教育巴巴 > 初中教案 > 九年级教案 > 数学教案 >

2023数学九年级复习教案

时间: 沐钦 数学教案

数学九年级复习教案如何写?数学经济学家把这种对语言和逻辑准确性的要求称为“严谨”。下面是小编为大家带来的2023数学九年级复习教案七篇,希望大家能够喜欢!

2023数学九年级复习教案

2023数学九年级复习教案精选篇1

对称、平移、旋转、视图与投影

一、图形的对称

1、知识梳理

1. 轴对称及轴对称图形的意义

(1) 轴对称:两个图形沿着一条直线折叠后能够互相重合,我们就说这两个图形成轴对称,这条直

线叫做对称轴,两个图形中的对应点叫做对称点,对应线段叫做对称线段.

(2) 如果一个图形沿某条直线对折后,直线两旁的部分能够互相重合,那么这个图形就叫做轴对称

图形,这条直线叫做对称轴.

(3) 轴对称的性质:如果两个图形关于某广条直线对称,那以对应线段相等,对应角相等,对应点

所连的线段被对称轴垂直平分.

(4) 简单的轴对称图形:① 线段:有两条对称轴:线段所在直线和线段中垂线. ②角:有一条对称轴:该角的平分线所在的直线.

③等腰(非等边)三角形:有一条对称轴,底边中垂线. ④等边三角形:有三条对称轴:每条边的中垂线. 2. 中心对称图形

(1)定义:在平面内,一个图形绕某个点旋转180 ,如果旋转前后的图形互相重合,那么这个图

形叫做中心对称图形,这个点叫做它的对称中心.

(2)性质:中心对称图形上的每一对对应点所连成的线段都被对称中心平分.

o

(3)中心对称与旋转对称的关系:中心对称是旋转角是180的旋转对称.

(4)中心对称的判定:如果两个点的连线被某一点M平分,则这两个点关于点M成中心对称.

2、课前练习

1. 如右图,既是轴对称图形,又是中心对称图形的是( )

2. 下列图形中对称轴最多的是( )

A.圆B.正方形C.等腰三角形D.线段 3. 数字______在镜中看作

4. 如右图的图案是我国几家银行标志,其中轴对称图形有( )

A.l个 B.2个 C.3个 D.4个

5. 4张扑克牌如⑴所示放在桌子上小敏把其中一张旋转180° 后得到如图⑵所示,那么她所旋转的牌从左数起是 ( )

3、经典考题剖析

1.如图,已知直线1⊥2,垂足为O,作线段PM关于直线1、和M2P2关于点O成中心对称.

2

的对称线段M1P1、M2P2 ,并说明M1P1

1 / 9

2.如图,一张矩形纸片,要折叠出一个最大的正方形,小明把矩形的一个角沿折痕AE翻折上去,使AB和AD边上的AF重合,则四边形ABEF就是一个最大的正方形,他的判断方法是______

3.如图,将标号为A、B、C、D的正方形沿图中的虚线剪开后得到标号为P、Q、M、N的四组图形,试按照“哪个正方形剪开后得到哪组图形”的对应关系, 填空: A与_____对应, B与______对应,

C与___ _对应, D与______对应.

4. 如图所示图案中有且只有三条对称轴的是( )

5.已知四边形ABCD和AB的中点O,求作四边形ABCD关于点O的对称图形.

4、课后训练

1.如图是四幅美丽的图案,其中既是轴对称图形又是中心对称图形的个数是( )

A.1个 B.2个 C.3个 D.4个

2.若图形关于某一条直线对称,则连结相应两对称点的线段必被对称轴________.

3.如图,由正三角形和正方形拼成的图形中是轴对称图形而不是中心对称图形的是(

4.下列说法中,正确的是( )

A.等腰梯形既是中心对称图形又是轴对称图形 B.正方形的对角线互相垂直平分且相等 C.矩形是轴对称图形且有四条对称轴 D.菱形的对角线相等

5.在右图中,既是轴对称图形,又是中心对称图形的是( )

2 / 9

)6. 字母A,B,C,D,E,F,S,X,Y,Z中,是轴对称图形的有_______个.

7.某学校搞绿化,计划在一矩形空地上建一个花坛,现征集设计方案,要求设计的图案由圆和正方形组成(个数不限)并使矩形场地成轴对称图形,请你试试看.

8. 已知四边形ABCD,如图,求作四边形 ABCD关于点A的对称图形.

9.如图,请在ABCDE中,以线段DE所在的直线为对称轴,画出它的轴对称图形.

10.小明发现:如果将4棵树栽于正方形的四个顶点上,如图⑴所示,恰好构成一轴对称图形.你还能找到其他两种栽树的方法,也使其组成一个轴对称图形吗?请在图⑵、⑶上表示出来.如果是栽5棵,又如何呢?6棵、7棵呢?请分别在⑷、⑸、⑹上表示出来.

二、图形的平移与旋转

1、知识梳理

1.图形的平移

(1) 平移的概念:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移,

平移不改变图形的形状和大小.

注意:①平移是运动的一种形式,是图形变换的一种,本讲的平移是指平面图形

在同一平面内的变换.

②图形的平移有两个要素:一是图形平移的方向,二是图形平移的距离,这两个要素是图形平移 的依据.

③图形的平移是指图形整体的平移,经过平移后的图形,与原图形相比,只改变了位置,而不改变图形的大小,这个特征是得出图形平移的基本性质的依据.

(2)平移的基本性质:由平移的基本概念知,经过平移,图形上的每一个点都沿同一个方向移动

相同的距离,平移不改变图形的形状和大小,因此平移具有下列性质:经过平移,对应点所

3 / 9

连的线段平行且相等,对应线段平行且相等,对应角相等.

注意:①要正确找出“对应线段,对应角”,从而正确表达基本性质的特征.

②“对应点所连的线段平行且相等”,这个基本性质既可作为平移图形之间的性质,又可作为平移作图的依据.

(3)简单的平移作图

平移作图:确定一个图形平移后的位置所需条件为:①图形原来的位置;②平移的方向;③

平移的距离.

2. 图形的旋转

(1)旋转的概念:图形绕着某一点(固定)转动的过程,称为旋转,这一固定点叫做旋转中心。

理解旋转这一概念应注意以下两点:①旋转和平移一样是图形的一种基本变换;②图形旋转的决定因素是旋转中心和旋转的角度.

(2)旋转的基本性质:图形中每一个点都绕着旋转中心旋转了同样大小的角度,对应点到旋转中

心的距离相等,对应线段、对应角都相等,图形的形状、大小都不发生变化.

(3)简单图形的旋转作图

两种情况:①给出绕着旋转的定点,旋转方向和旋转角的大小;

②给出定点和图形的一个特殊点旋转后的对应点.

作图步骤:①作出图形的几个关键点旋转后的对应点;

②顺次连接各点得到旋转后的图形.

(4)图案设计:图案的设计是由基本图形经过适当的平移、旋转、轴对称等图形的变换而得到

的。其中中心对称是旋转变换的一种特例。

2、课前练习

1.如图,四边形ABCD平移后得到四边形 EFGH,

填空(1)CD=______, (2)∠ F=______

(3)HE= ,(4)∠D=_____, (5)DH=_________

2.如图,若线段CD是由线段AB平移而得到的, 则线段CD、AB关系是__________.

3.将长度为3cm的线段向上平移20cm,所得线段的长度是( ) A.3cm B.23cm C.20cm D.17cm 4.关于平移的说法,下列正确的是( )

A.经过平移对应线段相等; B.经过平移对应角可能会改变 C.经过平移对应点所连的线段不相等; D.经过平移图形会改变

o

5.在“党”“在”“我”“心”“中”五个汉字中,旋转180后不变的字是_______

在字母“X”、“V”、“Z”、“H”中绕某点旋转(旋转度数不超过180)后不能与原图形重合的是____

3、经典考题剖析

1.下列说法正确的是( )

A.由平移得到的两个图形的对应点连线长度不一定相等

B.我们可以把“火车在一段笔直的铁轨上行驶了一段距离”看作“火车沿着铁轨方

向的平移”

C.小明第一次乘观光电梯,随着电梯向上升,他高兴地对同伴说:“太棒了,我现在比大楼还高呢,我长高了!”

D.在图形平移过程中,图形上可能会有不动点 2.如图,已知△ABC,画出△ABC沿 PQ方向平移 2cm后的△A′B′C′.

4 / 9

3.如图⑴,两块完全重合的正方形纸片,如果上面的一块统正方形的中心O作0~90的旋转,那么旋转时露出的△ABC的面积(S)随着旋转角度(n)的变化而变化,下面表示S与n的关系的图象大致是图⑵中的( )

(图1) (图2)

4.如图,在方格纸上,有两个形状、大小一样的三角形,请指出如何运用轴对称、平移、旋转这三种运动,将方格中的△ABC重合到△DEF上.

5.如图是跷跷板示意图,模板AB通过点O,且可以绕点O上下转动,如果∠OCA=90○,∠CAO= 25○,

(1)画出在空中划过的线;

(2)上下最多可以转动多少角度?

○o

4、课后训练

1.将△ABC平移10cm,得∠EFG,如果∠ABC=52 ,则∠EFG=_____.BF=_____.

2.平移不改变图形的________,只改变图形的位置。故此若将线段AB向右平移3cm,得到线段CD,如果AB=5㎝,则 CD=___________

3.下列关于旋转和平移的说法正确的是( ) A.旋转使图形的形状发生改变

B.由旋转得到的图形一定可以通过平移得到

C.平移与旋转的共同之处是改变图形的位置和大小 D.对应点到旋转中心距离相等

4.如图,正方形ABCD可以看成由三角形______旋转而成的,其旋转 中心为______点,旋转角度依次为________,________,________. 5.如图,△ABC是直角三角形,BC是斜边,将△ABP绕点A逆时 针旋转后,能与△ACP′重合,已知AP=3,则PP′的长度为( ) A.3 B.3

C.5

D.4

6.△ABC是等腰直角三角形,如图,AB=AC,∠BAC=90°, D是BC上一点,△ACD经过旋转到达△ABE的位置,则 其旋转角的度数为( )

A.90° B.120° C.60° D.45°

7.如图,先将方格纸中“猫头”分别向左平移6格、12格,然后分析所画三个图案的关系.

8.如图,已知∠AOB,要求把其往正东方向平移3cm,要求留画痕,写作法 .

9.已知边长为 1个单位的等边三角形ABC,

(1)将这个三角形绕它的顶点C按顺时针方向旋转30 作出这个图形;

○○○

(2)再将已知三角形分别按顺时针方向旋转60、90、120,作出这些图形.

10.如图,在△ABC中,AB=AC,∠BAC=40°,AD是∠BAC的平分线,DE⊥AB,DF⊥AC,垂足分别是E、F,请你用对称和旋转的知识回答下列问题: (l)△ADE和△DFA关于直线AD对称吗?为什么?

(2)把△BDE绕点D顺时针旋转160○后能否与△CDF重合?为什么?

(3)把△BDE绕点D旋转多少度后,此时的△BDE和△CDF关于直线BC对称?

三、视图与投影

1、知识梳理

主视图高平齐左视图宽 1.三视图 等(1)主视图:从 看到的图; (2)左视图:从 看到的图; (3)俯视图:从 看到的图; 2.画三视图的原则(如图)

长对正,高平齐,宽相等;在画图时,看得见部分的轮廓线通常画成实线,看不见的轮廓线通常画成虚线。 3.投影

物体在光线的照射下,会在地面或墙壁上留下它的影子,这就是 ;投影分 投影和 投影。

(1)平行投影:太阳光线可以看成 光线,像这样的光线所形成的投影称为 投

影;物体的三视图实际上就是该物体在垂直于投影面的平行光线下的平行投影。

(2)中心投影:手电筒、路灯和台灯的光线可以看成是由一点出发的光线,像这样的光线所形

成的投影称为 投影。

(3)像眼睛的位置称为 ,由视点出发的线称为 ,两条视线的夹角称

为 ,看不到的地方称为 。

俯视图长对正相2、课前练习

1.小明从正面观察图(1)所示的两个物体,

看到的是图(2)中的( )

(图1) (图2)

2.在同一时刻的阳光下,小明的影子比小强的影子长,那么在同一路灯下( ) A.小明的影子比小强的影子长; B.小明的影子比小强的影子短 C.小明的影子和小强的影子一样长; D.无法判断谁的影子长

3.你在路灯下漫步时,越接近路灯,其影子成长度将( ) A.不变B.变短C.变长D.无法确定

4.一个矩形窗框被太阳光照射后,留在地面上的影子是________ 5.将如图1-4-22所示放置的一个直角三角形 ABC( ∠C=90°),绕斜边AB旋转一周所得到的

6 / 9

几何体的主视图是图1-4-23四个图形中的 _________(只填序号).

3、经典考题剖析

1.某物体的三视图是如图所示的3个图形,

那么该物体的形状是( )

A.长方体B.圆锥体C.立方体D.圆柱体

2.在同一时刻,身高1.6m的小强的影长是1.2m,旗杆的影长是15m,则旗杆高为( ) A.16m B.18m C.20m D.22m

3.一天上午小红先参加了校运动会女子100m比赛,过一段时间又参加了女子400m比赛,如图是摄影师在同一位置拍摄的两张照片,那么下列说法正确的是() A.乙照片是参加100m的;B.甲照片是参加 400m的 C.乙照片是参加 400m的;D.无法判断甲、乙两张照片 4.已知:如图,AB和DE是直立在地面

上的两根立柱.AB=5m,某一时刻AB在阳光下 的投影BC=3m.

(1)请你在图中画出此时DE在阳光下的投影;

(2)在测量AB的投影时,同时测量出DE在阳光下的投影长为6m,请你计算DE的长.

5.某居民小区有一朝向为正南方向的居民楼(如图),该居民楼的一楼是高6M的小区超市,超市以上是居民住房.在该楼的前面15M处要盖一栋高20M的新楼,当冬季正午的阳光与水平线的夹角为32°时. (1)问超市以上的居民住房采光是否有影响,为什么? (2)若要使超市采光不受影响,两楼应相距多少M? (结果保留整数,参考数据:

)

4、课后训练

1.如果用□表示1个立方体,用表示两个立方体叠加,用■表示三个立方体叠加,那么下面右图由7个立方体叠成的几何体,从正前方观察,可画出的平面图形是( )

DCBA2.夜晚在亮有路灯的路上,若想没有影子,你应该站的位置是( )。

A、路灯的左侧 B、路灯的右侧 C、路灯的下方 D、以上都可以 3.如图是空心圆柱体在指定方向上的视图, 正确的是( )

4.图是一天中四个不同时刻同一物体价影子,(阴影部分的影子)它们按时间先后顺序排列的是( )

A.(1)(2)(3)(4);B.(4)(3)(2)(1) C.(4)(1)(3)(2);D.(3)(4)(1)(2)

5.如图是两根杆在路灯底下形成的影子,试确定路灯灯泡所在的位置.

6.如图(l),小明站在残墙前,小亮在残墙后面活动,又不被小明看见,请你在图⑴的 俯视图(2)中画出小亮的活动区域

7 / 9

(图1) (图2) (第5题) (第6题) (第7题)

7.如图(1),一个小孩在室内由窗口观察室外的一棵树,在图(1)中,小孩站在什么位置就可以看到树的全部请你在图(2)中用线段表示出来.

8.如图,是一束平行的阳光从教室窗户射人的平面示意图, 光线与地面所成角∠AMC=30 ,在教室地面的影长MN=2

若窗户的下檐到教室地面的距离BC=1m,则窗户的上檐到教室 地面的距离AC是多少?

9.如图,住宅区内的两幢楼,它们的高AB=CD=30m,两楼间的 距离AC=24cm,现需了解甲楼对乙楼的采光的影响情况,当 太阳光与水平线的夹角为30”时,求甲楼的影子在乙楼上 有多高?

10.图1-4-29至1-4-35中的网格图均是20 ×20的等距网格图(每个小方格的边长均为1个单位

长),侦察兵王凯在P点观察区域MNCD内的活动情况.当5个单位长的列车(图中的)以每秒1个单位长的速度在铁路线MN上通过时,列车将阻挡王凯的部分视线,在区域MNCD内形成盲区(不考虑列车的宽度和车厢间的缝隙〕,设列车车头运行到M点的时刻为0,列车从M点向N点方向运行的时间为t(秒).

(1)在区域MNCD内,请你针对图1-4-29,图l-4-30,图l-4-31,图l-4-32中列车位于不同位置的情形分别画出相应的盲区,并在盲区内涂上阴影;

(2)只考虑在区域ABCD内形成的盲区.设在这个区域内的盲区面积是y(平方单位).

①如图 1-4-33,当 5<t<10时,请你求出用 p="" 15≤t≤20时,请你求出用t表示y的函数关系式;④根据①~③中得到的结论,请你简单概括y随t的变化而变化的情况;<="" 函数关系式;③如图1-4-35,当="" y的函数关系式;②如图1-4-34,当10<t

(3)根据上述研究过程,请你按不同的时段,就列车行驶过程中在区域MNCD内所形成盲区的面积大小 的变化情况提出一个综合的猜想(问题⑶)是额外加分题,加分幅度为 1~4分)

2023数学九年级复习教案精选篇2

第2课时反比例函数的图象与性质(2)

教学目标

【知识与技能】

1.会求反比例函数的解析式;2.巩固反比例函数图象和性质,通过对图象的分析,进一步探究反比例函数的增减性.

【过程与方法】

经历观察、分析、交流的过程,逐步提高运用知识的能力.

【情感态度】

提高学生的观察、分析能力和对图形的感知水平.

【教学重点】

会求反比例函数的解析式.

【教学难点】

反比例函数图象和性质的运用.

教学过程

一、情景导入,初步认知

1.反比例函数有哪些性质?2.我们学会了根据函数解析式画函数图象,那么你能根据一些条件求反比例函数的解析式吗?

【教学说明】复习上节课的内容,同时引入新课.

二、思考探究,获取新知

1.思考:已知反比例函数y=的图象经过点P(2,4)

(1)求k的值,并写出该函数的表达式;

(2)判断点A(-2,-4),B(3,5)是否在这个函数的图象上;

(3)这个函数的图象位于哪些象限?在每个象限内,函数值y随自变量x的增大如何变化?

分析:

(1)题中已知图象经过点P(2,4),即表明把P点坐标代入解析式成立,这样能求出k,解析式也就确定了.

(2)要判断A、B是否在这条函数图象上,就是把A、B的坐标代入函数解析式中,如能使解析式成立,则这个点就在函数图象上.否则不在.

(3)根据k的正负性,利用反比例函数的性质来判定函数图象所在的象限、y随x的值的变化情况.

【归纳结论】这种求解析式的方法叫做待定系数法求解析式.

2.下图是反比例函数y=的图象,根据图象,回答下列问题:

(1)k的取值范围是k>0还是k<0?说明理由;

(2)如果点A(-3,y1),B(-2,y2)是该函数图象上的两点,试比较y1,y2的大小.分析:

(1)由图象可知,反比例函数y=kx的图象的两支曲线分别位于第一、三象限内,在每个象限内,函数值y随自变量x的增大而减小,因此,k>0.

(2)因为点A(-3,y1),B(-2,y2)是该函数图象上的两点且-3<0,-2<0.所以点A、B都位于第三象限,又因为-3<-2,由反比例函数的图像的性质可知:y1>y2.

【教学说明】通过观察图象,使学生掌握利用函数图象比较函数值大小的方法.

2023数学九年级复习教案精选篇3

1.2反比例函数的图象与性质

第1课时反比例函数的图象与性质(1)

教学目标

【知识与技能】

1.会用描点法画反比例函数图象;2.理解反比例函数的性质.

【过程与方法】

观察、比较、合作、交流、探索.

【情感态度】

通过对反比例函数的图象的分析,探索并掌握反比例函数的图象的性质.

【教学重点】

画反比例函数的图象,理解反比例函数的性质.

【教学难点】

理解反比例函数的性质,并能灵活应用.

教学过程

一、情景导入,初步认知

你还记得一次函数的图象吗?一次函数的图象怎样画呢?一次函数有什么性质呢?反比例函数的图象又会是什么样子呢?

【教学说明】在回忆与交流中,进一步认识函数,图象的直观有助于理解函数的性质.

二、思考探究,获取新知

探究1:反比例函数图象的画法画出反比例函数y=的图象.分析∶画出函数图象一般分为列表、描点、连线三个步骤.

(1)列表:取自变量x的哪些值?

x是不为零的任何实数,所以不能取x的值为零,但仍可以以零为基准,左右均匀,对称地取值.

(2)描点:用表里各组对应值作为点的坐标,在直角坐标系中描出各点(-6,-1)、(-3,-2)、(-2,-3)等.

(3)连线:用平滑的曲线将第一象限各点依次连起来,得到图象的第一个分支;用平滑的曲线将第三象限各点依次连起来,得到图象的另一个分支.这两个分支合起来,就是反比例函数的图象.

思考:

(1)观察上图,y轴右边的各点,当横坐标x逐渐增大时,纵坐标y如何变化?y轴左边的各点是否也有相同的规律?

(2)这两条曲线会与x轴、y轴相交吗?为什么?探究2:反比例函数所在的象限画出函数y=的图形,并思考下列问题:

(1)函数图形的两个分支分别位于哪些象限?

(2)在每一象限内,函数值y随自变量x的变化是如何变化的?

【归纳结论】一般地,当k>0时,反比例函数y=的图象由分别在第一、三象限内的两支曲线组成,它们与x轴、y轴都不相交,在每个象限内,函数值y随自变量x的增大而减小.

探究3:反比例函数y=-的图象.可以引导学生采用多种方式进行自主探索活动:

(1)可以用画反比例函数y=-的图象的方式与步骤进行自主探索其图象;

(2)可以通过探索函数y=与y=-之间的关系,画出y=-的图象.

【归纳结论】一般地,当k<0时,反比例函数y=的图象由分别在第二、四象限内的两支曲线组成,它们与x轴、y轴都不相交,在每个象限内,函数值y随自变量x的增大而增大.

探究4:反比例函数的性质反比例函数y=-与y=的图象有什么共同特征?

【教学说明】引导学生从通过与一次函数的图象的对比感受反比例函数图象“曲线”及“两支”的特征.

【归纳结论】反比例函数y=(k≠0)的图象是由两个分支组成的曲线.当k>0时,图象在一、三象限;当k<0时,图象在二、四象限.反比例函数y=与y=-(k≠0)的图象关于x轴或y轴对称.

【教学说明】学生动手画反比函数图象,进一步掌握画函数图象的步骤.观察函数图象,掌握反比例函数的性质.

2023数学九年级复习教案精选篇4

(一)教材的地位和作用

《相似三角形的应用》选自人民教育出版社义务教育课程标准实验教科书中数学九年级上册第二十七章。相似与轴对称、平移、旋转一样,也是图形之间的一种变换,生活中存在大量相似的图形,让学生充分感受到数学与现实世界的联系。相似三角形的知识是在全等三角形知识的基础上的拓展和延伸,相似三角形承接全等三角形,从特殊的相等到一般的成比例予以深化。在这之前学生已经学习了相似三角形的定义、判定,这为本节课问题的探究提供了理论的依据。本节内容是相似三角形的有关知识在生产实践中的广泛应用,通过本节课的学习,一方面培养学生解决实际问题的能力,另一方面增强学生对数学知识的不断追求。

(二)教学目标

1、。知识与能力:

1) 进一步巩固相似三角形的知识.

2)能够运用三角形相似的知识,解决不能直接测量物体的长度和高度(如测量金字塔高度问题、测量河宽问题)等的一些实际问题.

2.过程与方法:

经历从实际问题到建立数学模型的过程,发展学生的抽象概括能力。

3.情感、态度与价值观:

1)通过利用相似形知识解决生活实际问题,使学生体验数学来源于生活,服务于生活。

2)通过对问题的探究,培养学生认真踏实的学习态度和科学严谨的学习方法,通过获得成功的经验和克服困难的经历,增进数学学习的信心。

(三)教学重点、难点和关键

重点:利用相似三角形的知识解决实际问题。

难点:运用相似三角形的判定定理构造相似三角形解决实际问题。

关键:将实际问题转化为数学模型,利用所学的知识来进行解答。

【教法与学法】

(一)教法分析

为了突出教学重点,突破教学难点,按照学生的认知规律和心理特征,在教学过程中,我采用了以下的教学方法:

1.采用情境教学法。整节课围绕测量物体高度这个问题展开,按照从易到难层层推进。在数学教学中,注重创设相关知识的现实问题情景,让学生充分感知“数学来源于生活又服务于生活”。

2.贯彻启发式教学原则。教学的各个环节均从提出问题开始,在师生共同分析、讨论和探究中展开学生的思路,把启发式思想贯穿与教学活动的全过程。

3.采用师生合作教学模式。本节课采用师生合作教学模式,以师生之间、生生之间的全员互动关系为课堂教学的核心,使学生共同达到教学目标。教师要当好“导演”,让学生当好“演员”,从充分尊重学生的潜能和主体地位出发,课堂教学以教师的“导”为前提,以学生的“演”为主体,把较多的课堂时间留给学生,使他们有机会进行独立思考,相互磋商,并发表意见。

(二)学法分析

按照学生的认识规律,遵循教师为主导,学生为主体的指导思想,在本节课的学习过程中,采用自主探究、合作交流的学习方式,让学生思考问题、获取知识、掌握方法,运用所学知识解决实际问题,启发学生从书本知识到社会实践,学以致用,力求促使每个学生都在原有的基础上得到有效的发展。

【教学过程】

一、知识梳理

1、判断两三角形相似有哪些方法?

1)定义: 2)定理(平行法):

3)判定定理一(边边边):

4)判定定理二(边角边):

5)判定定理三(角角):

2、相似三角形有什么性质?

对应角相等,对应边的比相等

(通过对知识的梳理,帮助学生形成自己的知识结构体系,为解决问题储备理论依据。)

二、情境导入

胡夫金字塔是埃及现存规模的金字塔,被喻为“世界古代七大奇观之一”。塔的4个斜面正对东南西北四个方向,塔基呈正方形,每边长约230多米。据考证,为建成大金字塔,共动用了10万人花了20年时间.原高146.59米,但由于经过几千年的风吹雨打,顶端被风化吹蚀.所以高度有所降低 。

古希腊,有一位伟大的科学家泰勒斯。一天,希腊国王阿马西斯对他说:“听说你什么都知道,那就请你测量一下埃及大金字塔的高度吧!”这在当时的条件下是个大难题,因为很难爬到塔顶的。亲爱的同学,你知道泰勒斯是怎样测量大金字塔的高度的吗?

(数学教学从学生的生活体验和客观存在的事实或现实课题出发,为学生提供较感兴趣的问题情景,帮助学生顺利地进入学习情景。同时,问题是知识、能力的生长点,通过富有实际意义的问题能够激活学生原有认知,促使学生主动地进行探索和思考。)

三、例题讲解

例1(教材P49例3——测量金字塔高度问题)

《相似三角形的应用》教学设计 分析:根据太阳光的光线是互相平行的特点,可知在同一时刻的阳光下,竖直的两个物体的影子互相平行,从而构造相似三角形,再利用相似三角形的判定和性质,根据已知条件,求出金字塔的高度.

解:略(见教材P49)

问:你还可以用什么方法来测量金字塔的高度?(如用身高等)

解法二:用镜面反射(如图,点A是个小镜子,根据光的反射定律:由入射角等于反射角构造相似三角形).(解法略)

例2(教材P50练习�0�2——测量河宽问题)

《相似三角形的应用》教学设计《相似三角形的应用》教学设计 分析:设河宽AB长为x m ,由于此种测量方法构造了三角形中的平行截线,故可得到相似三角形,因此有 ,即 《相似三角形的应用》教学设计 .再解x的方程可求出河宽.

解:略(见教材P50)

问:你还可以用什么方法来测量河的宽度?

解法二:如图构造相似三角形(解法略).

四、巩固练习

1.在同一时刻物体的高度与它的影长成正比例.在某一时刻,有人测得一高为1.8米的竹竿的影长为3米,某一高楼的影长为60米,那么高楼的高度是多少米?

2.小明要测量一座古塔的高度,从距他2米的一小块积水处C看到塔顶的倒影,已知小明的眼部离地面的高度DE是1.5米,塔底中心B到积水处C的距离是40米.求塔高?

五、回顾小结

一 )相似三角形的应用主要有如下两个方面

1 测高(不能直接使用皮尺或刻度尺量的)

2 测距(不能直接测量的两点间的距离)

二)测高的方法

测量不能到达顶部的物体的高度,通常用“在同一时刻物高与影长的比例”的原理解决

三 )测距的方法

测量不能到达两点间的距离,常构造相似三角形求解

(落实教师的引导作用以及学生的主体地位,既训练学生的概括归纳能力,又有助于学生在归纳的过程中把所学的知识条理化、系统化。)

六、拓展提高

怎样利用相似三角形的有关知识测量旗杆的高度?

七、作业

课本习题27.2 10题、11题。

【教学设计说明】

相似应用最广泛的是测量学中的应用,在实际测量物体的高度、宽度时,关键是要构造和实物所在三角形相似的三角形,而且要能测量已知三角形的各条线段的长,运用相似三角形的性质列出比例式求解。鉴于这一点,我设计整节课围绕测量物体高度这个问题展开,通过一个个问题的解决,一方面,促使学生了解测量物体高度的方法,从而学会设计利用相似三角形解决问题的方案;另一方面,会构造与实物相似的三角形,通过对实际问题的分析和解决,让学生充分感受到数学与现实世界的联系,教学中既发挥教师的主导作用,又注重凸现学生的主体地位,“以学生活动为中心”构建课堂教学的基本框架,以“探究交流为形式”作为课堂教学的基本模式,以全面发展学生的能力作为根本的教学目标,限度地调动学生学习的积极性和主动性。

2023数学九年级复习教案精选篇5

6.6 函数的应用(1)

一、知识要点

一次函数、反比例函数的应用.

二、课前演练

1.(2010上海)一辆汽车在行驶过程中,路程y(千米)与

时间_(小时)之间的函数关系如图所示 当时 0≤_≤1,

y关于_的函数解析式为y=60_,那么当 1≤_≤2时,y

关于_的函数解析式为_____ _______________.

2.(2012丽水)甲、 乙两人以相同路线前往离学校12千米

的地方参加植树活动. 图中l甲、l乙分别表示甲、乙两人

前往目的地所行驶的路程S(千米)随时间t(分)变化的函

数图象,则每分钟乙比甲多行驶 千米.

三、例题分析

例1 (20__南京)小颖和小亮上山游玩,小颖乘缆车,小亮步行,两人相约在山顶的缆车终点会合.已知小亮行走到缆车终点的路程是缆车到山顶的线路长的2倍,小颖在小亮出发后50min才乘上缆车,缆车的平均速度为180m/min.设小亮出发_min后行走的路程为ym.图中的折线表示小亮在整个行走过程中y与_的函数关系.

⑴小亮行走的总路程是_______㎝,他途中休息了______min.

⑵①当50≤_≤80时,求y与_的函数关系式;

②当小颖到达缆车终点为时,小亮离缆车终点的路程是多少?

例2(20__成都)如图,反比例函数y=k_(k≠0)的图象经过点(12 ,8),直线y=-_+b经过该反比例函数图象上的点Q(4,m).

(1)求上述反比例函数和直线的函数表达式;

(2)设该直线与_轴、y轴分别交于A、B两点,与反比例函数

图象的另一个交点为P,连接0P、OQ,求△OPQ的面积.

四、巩固练习

1. 拖拉机开始行驶时,油箱中有油4升,如果每小时耗油0.5升,那么油箱中余油y(升)与它工作的时间t(时)之间的函数关系的图象是( )

2. 已知等腰三角形的周长为10㎝,将底边长y㎝表示为腰长_㎝的关系式是y=10-2_,则其自变量_的取值范围是( )

A.00

3.(2012连云港)我市某医药公司要把药品运往外地,现有两种运输方式可供选择:

方式一:使用快递公司的邮车运输,装卸收费400元,另外每公里再加收4元;

方式二:使用铁路运输公司的火车运输,装卸收费820元,另外每公里再加收2元,

(1)分别写出邮车、火车运输的总费用y1(元)、y2(元)与运输路程_(km)之间的函数关系式;

(2)你认为选用哪种运输方式较好,为什么?

4. 制作一种产品,需先将材料加热达到60℃后,再进行操作.设该材料温度为y(℃),从加热开始计算的时间为_(分钟).据了解,设该材料加热时,温度y与时间_成一次函数关系;停止加热进行操作时,温度y与时间_成反比例关系(如图).已知该材料在操作加工前的温度为15℃,加热5分钟后温度达到60℃.

(1)分别求出将材料加热和停止加热进行操作时,y与_的函数关系式;

(2)根据工艺要求,当材料的温度低于15℃时,须停止操作,那么从开始加热到停止操作,共经历了多少时间?

海南初中数学组

§6.7 函数的应用(2)

一、知识要点

二次函数在实际问题中的应用.

二、课前演练

1.(20__株洲)某广场有一喷水池,水从地面喷出,如图,

以水平地面为_轴,出水点为原点,建立直角坐标系,

水在空中划出的曲线是抛物线y=-_2+4_(单位:米)的

一部分,则水喷出的最大高度是( )

A.4米 B.3米 C.2米 D.1米

2.(20__梧州)20__年5月22日—29日在美丽的青岛市

举行了苏迪 曼杯羽毛球混合团体锦标赛.在比赛中,某

次羽毛球的运动路线可以看作是抛物线y=-14_2+b_+c的一

部分(如图),其中出球点B离地面O点的距离是1m,球落

地点A到O点的距离是4m,那么这条抛物线的解析式是( )

A.y=-14_2+34_+1 B.y=-14_2+34_-1 C.y=-14_2-34_+1 D.y=-14_2-34_-1

三、例题分析

例1(20__沈阳)一玩具厂去年生产某种玩具,成本为10元/件,出厂价为12元/件,年销售量为2万件.今年计划通过适当增加成本来提高产品档次,以拓展市场.若今年这种玩具每件的成本比去年成本增加0.7_倍,今年这种玩具每件的出厂价比去年出厂价相应提高0.5_倍,则预计今年年销售量将比去年年销售量增加_倍(本题中0

(1)用含 的代数式表示,今年生产的这种玩具每件的成本为________元,今年生产的这种玩具每件的出厂价为_________元.

(2)求今年这种玩具的每件利润y元与_之间的函数关系式.

(3)设今年这种玩具的年销售利润为w万元,求当_为何值时,今年的年销售利润最大?最大年销售利润是多少万元?

注:年销售利润=(每件玩具的出厂价-每件玩具的成本)×年销售量.

四、巩固练习

1.(20__西宁)西宁中心广场有各种音乐喷泉,其中一个喷水管

的最大高度为3米,此时距喷水管的水平距离为12米,在如图

所示的坐标系中,这个喷泉的函数关系式是( )

A.y=-(_-12)2+3 B.y=-3(_+12)2+3 C.y=-12(_-12)2+3 D.y=-12(_+12)2+3

2.(20__聊城)某公园草坪的防护栏由100段形状

相同的抛物线形构件组成,为了牢固起见,每段

护栏需要间距0.4m加设一根不锈钢的支柱,防护

栏的最高点距底部0.5m(如图),则这条防护栏需

要不锈钢支柱的总长度至少为( )

A.50m B.100m C.160m D.200m

3.(20__甘肃)如图,正方形ABCD边长为1,E、F、G、H分别为各边上的点,且AE=BF=CG=DH,设小正方形EFGH的面积为s,AE为_,则s关于_的函数图象大致是( )

4. 某公司试销一种成本单价为500元/件的新产品,规定试销时的销售单价不低于成本单价,又不高于800元/件,经试销调查,发现销售量y(件)与销售单价_(元/件)可近似看作一次函数y=k_+b的关系(如图).

(1)根据图象,求出一次函数的解析式;

(2)设公司获得的毛利润为S元.

①试用销售单价_表示毛利润S;

②请结合S与_的函数图象说明:销售单价定为多少时,该公司可获得最大利润?最大利润是多少?此时销售量是多少?

5.(20__曲靖)一名男生推铅球,铅球行进高度y(单位:m)与水平距离_(单位:m)之间的关系是y=-112 _2+23 _+53 ,铅球运行路线如图.

(1)求铅球推出的水平距离;

(2)通过计算说明铅球行进高度能否达到4m.

2023数学九年级复习教案精选篇6

教学目标:

1、了解公式的意义,使学生能用公式解决简单的实际问题;

2、初步培养学生观察、分析及概括的能力;

3、通过本节课的教学,使学生初步了解公式来源于实践又反作用于实践。

教学建议:

一、教学重点、难点

重点:通过具体例子了解公式、应用公式。

难点:从实际问题中发现数量之间的关系并抽象为具体的公式,要注意从中反应出来的归纳的思想方法。

二、重点、难点分析

人们从一些实际问题中抽象出许多常用的、基本的数量关系,往往写成公式,以便应用。如本课中梯形、圆的面积公式。应用这些公式时,首先要弄清楚公式中的字母所表示的意义,以及这些字母之间的数量关系,然后就可以利用公式由已知数求出所需的未知数。具体计算时,就是求代数式的值了。有的公式,可以借助运算推导出来;有的公式,则可以通过实验,从得到的反映数量关系的一些数据(如数据表)出发,用数学方法归纳出来。用这些抽象出的具有一般性的公式解决一些问题,会给我们认识和改造世界带来很多方便。

三、知识结构

本节一开始首先概述了一些常见的公式,接着三道例题循序渐进的讲解了公式的直接应用、公式的先推导后应用以及通过观察归纳推导公式解决一些实际问题。整节内容渗透了由一般到特殊、再由特殊到一般的辨证思想。

四、教法建议

1、对于给定的可以直接应用的公式,首先在给出具体例子的前提下,教师创设情境,引导学生清晰地认识公式中每一个字母、数字的意义,以及这些数量之间的对应关系,在具体例子的基础上,使学生参与挖倔其中蕴涵的思想,明确公式的应用具有普遍性,达到对公式的灵活应用。

2、在教学过程中,应使学生认识有时问题的解决并没有现成的公式可套,这就需要学生自己尝试探求数量之间的关系,在已有公式的基础上,通过分析和具体运算推导新公式。

3、在解决实际问题时,学生应观察哪些量是不变的,哪些量是变化的,明确数量之间的对应变化规律,依据规律列出公式,再根据公式进一步地解决问题。这种从特殊到一般、再从一般到特殊认识过程,有助于提高学生分析问题、解决问题的能力。

教学设计示例:

一、教学目标

(一)知识教学点

1、使学生能利用公式解决简单的实际问题。

2、使学生理解公式与代数式的关系。

(二)能力训练点

1、利用数学公式解决实际问题的能力。

2、利用已知的公式推导新公式的能力。

(三)德育渗透点

数学来源于生产实践,又反过来服务于生产实践。

(四)美育渗透点

数学公式是用简洁的数学形式来阐明自然规定,解决实际问题,形成了色彩斑斓的多种数学方法,从而使学生感受到数学公式的简洁美。

二、学法引导

1、数学方法:引导发现法,以复习提问小学里学过的公式为基础、突破难点。

2、学生学法:观察→分析→推导→计算。

三、重点、难点、疑点及解决办法

1、重点:利用旧公式推导出新的图形的计算公式。

2、难点:同重点。

3、疑点:把要求的图形如何分解成已经熟悉的图形的和或差。

四、课时安排

1课时

五、教具学具准备

投影仪,自制胶片。

六、师生互动活动设计

教者投影显示推导梯形面积计算公式的图形,学生思考,师生共同完成例1解答;教者启发学生求图形的面积,师生总结求图形面积的公式。

七、教学步骤

(一)创设情景,复习引入

师:同学们已经知道,代数的一个重要特点就是用字母表示数,用字母表示数有很多应用,公式就是其中之一,我们在小学里学过许多公式,请大家回忆一下,我们已经学过哪些公式,教法说明,让学生一开始就参与课堂教学,使学生在后面利用公式计算感到不生疏。

在学生说出几个公式后,师提出本节课我们应在小学学习的基础上,研究如何运用公式解决实际问题。

板书:公式

师:小学里学过哪些面积公式?

板书:S=ah

(出示投影1)。解释三角形,梯形面积公式

【教法说明】让学生感知用割补法求图形的面积。

2023数学九年级复习教案精选篇7

一、内容简介

本节课的主题:通过一系列的探究活动,引导学生从计算结果中总结出完全平方公式的两种形式。

关键信息:

1、以教材作为出发点,依据《数学课程标准》,引导学生体会、参与科学探究过程。首先提出等号左边的两个相乘的多项式和等号右边得出的三项有什么关系。通过学生自主、独立的发现问题,对可能的答案做出假设与猜想,并通过多次的检验,得出正确的结论。学生通过收集和处理信息、表达与交流等活动,获得知识、技能、方法、态度特别是创新精神和实践能力等方面的发展。

2、用标准的数学语言得出结论,使学生感受科学的严谨,启迪学习态度和方法。

二、学习者分析:

1、在学习本课之前应具备的基本知识和技能:

①同类项的定义。

②合并同类项法则

③多项式乘以多项式法则。

2、学习者对即将学习的内容已经具备的水平:

在学习完全平方公式之前,学生已经能够整理出公式的右边形式。这节课的目的就是让学生从等号的左边形式和右边形式之间的关系,总结出公式的应用方法。

三、教学/学习目标及其对应的课程标准:

(一)教学目标:

1、经历探索完全平方公式的过程,进一步发展符号感和推力能力。

2、会推导完全平方公式,并能运用公式进行简单的计算。

(二)知识与技能:经历从具体情境中抽象出符号的过程,认识有理数、实数、代数式、防城、不等式、函数;掌握必要的运算,(包括估算)技能;探索具体问题中的数量关系和变化规律,并能运用代数式、防城、不等式、函数等进行描述。

(四)解决问题:能结合具体情景发现并提出数学问题;尝试从不同角度寻求解决问题的方法,并能有效地解决问题,尝试评价不同方法之间的差异;通过对解决问题过程的反思,获得解决问题的经验。

(五)情感与态度:敢于面对数学活动中的困难,并有独立克服困难和运用知识解决问题的成功体验,有学好数学的自信心;并尊重与理解他人的见解;能从交流中获益。

四、教育理念和教学方式:

1、教师是学生学习的组织者、促进者、合作者:学生是学习的主人,在教师指导下主动的、富有个性的学习,用自己的身体去亲自经历,用自己的心灵去亲自感悟。

教学是师生交往、积极互动、共同发展的过程。当学生迷路的时候,教师不轻易告诉方向,而是引导他怎样去辨明方向;当学生登山畏惧了的时候,教师不是拖着他走,而是唤起他内在的精神动力,鼓励他不断向上攀登。

2、采用“问题情景—探究交流—得出结论—强化训练”的模式展开教学。

3、教学评价方式:

(1)通过课堂观察,关注学生在观察、总结、训练等活动中的主动参与程度与合作交流意识,及时给与鼓励、强化、指导和矫正。

(2)通过判断和举例,给学生更多机会,在自然放松的状态下,揭示思维过程和反馈知识与技能的掌握情况,使老师可以及时诊断学情,调查教学。

(3)通过课后访谈和作业分析,及时查漏补缺,确保达到预期的教学效果。

五、课后反思

本节课虽然算不上课本中的难点,但在整式一章中是个重点。它是多项式乘法特殊形式下的一种简便运算。学生需要熟练掌握公式两种形式的使用方法,以提高运算速度。授课过程中,应注重让学生总结公式的等号两边的特点,让学生用语言表达公式的内容,让学生说明运用公式过程中容易出现的问题和特别注意的细节。然后再通过逐层深入的练习,巩固完全平方公式两种形式的应用。为完全平方公式第二节课的实际应用和提高应用做好充分的准备

35116