定,它们是并列的.

二.一元一次不等式组的解集及解不等式组:在一元一次不等式组中,各个不等式的解集的公共部分就叫做这个一元一次不等式组的解集。求这个不等式组解集的过程就叫解不等式组。解一元一次不等式组的步骤:

(1)先分别求出不等式组中各个不等式的解集;

(2)利用数轴或口诀求出这些解集的公共部分,也就是得到了不等式组的解集.

三.不等式(组)的解集的数轴表示:

一元一次不等式组知识点

1.用数轴表示不等式的解集,应记住下面的规律:大于向右画,小于向左画,有等号的画实心原点,无等号的画空心圆圈;

2.不等式组的解集,可以在数轴上先画同各个不等式的解集,找出公共部分即为不等式的解集。公共部分也就各不等式解集在数轴上的重合部分;

3..我们根据一元一次不等式组,化简成最简不等式组后进行分类,通常就能把一元一次不等式组分成如上四类。

说明:当不等式组中,含有“≤”或“≥”时,在解题时,我们可以不关注这个等号,这样就这类不等式组化归为上述四种基本不等式组中的某一种类型。但是,在解题的过程中,这个等号要与不等号相连,不能分开。

四.求一些特解:求不等式(组)的正整数解,整数解等特解(这些特解往往是有限个),解这类问题的步骤:先求出这个不等式的解集,然后借助于数轴,找出所需特解。

【一元一次不等式组考点分析】

(1)考查不等式组的概念;

(2)考查一元一次不等式组的解集,以及在数轴上的表示;

(3)考查不等式组的特解问题;

(4)确定字母的取值。

【一元一次不等式组知识点误区】

(1)思维误区,不等式与等式混淆;

(2)不能正确地确定出不等式组解集的公共部分;

(3)在数轴上表示不等式组解集时,混淆界点的表示方法;

(4)考虑不周,漏掉隐含条件;

(5)当有多个限制条件时,对不等式关系的发掘不全面,导致未知数范围扩大;

(6)对含字母的不等式,没有对字母取值进行分类讨论。

中考数学教案模板(篇2)

一、教学目标:

1、理解二元一次方程及二元一次方程的解的概念;

2、学会求出某二元一次方程的几个解和检验某对数值是否为二元一次方程的解;

3、学会把二元一次方程中的一个未知数用另一个未知数的一次式来表示;

4、在解决问题的过程中,渗透类比的思想方法,并渗透德育教育。

二、教学重点、难点:

重点:二元一次方程的意义及二元一次方程的解的概念。

难点:把一个二元一次方程变形成用关于一个未知数的代数式表示另一个未知数的形式,其实质是解一个含有字母系数的方程。

三、教学方法与教学手段:

通过与一元一次方程的比较,加强学生的类比的思想方法;通过“合作学习”,使学生认识数学是根据实际的需要而产生发展的观点。

四、教学过程:

1、情景导入:

新闻链接:x70岁以上老人可领取生活补助。

得到方程:80a+150b=902880、

2、新课教学:

引导学生观察方程80a+150b=902880与一元一次方程有异同?

得出二元一次方程的概念:含有两个未知数,并且所含未知数的项的次数都是1次的方程叫做二元一次方程。

做一做:

(1)根据题意列出方程:

①小明去看望奶奶,买了5kg苹果和3kg梨共花去23元,分别求苹果和梨的单价、设苹果的单价x元/kg,梨的单价y元/kg;

②在高速公路上,一辆轿车行驶2时的路程比一辆卡车行驶3时的路程还多20千米,如果设轿车的速度是a千米/小时,卡车的速度是b千米/小时,可得方程:

(2)课本P80练习2、判定哪些式子是二元一次方程方程。

合作学习:

活动背景爱心满人间——记求是中学“学雷锋、关爱老人”志愿者活动。

问题:参加活动的36名志愿者,分为劳动组和文艺组,其中劳动组每组3人,文艺组每组6人、团支书拟安排8个劳动组,2个文艺组,单从人数上考虑,此方案是否可行?为什么?把x=8,y=2代入二元一次方程3x+6y=36,看看左右两边有没有相等?由学生检验得出代入方程后,能使方程两边相等、得出二元一次方程的解的概念:使二元一次方程两边的值相等的'一对未知数的值叫做二元一次方程的一个解。

并提出注意二元一次方程解的书写方法。

3、合作学习:

给定方程x+2y=8,男同学给出y(x取绝对值小于10的整数)的值,女同学马上给出对应的x的值;接下来男女同学互换、(比一比哪位同学反应快)请算的最快最准确的同学讲他的计算方法、提问:给出x的值,计算y的值时,y的系数为多少时,计算y最为简便?

出示例题:已知二元一次方程x+2y=8。

(1)用关于y的代数式表示x;

(2)用关于x的代数式表示y;

(3)求当x=2,0,—3时,对应的y的值,并写出方程x+2y=8的三个解。

(当用含x的一次式来表示y后,再请同学做游戏,让同学体会一下计算的速度是否要快)

4、课堂练习:

(1)已知:5xm—2yn=4是二元一次方程,则m+n=;

(2)二元一次方程2x—y=3中,方程可变形为y=当x=2时,y=;

5、你能解决吗?

小红到邮局给远在农村的爷爷寄挂号信,需要邮资3元8角、小红有票额为6角和8角的邮票若干张,问各需要多少张这两种面额的邮票?说说你的方案。

6、课堂小结:

(1)二元一次方程的意义及二元一次方程的解的概念(注意书写格式);

(2)二元一次方程解的不定性和相关性;

(3)会把二元一次方程化为用一个未知数的代数式表示另一个未知数的形式。

7、布置作业:

中考数学教案模板(篇3)

教学目标:

1、了解公式的意义,使学生能用公式解决简单的实际问题;

2、初步培养学生观察、分析及概括的能力;

3、通过本节课的教学,使学生初步了解公式来源于实践又反作用于实践。

教学建议:

一、教学重点、难点

重点:通过具体例子了解公式、应用公式。

难点:从实际问题中发现数量之间的关系并抽象为具体的公式,要注意从中反应出来的归纳的思想方法。

二、重点、难点分析

人们从一些实际问题中抽象出许多常用的、基本的数量关系,往往写成公式,以便应用。如本课中梯形、圆的面积公式。应用这些公式时,首先要弄清楚公式中的字母所表示的意义,以及这些字母之间的数量关系,然后就可以利用公式由已知数求出所需的未知数。具体计算时,就是求代数式的值了。有的公式,可以借助运算推导出来;有的公式,则可以通过实验,从得到的反映数量关系的一些数据(如数据表)出发,用数学方法归纳出来。用这些抽象出的具有一般性的公式解决一些问题,会给我们认识和改造世界带来很多方便。

三、知识结构

本节一开始首先概述了一些常见的公式,接着三道例题循序渐进的讲解了公式的直接应用、公式的先推导后应用以及通过观察归纳推导公式解决一些实际问题。整节内容渗透了由一般到特殊、再由特殊到一般的辨证思想。

四、教法建议

1、对于给定的可以直接应用的公式,首先在给出具体例子的前提下,教师创设情境,引导学生清晰地认识公式中每一个字母、数字的意义,以及这些数量之间的对应关系,在具体例子的基础上,使学生参与挖倔其中蕴涵的思想,明确公式的应用具有普遍性,达到对公式的灵活应用。

2、在教学过程中,应使学生认识有时问题的解决并没有现成的公式可套,这就需要学生自己尝试探求数量之间的关系,在已有公式的基础上,通过分析和具体运算推导新公式。

3、在解决实际问题时,学生应观察哪些量是不变的,哪些量是变化的,明确数量之间的对应变化规律,依据规律列出公式,再根据公式进一步地解决问题。这种从特殊到一般、再从一般到特殊认识过程,有助于提高学生分析问题、解决问题的能力。

教学设计示例:

一、教学目标

(一)知识教学点

1、使学生能利用公式解决简单的实际问题。

2、使学生理解公式与代数式的关系。

(二)能力训练点

1、利用数学公式解决实际问题的能力。

2、利用已知的公式推导新公式的能力。

(三)德育渗透点

数学来源于生产实践,又反过来服务于生产实践。

(四)美育渗透点

数学公式是用简洁的数学形式来阐明自然规定,解决实际问题,形成了色彩斑斓的多种数学方法,从而使学生感受到数学公式的简洁美。

二、学法引导

1、数学方法:引导发现法,以复习提问小学里学过的公式为基础、突破难点。

2、学生学法:观察→分析→推导→计算。

三、重点、难点、疑点及解决办法

1、重点:利用旧公式推导出新的图形的计算公式。

2、难点:同重点。

3、疑点:把要求的图形如何分解成已经熟悉的图形的和或差。

四、课时安排

1课时

五、教具学具准备

投影仪,自制胶片。

六、师生互动活动设计

教者投影显示推导梯形面积计算公式的图形,学生思考,师生共同完成例1解答;教者启发学生求图形的面积,师生总结求图形面积的公式。

七、教学步骤

(一)创设情景,复习引入

师:同学们已经知道,代数的一个重要特点就是用字母表示数,用字母表示数有很多应用,公式就是其中之一,我们在小学里学过许多公式,请大家回忆一下,我们已经学过哪些公式,教法说明,让学生一开始就参与课堂教学,使学生在后面利用公式计算感到不生疏。

在学生说出几个公式后,师提出本节课我们应在小学学习的基础上,研究如何运用公式解决实际问题。

板书:公式

师:小学里学过哪些面积公式?

板书:S=ah

(出示投影1)。解释三角形,梯形面积公式

【教法说明】让学生感知用割补法求图形的面积。

中考数学教案模板(篇4)

有理数及其运算

一、中考要求:

1.理解有理数及其运算的意义,并能用数轴上的点表示有理数,会比较有理

数的大小.

2.借助数轴理解相反数和绝对值的意义,会求有理数的相反数与绝对值

二、知识要点:

1.整数与分数统称为有理数.有理数

2.规定了原点、正方向和单位长度的直线叫做数轴.

3.如果两个数只有符号不同,那么我们称其中一个数为另一个数的相反数,

也称这两个数 互为相反数.0的相反数是0.

4.在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值.

正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0.

5.数轴上两个点表示的数,右边的总比左边的大;正数大于0,负数小于0,

正数大于负数;两个负数比较大小,绝对值大的反而小.

6.乘积为 1的两个有理数互为倒数.

7.有理数分类应注意:(1)则是整数但不是正整数;(2)整数分为三类:正

整数、零、负整数,易把整数误认为分为二类:正整数、负整数.

8.两个数a、b在互为相反数,则a+b=0.

9.绝对值是易错点:如绝对值是5的数应为士5,易丢掉-5.

10.乘方的意义:求n个相同因数a的积的运算叫做乘方,乘方的结果叫做

幂.

11.有理数加法法则:同号两数相加,取相同的符号,并把绝对值相加;异号

两数相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,

并用较大的绝对值减去较小的绝对值;一个数同0相加,仍得这个数.

12.有理数减法法则:减去一个数,等于加上这个数的相反数.

13.有理数乘法法则:两个有理数相乘,同号得正,异号得负,再把绝对值相

乘;任何数与0相乘,积仍为0.

14.有理数除法法则:两个有理数相除,同号得正,异号得负,并把绝对值相

除;0除以任何非0的数都得0;除以一个数等于乘以这个数的倒数.

15.有理数的混合运算法则:先算乘方,再算乘除,最后算加减;如果有括号,

先算括号里面的.

16.有理数的运算律:

加法交换律:a+b=b+a(a、b为任意有理数)

加法结合律:(a+ b)+c=a+(b+c)(a, b,c为任意有理数)

17.有理数加法运算技巧:

(1)几个带分数相加,把它们的整数部分与分数(或小数)部分分别结合起

来相加

(2)几个非整数的有理数相加,把相加得整数的数结合起来相加;

(3)几个有理数相加,把相加得零的数结合起来相加;

(4)几个有理数相加,把正数和负数分开相加;

(5)几个分数相加,把分母相同(或有倍数关系)的分数结合相加.

18.学习乘方注意事项:

(1)注意乘方的含义;

(2)注意分清底数,如:-an的底数是 a,而不是-a

三、经典例题剖析:

1.-(-4)的相反数是_______,-(+8)是______的相反数.

2.把下面各数填入表示它所在的数集里.

2 -3,7,- ,0,2003,-1.41,0.608,-5 % 5

正有理数集{ ?}; 负有理数集

{ ?};

整 数 集{ ?}; 有理 数 集

{ ?};

3.计算:|-22|= ; 1-|-2|= ;(-3)3= ;(-2)×(-

3) =____ 。

4.数轴上点A到原点的距离是5,则A表示的数是_______

15.一个数的倒数的相反数是1则这个数是______ 5

6.今年我市二月份某一天的最低气温为-5oC, 气温为13 oC,那么这一天

的气温比最低气温高______

7.比较-1529 与- 的大小. 1632

8.若a的相反数是的负整数,b是绝对值最小的数,则a+b=___________.

9.计算12-|-18|+(-7)+(-15)

1111计算:?0.52+(-)2--22-4-(-1)3?()3?(-)4 2232

10.生物学指出,在生态系统中,每输人一个营养 级的能量,大约只有10%的

能量能够流动到下一个营养级,在H1→H2→ H3→H4→H5→H6这条生物链中,(Hn

表示第n个营养级,n=l,2,?,6),要使H6获得10千焦的能量,需要H1提

供的能量约为( )千焦

A.104 B.105 C 106 D 107

11.(阅读理解题)

(1)阅读下面材料:点 A、B在数轴上分别表示实数a,b,A、B两点之间的

距离表示为|AB|,当A上两点 中有一点在原点时,不妨设点A在原点,如图

1-2-4所示,|AB|=|BO|=|b|=|a-b|;当A、B两点都不在原点时,①如图1

-2-5所示,点A、B都在原点的右边,|AB|=|BO|-|OA|=|b|-|a|=b-a=|a

-b|; ②如图1-2-6所示,点A、B都在原点的左边,|AB|=|BO|-|OA|=|b|

-|a|=-b-(-a)=|a-b|;③如图1-2-7所示,点A、B在原点的两边多边,

|AB|=|BO|+|OA|=|b|+|a|=a+(-b)=|a-

b|

综上,数轴上 A、B两点之间的距离|AB|=|a-b|

(1)回答下列问题:

①数轴上表示2和5的两点之间的距离是_____,数轴上表示-2和-5的两

点之间的距离是____,数轴上表示1和-3的两点之间的距离是______.

②数轴上表示x和-1的两点A和B之间的距离是________,如果 |AB|=2,

那么x为_________.

③当代数式|x+1|+|x-2|=2 取最小值时,相应的x 的取值范围是

_________

中考数学教案模板(篇5)

一、抓住课堂

理科学习重在平日功夫,不适于突击复习。平日学习最重要的是课堂上课,听讲要聚精会神,思维紧跟老师。同时要说明一点,许多同学容易忽略老师所讲的数学思想、数学方法,而注重题目的解答,其实诸如“化归”、“数形结合”等思想方法远远重要于某道题目的解答。

二、高质量完成作业

所谓高质量是指高正确率和高速度。写作业时,有时同一类型的题重复练习,这时就要有意识的考查速度和准确率,并且在每做完一次时能够对此类题目有更深层的思考,诸如它考查的内容,运用的数学思想方法,解题的规律、技巧等。另外对于老师布置的思考题,也要认真完成。如果不会决不能轻易放弃,要发扬“钉子”精神,一有空就静心思考,灵感总是突然来到你身边的。最重要的是,这是一次挑战自我的机会。成功会带来自信,而自信对于学习理科十分重要;即使失败,这道题也会给你留下深刻的印象。

三、勤思考,多提问

首先对于老师给出的规律、定理,不仅要知“其然”还要“知其所以然”,做到刨根问底,这便是理解的最佳途径。其次,学习任何学科都应抱着怀疑的态度,尤其是理科。对于老师的讲解,课本的内容,有疑问应尽管提出,与老师讨论。总之,思考、提问是清除学习隐患的最佳途径。

四、总结比较,理清思绪

(1)知识点的总结比较。每学完一章都应将本章内容做一个框架图或在脑中过一遍,整理出它们的关系。对于相似易混淆的知识点应分项归纳比较,有时可用联想法将其区分开 。

(2)题目的总结比较。同学们可以建立自己的题库。我就有两本题集。一本是错题,一本是精题。对于平时作业,考试出现的错题,有选择地记下来,并用红笔在一侧批注注意事项,考试前只需翻看红笔写的内容即可。我还把见到的一些极其巧妙或难度高的题记下来,也用红笔批注此题所用方法和思想。时间长了,自己就可总结出一些类型的解题规律,也用红笔记下这些规律。最终它们会成为你宝贵的财富,对你的数学学习有极大的帮助。

五、有选择地做课外练习

课余时间对我们中学生来说是十分珍贵的,所以在做课外练习时要少而精,只要每天做两三道题,天长日久,你的思路就会开阔许多。

学习数学方法固然重要,但刻苦钻研,精益求精的精神更为重要。只要你坚持不懈地努力,就一定可以学好数学。相信自己,数学会使你智慧的光芒更加耀眼夺目!

中考数学教案模板(篇6)

立足教材,注重基础。

近年来中考数学有许多新题型,但所占分值比例较大的仍然是传统的基本问题,多数试题源于教材。试题的构成是在教材中的例题、习题的基础上通过类比,加工改造,加强条件或减弱条件,延伸或扩展而成的。因此,复习要立足于教材,在备战中考的过程中,首先应以教材为蓝本,重视“双基”训练,要让学生掌握典型例题、习题的解决套路,能够做到举一反三,触类旁通。注意知识体系构建,让各种概念、公理、定理、公式、常用结论及解题方法和技巧等,都能在学生的头脑中清晰地再现,扎扎实实地从教材做起,夯实基础,充分认识基础知识在解题中的指导作用。

创设情境,提升能力。

几年来,全国不少地方的试题都不再局限于对知识本身的考查,而是重在创设一个新颖的情境,考查学生在具体情境中灵活应用知识去解决问题的'能力。这就要求教师在课堂上,要善于创设问题情境,要注意引导学生深层次地参与学习过程,重视培养学生运用所学的知识和技能分析问题和解决问题的能力,使他们在观察、实验的活动中,通过比较、分析、归纳、类比、抽象等思维过程,完成知识的猜想和证明,加深对知识的理解,并学到创新解决问题的策略和方法。

贴近生活,学会运用。

数学知识来源于实际生活,继而为生产、生活服务。在教学中,要注意发掘学生身边与数学相关的事情,如银行商标图案、骑自行车反映出来的函数图象、测量电视塔的高度、投寄平信应付的邮费、购买商品如何省钱等,以增强学生用数学的意识。同时还要注意它们与教材中有关内容的类比。要培养学生运用所学数学知识解决实际生活中遇到的数学问题的意识和能力,引导学生做生活的有心人,做到学以致用,学用相长。

传授方法,加强理解。

考查数学思想方法是考查学生能力的必由之路。在中考复习中,应有意识有目的地适时渗透数学思想和方法,培养学生有效地利用数学思想方法解决相关问题的能力。要注意让学生针对具体题目作总结,以体会其中的数学思想和数学方法。近年中考数学试题,很多试题都是以图象、图表为背景呈现在学生面前的,这方面的试题有利于培养学生的自学能力、创新思维和实践能力。这类题目一般是通过阅读材料,观察图象,整理信息,抽象出数学问题,并用数学语言抽象成数学模型,进而得到解决的。正确解决这类题目的前提是正确理解题意。因此,在中考复习中,我们还要重视学生阅读理解能力的培养。

教学有方,教无定法。让我们脚踏实地,不断摸索,认真抓好中考复习工作,为学生和学校的进步做出自己应有的贡献。

中考数学教案模板(篇7)

理解一元二次方程求根公式的推导过程,了解公式法的概念,会熟练应用公式法解一元二次方程.

复习具体数字的一元二次方程配方法的解题过程,引入ax2+bx+c=0(a≠0)的求根公式的推导,并应用公式法解一元二次方程.

重点

求根公式的推导和公式法的应用.

难点

一元二次方程求根公式的推导.

一、复习引入

1.前面我们学习过解一元二次方程的“直接开平方法”,比如,方程

(1)x2=4 (2)(x-2)2=7

提问1 这种解法的(理论)依据是什么?

提问2 这种解法的局限性是什么?(只对那种“平方式等于非负数”的特殊二次方程有效,不能实施于一般形式的二次方程.)

2.面对这种局限性,怎么办?(使用配方法,把一般形式的二次方程配方成能够“直接开平方”的形式.)

(学生活动)用配方法解方程 2x2+3=7x

(老师点评)略

总结用配方法解一元二次方程的步骤(学生总结,老师点评).

(1)先将已知方程化为一般形式;

(2)化二次项系数为1;

(3)常数项移到右边;

(4)方程两边都加上一次项系数的一半的平方,使左边配成一个完全平方式;

(5)变形为(x+p)2=q的形式,如果q≥0,方程的根是x=-p±q;如果q<0,方程无实根.

二、探索新知

用配方法解方程:

(1)ax2-7x+3=0 (2)ax2+bx+3=0

如果这个一元二次方程是一般形式ax2+bx+c=0(a≠0),你能否用上面配方法的步骤求出它们的两根,请同学独立完成下面这个问题.

问题:已知ax2+bx+c=0(a≠0),试推导它的两个根x1=-b+b2-4ac2a,x2=-b-b2-4ac2a(这个方程一定有解吗?什么情况下有解?)

分析:因为前面具体数字已做得很多,我们现在不妨把a,b,c也当成一个具体数字,根据上面的解题步骤就可以一直推下去.

解:移项,得:ax2+bx=-c

二次项系数化为1,得x2+bax=-ca

配方,得:x2+bax+(b2a)2=-ca+(b2a)2

即(x+b2a)2=b2-4ac4a2

∵4a2>0,当b2-4ac≥0时,b2-4ac4a2≥0

∴(x+b2a)2=(b2-4ac2a)2

直接开平方,得:x+b2a=±b2-4ac2a

即x=-b±b2-4ac2a

∴x1=-b+b2-4ac2a,x2=-b-b2-4ac2a

由上可知,一元二次方程ax2+bx+c=0(a≠0)的根由方程的系数a,b,c而定,因此:

(1)解一元二次方程时,可以先将方程化为一般形式ax2+bx+c=0,当b2-4ac≥0时,将a,b,c代入式子x=-b±b2-4ac2a就得到方程的根.

(2)这个式子叫做一元二次方程的求根公式.

(3)利用求根公式解一元二次方程的方法叫公式法.

公式的理解

(4)由求根公式可知,一元二次方程最多有两个实数根.

例1 用公式法解下列方程:

(1)2x2-x-1=0 (2)x2+1.5=-3x

(3)x2-2x+12=0 (4)4x2-3x+2=0

分析:用公式法解一元二次方程,首先应把它化为一般形式,然后代入公式即可.

补:(5)(x-2)(3x-5)=0

三、巩固练习

教材第12页 练习1.(1)(3)(5)或(2)(4)(6).

四、课堂小结

本节课应掌握:

(1)求根公式的概念及其推导过程;

(2)公式法的概念;

(3)应用公式法解一元二次方程的步骤:1)将所给的方程变成一般形式,注意移项要变号,尽量让a>0;2)找出系数a,b,c,注意各项的系数包括符号;3)计算b2-4ac,若结果为负数,方程无解;4)若结果为非负数,代入求根公式,算出结果.

(4)初步了解一元二次方程根的情况.

五、作业布置

教材第17页 习题4

35362