初三数学教案(2023)
初三数学教案都有哪些?由于每位教师的知识、经验、特长、个性是千差万别的。而教学工作又是一项创造性的工作。下面是小编为大家带来的初三数学教案(2023)七篇,希望大家能够喜欢!
初三数学教案(2023)【篇1】
教材分析
本节内容是上一节课在学习余角补角基础上学习的,学生有了一定的基础,为以后平面直角坐标系的学习做好准备。
学情分析
本节课对于学生来说学习起来并不太难,在小学阶段学生已经接触过方位角的内容,而且本节课内容和生活中的方向联系紧密,故学生比较有兴趣。
教学目标
理解方位角的意义,掌握方位角的判别和应用,通过现实情境,充分利用学生的生活经验去体会方位角的意义。
教学重点和难点
重点:方位角的判别与应用
难点:方位角的画法及变式题
教学过程(本文来自优秀教育资源网斐.斐.课.件.园)
教学环节教师活动预设学生行为设计意图
一 、创设情境,导入新课
二、讲授新课
三、巩固练习
四、课时小结五、布置作业 由四面八方这个成语引出学生对八个方位的理解
1.先以一个具体图形告诉学生基本知识点,方位角一般是以正南正北为基准,然后向东或西旋转所成的角的始边方向。
2.师示范方位角的画法
3.出示补充例题,引对学生通过小组合作完成。 思考并回答老师提出的问题
生观察图并理解老师的讲解。
生观察并独立完成书中的例题
生先独立思考然后与同学合作完成。 激发学生的学习兴趣
通辽具体图形使学生初步认识方位角的表示方法。
使学生通辽具体操作掌握画方位角的方法
进一步掌握方位角的有关知识,达到知识提升。
板书设计
4.3.3余角和补角(二)——方位角
学生学习活动评价设计
我先将学生按人数分成若干小组,在课前先给学生发放导学单,课上先给学生充分的讨论时间后学生由小组推荐代表发言,累积分数,每个小组轮流回答一次,学生代表回答完毕后,其它同学补充纠错,然后从知识点是否准确,语言是否流利,思维是否创新,逻辑是否合理严密等方面来做出评价,然后给出相应分数。累积到小组积分中课上知识回答后在练习部分,设计抢答题,小组抢答完成。最后计算出总分评出本节课小组及个人奖,给予口头表扬。
教学反思
本节课是在上节课余角和补角的基础上学习的,而且在小学阶段也已经接触过这部分知识了,基于这个特点,在课堂上我主要采取了自主学习的方式,学生接受的不错,本节课的知识虽然简单但很重要是为以后平面直角坐标系做准备的。出现的问题是有个别同学对于A看B是北偏东30度,则B看A是什么方向不太清楚,我采取的措施是让明白的同学讲给不明白的同学听,指导其主要从哪方面入手解决此类问题,还有一点,学生在画图后容易忽略写结论,应强调。以前在上本节课时,我是采取的讲授法,感觉学生不是很爱听,后来一想,知道了是因为小学时他们已经接触了这部分知识,所以不爱听,针对于这种情况,这次我采用了自主学习的方式感觉学生的积极性上来了,一节课气氛很好,相信效果也不错。以后再讲这节课我将继续采用这种方式,在此基础上使其更加完善。
初三数学教案(2023)【篇2】
教材内容
1.本单元教学的主要内容:
二次根式的概念;二次根式的加减;二次根式的乘除;最简二次根式.
2.本单元在教材中的地位和作用:
二次根式是在学完了八年级下册第十七章《反比例正函数》、第十八章《勾股定理及其应用》等内容的基础之上继续学习的,它也是今后学习其他数学知识的基础.
教学目标
1.知识与技能
(1)理解二次根式的概念.
(2)理解(a≥0)是一个非负数,()2=a(a≥0),=a(a≥0).
(3)掌握•=(a≥0,b≥0),=•;
=(a≥0,b>0),=(a≥0,b>0).
(4)了解最简二次根式的概念并灵活运用它们对二次根式进行加减.
2.过程与方法
(1)先提出问题,让学生探讨、分析问题,师生共同归纳,得出概念.再对概念的内涵进行分析,得出几个重要结论,并运用这些重要结论进行二次根式的计算和化简.
(2)用具体数据探究规律,用不完全归纳法得出二次根式的乘(除)法规定,并运用规定进行计算.
(3)利用逆向思维,得出二次根式的乘(除)法规定的逆向等式并运用它进行化简.
(4)通过分析前面的计算和化简结果,抓住它们的共同特点,给出最简二次根式的概念.利用最简二次根式的概念,来对相同的二次根式进行合并,达到对二次根式进行计算和化简的目的.
3.情感、态度与价值观
通过本单元的学习培养学生:利用规定准确计算和化简的严谨的科学精神,经过探索二次根式的重要结论,二次根式的乘除规定,发展学生观察、分析、发现问题的能力.
教学重点
1.二次根式(a≥0)的内涵.(a≥0)是一个非负数;()2=a(a≥0);=a(a≥0)及其运用.
2.二次根式乘除法的规定及其运用.
3.最简二次根式的概念.
4.二次根式的加减运算.
教学难点
1.对(a≥0)是一个非负数的理解;对等式()2=a(a≥0)及=a(a≥0)的理解及应用.
2.二次根式的乘法、除法的条件限制.
3.利用最简二次根式的概念把一个二次根式化成最简二次根式.
教学关键
1.潜移默化地培养学生从具体到一般的推理能力,突出重点,突破难点.
2.培养学生利用二次根式的规定和重要结论进行准确计算的能力,培养学生一丝不苟的科学精神.
单元课时划分
本单元教学时间约需11课时,具体分配如下:
21.1二次根式3课时
21.2二次根式的乘法3课时
21.3二次根式的加减3课时
教学活动、习题课、小结2课时
21.1二次根式
第一课时
教学内容
二次根式的概念及其运用
教学目标
理解二次根式的概念,并利用(a≥0)的意义解答具体题目.
提出问题,根据问题给出概念,应用概念解决实际问题.
教学重难点关键
1.重点:形如(a≥0)的式子叫做二次根式的概念;
2.难点与关键:利用“(a≥0)”解决具体问题.
教学过程
一、复习引入
(学生活动)请同学们独立完成下列三个问题:
问题1:已知反比例函数y=,那么它的图象在第一象限横、纵坐标相等的点的坐标是___________.
问题2:如图,在直角三角形ABC中,AC=3,BC=1,∠C=90°,那么AB边的长是__________.
问题3:甲射击6次,各次击中的环数如下:8、7、9、9、7、8,那么甲这次射击的方差是S2,那么S=_________.
老师点评:
问题1:横、纵坐标相等,即x=y,所以x2=3.因为点在第一象限,所以x=,所以所求点的坐标(,).
问题2:由勾股定理得AB=
问题3:由方差的概念得S=.
二、探索新知
很明显、、,都是一些正数的算术平方根.像这样一些正数的算术平方根的式子,我们就把它称二次根式.因此,一般地,我们把形如(a≥0)的式子叫做二次根式,“”称为二次根号.
(学生活动)议一议:
1.-1有算术平方根吗?
2.0的算术平方根是多少?
3.当a<0,有意义吗?
老师点评:(略)
例1.下列式子,哪些是二次根式,哪些不是二次根式:、、、(x>0)、、、-、、(x≥0,y≥0).
分析:二次根式应满足两个条件:第一,有二次根号“”;第二,被开方数是正数或0.
解:二次根式有:、(x>0)、、-、(x≥0,y≥0);不是二次根式的有:、、、.
例2.当x是多少时,在实数范围内有意义?
分析:由二次根式的定义可知,被开方数一定要大于或等于0,所以3x-1≥0,才能有意义.
解:由3x-1≥0,得:x≥
当x≥时,在实数范围内有意义.
三、巩固练习
教材P练习1、2、3.
四、应用拓展
例3.当x是多少时,+在实数范围内有意义?
分析:要使+在实数范围内有意义,必须同时满足中的≥0和中的x+1≠0.
解:依题意,得
由①得:x≥-
由②得:x≠-1
当x≥-且x≠-1时,+在实数范围内有意义.
例4(1)已知y=++5,求的值.(答案:2)
(2)若+=0,求a2004+b2004的值.(答案:)
五、归纳小结(学生活动,老师点评)
本节课要掌握:
1.形如(a≥0)的式子叫做二次根式,“”称为二次根号.
2.要使二次根式在实数范围内有意义,必须满足被开方数是非负数.
六、布置作业
1.教材P8复习巩固1、综合应用5.
2.选用课时作业设计.
3.课后作业:《同步训练》
第一课时作业设计
一、选择题1.下列式子中,是二次根式的是()
A.-B.C.D.x
2.下列式子中,不是二次根式的是()
A.B.C.D.
3.已知一个正方形的面积是5,那么它的边长是()
A.5B.C.D.以上皆不对
二、填空题
1.形如________的式子叫做二次根式.
2.面积为a的正方形的边长为________.
3.负数________平方根.
三、综合提高题
1.某工厂要制作一批体积为1m3的产品包装盒,其高为0.2m,按设计需要,底面应做成正方形,试问底面边长应是多少?
2.当x是多少时,+x2在实数范围内有意义?
3.若+有意义,则=_______.
4.使式子有意义的未知数x有()个.
A.0B.1C.2D.无数
5.已知a、b为实数,且+2=b+4,求a、b的值.
第一课时作业设计答案:
一、1.A2.D3.B
二、1.(a≥0)2.3.没有
三、1.设底面边长为x,则0.2x2=1,解答:x=.
2.依题意得:,
∴当x>-且x≠0时,+x2在实数范围内没有意义.
3.
4.B
5.a=5,b=-4
初三数学教案(2023)【篇3】
教学目标
1、知道解一元二次方程的基本思路是“降次”化一元二次方程为一元一次方程。
2、学会用因式分解法和直接开平方法解形如(ax+b)2-k=0(k≥0)的方程。
3、引导学生体会“降次”化归的思路。
重点难点
重点:掌握用因式分解法和直接开平方法解形如(ax+b)2-k=0(k≥0)的方程。
难点:通过分解因式或直接开平方将一元二次方程降次为一元一次方程。
教学过程
(一)复习引入
1、判断下列说法是否正确
(1)若p=1,q=1,则pq=l(),若pq=l,则p=1,q=1();
(2)若p=0,g=0,则pq=0(),若pq=0,则p=0或q=0();
(3)若x+3=0或x-6=0,则(x+3)(x-6)=0(),
若(x+3)(x-6)=0,则x+3=0或x-6=0();
(4)若x+3=或x-6=2,则(x+3)(x-6)=1(),
若(x+3)(x-6)=1,则x+3=或x-6=2()。
答案:(1)√,×。(2)√,√。(3)√,√。(4)√,×。
2、填空:若x2=a;则x叫a的,x=;若x2=4,则x=;
若x2=2,则x=。
答案:平方根,±,±2,±。
(二)创设情境
前面我们已经学了一元一次方程和二元一次方程组的解法,解二元一次方程组的基本思路是什么?(消元、化二元一次方程组为一元一次方程)。由解二元一次方程组的基本思路,你能想出解一元二次方程的基本思路吗?
引导学生思考得出结论:解一元二次方程的基本思路是“降次”化一元二次方程为一元一次方程。
给出1.1节问题一中的方程:(35-2x)2-900=0。
问:怎样将这个方程“降次”为一元一次方程?
(三)探究新知
让学生对上述问题展开讨论,教师再利用“复习引入”中的内容引导学生,按课本P.6那样,用因式分解法和直接开平方法,将方程(35-2x)2-900=0“降次”为两个一元一次方程来解。让学生知道什么叫因式分解法和直接开平方法。
(四)讲解例题
展示课本P.7例1,例2。
按课本方式引导学生用因式分解法和直接开平方法解一元二次方程。
引导同学们小结:对于形如(ax+b)2-k=0(k≥0)的方程,既可用因式分解法解,又可用直接开平方法解。
因式分解法的基本步骤是:把方程化成一边为0,另一边是两个一次因式的乘积(本节课主要是用平方差公式分解因式)的形式,然后使每一个一次因式等于0,分别解两个一元一次方程,得到的两个解就是原一元二次方程的解。
直接开平方法的步骤是:把方程变形成(ax+b)2=k(k≥0),然后直接开平方得ax+b=和ax+b=-,分别解这两个一元一次方程,得到的解就是原一元二次方程的解。
注意:(1)因式分解法适用于一边是0,另一边可分解成两个一次因式乘积的一元二次方程;
(2)直接开平方法适用于形如(ax+b)2=k(k≥0)的方程,由于负数没有平方根,所以规定k≥0,当k<0时,方程无实数解。
(五)应用新知
课本P.8,练习。
(六)课堂小结
1、解一元二次方程的基本思路是什么?
2、通过“降次”,把—元二次方程化为两个一元一次方程的方法有哪些?基本步骤是什么?
3、因式分解法和直接开平方法适用于解什么形式的一元二次方程?
(七)思考与拓展
不解方程,你能说出下列方程根的情况吗?
(1)-4x2+1=0;(2)x2+3=0;(3)(5-3x)2=0;(4)(2x+1)2+5=0。
答案:(1)有两个不相等的实数根;(2)和(4)没有实数根;(3)有两个相等的实数根
通过解答这个问题,使学生明确一元二次方程的解有三种情况。
布置作业
初三数学教案(2023)【篇4】
教学目标
1、进一步体会因式分解法适用于解一边为0,另一边可分解成两个一次因式乘积的一元二次方程。
2、会用因式分解法解某些一元二次方程。
3、进一步让学生体会“降次”化归的思想。
重点难点
重点:,掌握用因式分解法解某些一元二次方程。
难点:用因式分解法将一元二次方程转化为一元一次方程。
教学过程
(一)复习引入1、提问:
(1)解一元二次方程的基本思路是什么?
(2)现在我们已有了哪几种将一元二次方程“降次”为一元一次方程的方法?
2、用两种方法解方程:9(1-3x)2=25
(二)创设情境
说明:可用因式分解法或直接开平方法解此方程。解得x1=,,x2=-。
1、说一说:因式分解法适用于解什么形式的一元二次方程。
归纳结论:因式分解法适用于解一边为0,另一边可分解成两个一次因式乘积的一元二次方程。
2、想一想:展示课本1.1节问题二中的方程0.01t2-2t=0,这个方程能用因式分解法解吗?
(三)探究新知
引导学生探索用因式分解法解方程0.01t2-2t=0,解答课本1.1节问题二。
把方程左边因式分解,得t(0.01t-2)=0,由此得出t=0或0.01t-2=0
解得tl=0,t2=200。
t1=0表明小明与小亮第一次相遇;t2=200表明经过200s小明与小亮再次相遇。
(四)讲解例题
1、展示课本P.8例3。
按课本方式引导学生用因式分解法解一元二次方程。
2、让学生讨论P.9“说一说”栏目中的问题。
要使学生明确:解方程时不能把方程两边都同除以一个含未知数的式子,若方程两边同除以含未知数的式子,可能使方程漏根。
3、展示课本P.9例4。
让学生自己尝试着解,然后看书上的解答,交换批改,并说一说在解题时应注意什么。
(五)应用新知
课本P.10,练习。
(六)课堂小结
1、用因式分解法解一元二次方程的基本步骤是:先把一个一元二次方程变形,使它的一边为0,另一边分解成两个一次因式的乘积,然后使每一个一次因式等于0,分别解这两个一元一次方程,得到的两个解就是原一元二次方程的解。
2、在解方程时,千万注意两边不能同时除以一个含有未知数的代数式,否则可能丢失方程的一个根。
(七)思考与拓展
用因式分解法解下列一元二次方程。议一议:对于含括号的守霜露次方程,应怎样适当变形,再用因式分解法解。
(1)2(3x-2)=(2-3x)(x+1);(2)(x-1)(x+3)=12。
[解](1)原方程可变形为2(3x-2)+(3x-2)(x+1)=0,
(3x-2)(x+3)=0,3x-2=0,或x+3=0,
所以xl=,x2=-3
(2)去括号、整理得x2+2x-3=12,x2+2x-15=0,
(x+5)(x-3)=0,x+5=0或x-3=0,
所以x1=-5,x2=3
先让学生动手解方程,然后交流自己的解题经验,教师引导学生归纳:对于含括号的一元二次方程,若能把括号看成一个整体变形,把方程化成一边为0,另一边为两个一次式的积,就不用去括号,如上述(1);否则先去括号,把方程整理成一般形式,再看是否能将左边分解成两个一次式的积,如上述(2)。
布置作业
教学后记:
初三数学教案(2023)【篇5】
理解一元二次方程“降次”——转化的数学思想,并能应用它解决一些具体问题.
提出问题,列出缺一次项的一元二次方程ax2+c=0,根据平方根的意义解出这个方程,然后知识迁移到解a(ex+f)2+c=0型的一元二次方程.
重点
运用开平方法解形如(x+m)2=n(n≥0)的方程,领会降次——转化的数学思想.
难点
通过根据平方根的意义解形如x2=n的方程,将知识迁移到根据平方根的意义解形如(x+m)2=n(n≥0)的方程.
一、复习引入
学生活动:请同学们完成下列各题.
问题1:填空
(1)x2-8x+________=(x-________)2;(2)9x2+12x+________=(3x+________)2;(3)x2+px+________=(x+________)2.
解:根据完全平方公式可得:(1)16 4;(2)4 2;(3)(p2)2 p2.
问题2:目前我们都学过哪些方程?二元怎样转化成一元?一元二次方程与一元一次方程有什么不同?二次如何转化成一次?怎样降次?以前学过哪些降次的方法?
二、探索新知
上面我们已经讲了x2=9,根据平方根的意义,直接开平方得x=±3,如果x换元为2t+1,即(2t+1)2=9,能否也用直接开平方的方法求解呢?
(学生分组讨论)
老师点评:回答是肯定的,把2t+1变为上面的x,那么2t+1=±3
即2t+1=3,2t+1=-3
方程的两根为t1=1,t2=-2
例1 解方程:(1)x2+4x+4=1 (2)x2+6x+9=2
分析:(1)x2+4x+4是一个完全平方公式,那么原方程就转化为(x+2)2=1.
(2)由已知,得:(x+3)2=2
直接开平方,得:x+3=±2
即x+3=2,x+3=-2
所以,方程的两根x1=-3+2,x2=-3-2
解:略.
例2 市政府计划2年内将人均住房面积由现在的10 m2提高到14.4 m2,求每年人均住房面积增长率.
分析:设每年人均住房面积增长率为x,一年后人均住房面积就应该是10+10x=10(1+x);二年后人均住房面积就应该是10(1+x)+10(1+x)x=10(1+x)2
解:设每年人均住房面积增长率为x,
则:10(1+x)2=14.4
(1+x)2=1.44
直接开平方,得1+x=±1.2
即1+x=1.2,1+x=-1.2
所以,方程的两根是x1=0.2=20%,x2=-2.2
因为每年人均住房面积的增长率应为正的,因此,x2=-2.2应舍去.
所以,每年人均住房面积增长率应为20%.
(学生小结)老师引导提问:解一元二次方程,它们的共同特点是什么?
共同特点:把一个一元二次方程“降次”,转化为两个一元一次方程.我们把这种思想称为“降次转化思想”.
三、巩固练习
教材第6页 练习.
四、课堂小结
本节课应掌握:由应用直接开平方法解形如x2=p(p≥0)的方程,那么x=±p转化为应用直接开平方法解形如(mx+n)2=p(p≥0)的方程,那么mx+n=±p,达到降次转化之目的.若p<0则方程无解.
五、作业布置
初三数学教案(2023)【篇6】
理解间接即通过变形运用开平方法降次解方程,并能熟练应用它解决一些具体问题.
通过复习可直接化成x2=p(p≥0)或(mx+n)2=p(p≥0)的一元二次方程的解法,引入不能直接化成上面两种形式的一元二次方程的解题步骤.
重点
讲清直接降次有困难,如x2+6x-16=0的一元二次方程的解题步骤.
难点
将不可直接降次解方程化为可直接降次解方程的“化为”的转化方法与技巧.
一、复习引入
(学生活动)请同学们解下列方程:
(1)3x2-1=5 (2)4(x-1)2-9=0 (3)4x2+16x+16=9 (4)4x2+16x=-7
老师点评:上面的方程都能化成x2=p或(mx+n)2=p(p≥0)的形式,那么可得
x=±p或mx+n=±p(p≥0).
如:4x2+16x+16=(2x+4)2,你能把4x2+16x=-7化成(2x+4)2=9吗?
二、探索新知
列出下面问题的方程并回答:
(1)列出的经化简为一般形式的方程与刚才解题的方程有什么不同呢?
(2)能否直接用上面前三个方程的解法呢?
问题:要使一块矩形场地的长比宽多6 m,并且面积为16 m2,求场地的长和宽各是多少?
(1)列出的经化简为一般形式的方程与前面讲的三道题不同之处是:前三个左边是含有x的完全平方式而后二个不具有此特征.
(2)不能.
既然不能直接降次解方程,那么,我们就应该设法把它转化为可直接降次解方程的方程,下面,我们就来讲如何转化:
x2+6x-16=0移项→x2+6x=16
两边加(6/2)2使左边配成x2+2bx+b2的形式→x2+6x+32=16+9
左边写成平方形式→(x+3)2=25降次→x+3=±5即x+3=5或x+3=-5
解一次方程→x1=2,x2=-8
可以验证:x1=2,x2=-8都是方程的根,但场地的宽不能是负值,所以场地的宽为2 m,长为8 m.
像上面的解题方法,通过配成完全平方形式来解一元二次方程的方法,叫配方法.
可以看出,配方法是为了降次,把一个一元二次方程转化为两个一元一次方程来解.
例1 用配方法解下列关于x的方程:
(1)x2-8x+1=0 (2)x2-2x-12=0
分析:(1)显然方程的左边不是一个完全平方式,因此,要按前面的方法化为完全平方式;(2)同上.
解:略.
三、巩固练习
教材第9页 练习1,2.(1)(2).
四、课堂小结
本节课应掌握:
左边不含有x的完全平方形式的一元二次方程化为左边是含有x的完全平方形式,右边是非负数,可以直接降次解方程的方程.
五、作业布置
初三数学教案(2023)【篇7】
1.经历用一元二次方程解决实际问题的过程,总结列一元二次方程解决实际问题的一般步骤.
2.通过学生自主探究,会根据传播问题、百分率问题中的数量关系列一元二次方程并求解,熟悉解题的具体步骤.
3.通过实际问题的解答,让学生认识到对方程的解必须要进行检验,方程的解是否舍去要以是否符合问题的实际意义为标准.
重点
利用一元二次方程解决传播问题、百分率问题.
难点
如果理解传播问题的传播过程和百分率问题中的增长(降低)过程,找到传播问题和百分率问题中的数量关系.
一、引入新课
1.列方程解应用题的基本步骤有哪些?应注意什么?
2.科学家在细胞研究过程中发现:
(1)一个细胞一次可分裂成2个,经过3次分裂后共有多少个细胞?
(2)一个细胞一次可分裂成x个,经过3次分裂后共有多少个细胞?
(3)如是一个细胞一次可分裂成2个,分裂后原有细胞仍然存在并能再次分裂,试问经过3次分裂后共有多少个细胞?
二、教学活动
活动1:自学教材第19页探究1,思考教师所提问题.
有一人患了流感,经过两轮传染后,有121人患了流感,每轮传染中平均一个人传染了几个人?
(1)如何理解“两轮传染”?如果设每轮传染中平均一个人传染了x个人,第一轮传染后共有________人患流感.第二轮传染后共有________人患流感.
(2)本题中有哪些数量关系?
(3)如何利用已知的数量关系选取未知数并列出方程?
解答:设每轮传染中平均一个人传染了x个人,则依题意第一轮传染后有(x+1)人患了流感,第二轮有x(1+x)人被传染上了流感.于是可列方程:
1+x+x(1+x)=121
解方程得x1=10,x2=-12(不合题意舍去)
因此每轮传染中平均一个人传染了10个人.
变式练习:如果按这样的传播速度,三轮传染后有多少人患了流感?
活动2:自学教材第19页~第20页探究2,思考老师所提问题.
两年前生产1吨甲种药品的成本是5000元,生产1吨乙种药品的成本是6000元,随着生产技术的进步,现在生产1吨甲种药品的成本是3000元,生产1吨乙种药品的成本是3600元,哪种药品成本的年平均下降率较大?
(1)如何理解年平均下降额与年平均下降率?它们相等吗?
(2)若设甲种药品年平均下降率为x,则一年后,甲种药品的成本下降了________元,此时成本为________元;两年后,甲种药品下降了________元,此时成本为________元.
(3)增长率(下降率)公式的归纳:设基准数为a,增长率为x,则一月(或一年)后产量为a(1±x);
二月(或二年)后产量为a(1±x)2;
n月(或n年)后产量为a(1±x)n;
如果已知n月(n年)后总产量为M,则有下面等式:M=a(1±x)n.
(4)对甲种药品而言根据等量关系列方程为:________________.
三、课堂小结与作业布置
课堂小结
1.列一元二次方程解应用题的步骤:审、设、找、列、解、答.最后要检验根是否符合实际.
2.传播问题解决的关键是传播源的确定和等量关系的建立.
3.若平均增长(降低)率为x,增长(或降低)前的基准数是a,增长(或降低)n次后的量是b,则有:a(1±x)n=b(常见n=2).
4.成本下降额较大的药品,它的下降率不一定也较大,成本下降额较小的药品,它的下降率不一定也较小.
作业布置
教材第21-22页 习题21.3第2-7题.第2课时 解决几何问题
1.通过探究,学会分析几何问题中蕴含的数量关系,列出一元二次方程解决几何问题.
2.通过探究,使学生认识在几何问题中可以将图形进行适当变换,使列方程更容易.
3.通过实际问题的解答,再次让学生认识到对方程的解必须要进行检验,方程的解是否舍去要以是否符合问题的实际意义为标准.
重点
通过实际图形问题,培养学生运用一元二次方程分析和解决几何问题的能力.
难点
在探究几何问题的过程中,找出数量关系,正确地建立一元二次方程.
活动1 创设情境
1.长方形的周长________,面积________,长方体的体积公式________.
2.如图所示:
(1)一块长方形铁皮的长是10 cm,宽是8 cm,四角各截去一个边长为2 cm的小正方形,制成一个长方体容器,这个长方体容器的底面积是________,高是________,体积是________.
(2)一块长方形铁皮的长是10 cm,宽是8 cm,四角各截去一个边长为x cm的小正方形,制成一个长方体容器,这个长方体容器的底面积是________,高是________,体积是________.
活动2 自学教材第20页~第21页探究3,思考老师所提问题
要设计一本书的封面,封面长27 cm,宽21 cm,正中央是一个与整个封面长宽比例相同的矩形,如果要使四周的彩色边衬所占面积是封面面积的四分之一,上下边衬等宽,左右边衬等宽,应如何设计四周边衬的宽度(精确到0.1 cm).
(1)要设计书本封面的长与宽的比是________,则正中央矩形的长与宽的比是________.
(2)为什么说上下边衬宽与左右边衬宽之比为9∶7?试与同伴交流一下.
(3)若设上、下边衬的宽均为9x cm,左、右边衬的宽均为7x cm,则中央矩形的长为________cm,宽为________cm,面积为________cm2.
(4)根据等量关系:________,可列方程为:________.
(5)你能写出解题过程吗?(注意对结果是否合理进行检验.)
(6)思考如果设正中央矩形的长与宽分别为9x cm和7x cm,你又怎样去求上下、左右边衬的宽?
活动3 变式练习
如图所示,在一个长为50米,宽为30米的矩形空地上,建造一个花园,要求花园的面积占整块面积的75%,等宽且互相垂直的两条路的面积占25%,求路的宽度.
答案:路的宽度为5米.
活动4 课堂小结与作业布置
课堂小结
1.利用已学的特殊图形的面积(或体积)公式建立一元二次方程的数学模型,并运用它解决实际问题的关键是弄清题目中的数量关系.
2.根据面积与面积(或体积)之间的等量关系建立一元二次方程,并能正确解方程,最后对所得结果是否合理要进行检验.
作业布置
教材第22页 习题21.3第8,10题.