教育巴巴 > 初中教案 > 九年级教案 > 数学教案 >

九年级数学教学教案

时间: 沐钦 数学教案

九年级数学教学教案都有哪些?教师要认真贯彻课标精神,按教材内在规律,结合学生实际来确定教学目标、重点、难点。下面是小编为大家带来的九年级数学教学教案七篇,希望大家能够喜欢!

九年级数学教学教案

九年级数学教学教案【篇1】

一、指导思想:

九年级数学以党和国家的教育教学此文转自方针为指导,按照九年义务教育数学课程标准来实施的,其目的是教书育人,使每个学都能够在此数学学习过程中获得最适合自已发展的广泛空间。通过九年级数学的教学,提供进一步学习所必需的数学基础知识与基本技能,进一步培养学生的运算能力、思维级力和空间想象能力,能够运用所学知识解决简朴的实际问题,培养学生手数学创新意识,良好个性品质以及初步的唯物主义观。

二、教学内容

本学期所教九年级数学包括第一章《一元二次方程》,第二章《定义命题公理与证实》,第三章《相似形》,第四章《解直角三角形》。第五章《概率的计算》。

三、教学目标

知识技能目标:会解一元二次方程:理解定义命题公理并学会运用:掌握相似形的相关知识及运用;会解直解三角形,掌握概率的初步计算方法。

过程方法目标:培养学生的观察、探究、推理、归纳的能力,发展学生合情推理能力、逻辑推理能力和推理认证表达能力,提高知识综合应用能力。态度情感目标:进一步感受数学与日常生活密不可分的联系,同时对学生进行辩证唯物主义世界观教育。

四、教学措拖

1、教学过程中尽量采取多鼓励、多引导、少批秤的教育方法。

2、教学速度以适应大多学生为主,尽量兼顾后进生,注意整体推进。

3、新课教学中涉及到旧知识时,对其作相应的复习回顾。

4、复习阶段多让学生动脑、动手、通过各种习题、综合试题和模仿试题的训练,使学生逐步认识各知识点,并能纯熟运用。

五、教学进度

全学期约为22周,安排如下:

09.1~09.30:一元二次方程

10.7~10.30:定义命题公理与证实

11.01~11.26:相似形

11.27~12.27:解直角三角形

12.28~20__.1.14:概率的计算

01.15~01.30:整理复习

九年级数学教学教案【篇2】

教学目标

(1)会用公式法解一元二次方程;

(2)经历求根公式的发现和探究过程,提高学生观察能力、分析能力以及逻辑思维能力;

(3)渗透化归思想,领悟配方法,感受数学的内在美.

教学重点

知识层面:公式的推导和用公式法解一元二次方程;

能力层面:以求根公式的发现和探究为载体,渗透化归的数学思想方法.

教学难点:求根公式的推导.

总体设计思路:

以旧知识为起点,问题为主线,以教师指导下学生自主探究为基本方式,突出数学知识的内在联系与探究知识的方法,发展学生的理性思维.

教学过程

(一)以旧引新,提出问题

解下列一元二次方程:(学生选两题做)

(1)_2+4_+2=0 ; (2)3_2-6_+1=0;

(3)4_2-16_+17=0 ; (4)3_2+4_+7=0.

然后让学生仔细观察四题的解答过程,由此发现有什么相同之处,有什么不同之处?

接着再改变上面每题的其中的一个系数,得到新的四个方程:(学生不做,思考其解题过程)

(1)3_2+4_+2=0; (2)3_2-2_+1=0;

(3)4_2-16_-3=0 ; (4)3_2+_+7=0.

思考:新的四题与原题的解题过程会发生什么变化?

设计意图: 1.复习巩固旧知识,为本节课的学习扫除障碍;

2.让学生充分感受到用配方法解题既存在着共性,也存在着不同的现象,由此激发学生的求知欲望.

3、学生根据自己的情况选两题,这样做能保证运算的正确和继续学习数学的信心。

(二)分析问题,探究本质

由学生的观察讨论得到:用配方法解不同一元二次方程的过程中,相同之处是配方的过程----程序化的操作,不同之处是方程的根的情况及其方程的根.

进而提出下面的问题:

既然过程是相同的,为什么会出现根的不同?方程的根与什么有关?有怎样的关系?如何进一步探究?

让学生讨论得出:从一元二次方程的一般形式去探究根与系数的关系.

a_2+b_+c=0(a≠0) 注:根据学生学习程度的不同,可

a_2+b_=-c 以采用学生独立尝试配方, 合

_2+ _=- 作尝试配方或教师引导下进行

_2+ _+ =- + 配方等各种教学形式.

(_+ )2=

然后再议开方过程(让学生结合前面四题方程来加以讨论),使学生充分认识到“b2 -4ac”的重要性.

当b2-4ac≥0时,

(_+ )2= 注:这样变形可以避免对a正、负的讨论,

_+ = 便于学生的理解.

_=- 即_=

_1= , _2=

当b2-4ac<0时,

方程无实数根.

设计意图:让学生通过经历知识形成的全过程,从而提高自身的观察能力、分析问题和解决问题的能力,发展了理性思维.

(三)得出结论,解决问题

由上面的探究过程可知,一元二次方程a_2+b_+c=0(a≠0)的根由方程的系数a,b,c确定. 当b2-4ac≥0时,

_=;

当b2-4ac<0时,方程无实数根.

这个式子对解题有什么帮助?通过讨论加深对式子的理解,同时让学生进一步感受到数学的简洁美、和谐美.

进而阐述这个式子叫做一元二次方程的求根公式,利用它解一元二次方程的方法叫做公式法.

设计意图: 理解是记忆的基础。只有理解了公式才能烂熟于心,才能在题目中熟练应用,不会因记不清公式造成运算的错误。

运用公式法解一元二次方程.(前两道教师示范,后两道学生练习)

(1)2_2-_-1=0; (2)4_2-3_+2=0 ;

(3)_2+15_=-3_; (4)_2- _+ =0.

注:( 教师在示范时多强调注意点、易错点,会减少学生做题的错误,让学生在做题中获得成功感。)

设计意图:进一步阐述求根公式,归纳总结用公式法解一元二次方程的一般步骤,及时总结简化运算,节约时间又提高做题的准确性。

用公式法解一元二次方程:(比一比,看谁做得又快又对)

(1)_2+_-6=0; (2)_2- _- =0;

(3)3_2-6_-2=0;(4)4_2-6_=0;

设计意图:能够熟练运用公式法解一元二次方程,让每位学生都有所收获,通过大量练习,熟悉公式法的步骤,训练快速准确的计算能力。

(四)拓展运用,升华提高

[想一想]

清清和楚楚刚学了用公式法解一元二次方程,看到一个关于_ 的一元二次方程_2+(2m-1)_+(m-1)=0, 清清说:“此方程有两个不相等的实数根”,

而楚楚反驳说:“不一定,根的情况跟m的值有关”.那你们认为呢?并说明理由.

设计意图:基于学生基础较好,因此对求根公式作进一步深化,并综合运用了配方法,使不同层次的学生都有不同提高.比较配方法在不同题型中的用法,

避免以后出现运算错误。

归纳小结, 结合上面想一想,让学生尝试对本节课的知识进行梳理,对方法进行提炼,从而使学生的知识和方法更具系统化和网络化,同时也是情感的升华过程.

(五) 布置作业

一必做题

二选做题:P46第12题。

设计意图:结合学生的实际情况,可以分层布置。 适合的练习既巩固了所学提高了计算的速度又保养了学生学习数学的兴趣和信心。

九年级数学教学教案【篇3】

教学目标:

1.知识与技能:

(1)能证明等腰梯形的性质和判定定理

(2)会利用这些定理计算和证明一些数学问题

2.过程与方法:

通过证明等腰梯形的性质和判定定理,体会数学中转化思想方法的应用。

3.情感态度与价值观:

通过定理的证明,体会证明方法的多样化,从而提高学生解决几何问题的能力。

重点、难点:

重点:等腰梯形的性质和判定

难点:如何应用等腰梯形的性质和判定解决具体问题。

教学过程

(一)知识梳理:

知识点1:等腰梯形的性质1

(1)文字语言:等腰梯形同一底上的两底角相等。

(2)数学语言:

在梯形ABCD中

∵AD‖BC,AB=CD

∴∠B=∠C

∠A=∠D(等腰梯形同一底上的两个底角相等)

(3)本定理的作用:在梯形中常用的添加辅助线——平移腰,可以把梯形化归为一个平行四边形和一个等腰三角形;从而利用平行四边形及等腰三角形的有关性质解决有关问题。

知识点2:等腰梯形的性质2

(1)文字语言:等腰梯形的两条对角线相等

(2)数学语言:

在梯形ABCD中

∵AD‖BC,AB=DC

∴AC=BD(等腰梯形对角线相等)

(3)本定理的作用:利用等腰梯形的性质证明线段相等,以及平移其中一条对角线化梯形为一个平行四边形和一个等腰三角形从而解决有关线段的相等和垂直。

知识点3:等腰梯形的判定

(1)文字语言:在同一底上的两个角相等的梯形是等腰梯形。

(2)数学语言:在梯形ABCD中∵∠B=∠C

∴梯形ABCD是等腰梯形(同底上的两个角相等的梯形是等腰梯形)

(3)本定理的作用:在梯形中常用添加辅助线——补全三角形把原来的梯形化为两个三角形

(4)说明:

①判定一个梯形是等腰梯形通常有两种方法:定义法和定理法。

②判定一个梯形是等腰梯形一般步骤:先判定四边形是梯形,然后再判定“两腰相等”或“同一底上的两个角相等”来判定它是等腰梯形。

【典型例题】

例1. 我们在研究等腰梯形时,常常通过作辅助线将等腰梯形转化为三角形,然后用三角形的知识来解决等腰梯形的问题。

(1)在下面4个等腰梯形中,分别作出常用的4种辅助线(作图工具不限)

(2)在(1)的条件下,若AC⊥BD,DE⊥BC于点E,试确定线段DE与AD,BC之间的数量关系。并证明你的结论。

解:(1)略。

(2)DE=(AD+BC)

过D作DF‖AC交BC延长线于点F

∵AD‖BC,∴四边形ACFD是平行四边形

∴AD=CF, AC=DF

∵AC=BD

∴BD=DF

又∵AC⊥BD,∴BD⊥DF即△BDF为等腰直角三角形

∵DE⊥BF,则DE=BF,

∴DE=(BC+CF)=(BC+AD)

例2. 如图,铁路路基横断面为等腰梯形ABCD,已知路基AB长6m, 斜坡BC与下底CD的夹角为60°,路基高AE为,求下底CD的宽。

解:过点B作BF⊥CD于F

∵四边形ABCD是等腰梯形

∴BC=AD

∵BF=AE,BF⊥CD,AE⊥CD

∵Rt△BCF≌Rt△ADE

在Rt△BCF中,∠C=60°

∴∠CBF=30°

∴CF=BC即BC=2CF

∴BC2=CF2+BF2

即∴CF=2

∵AB‖CD,BF⊥CD,AE⊥CD

∴四边形ABFE是矩形

∴EF=AB=6m

∴CD=DE+EF+CF=AB+2CF=6+2×2=10(m)

例3. 已知如图,梯形ABCD中,AB‖DC,AD=DC=CB,AD、BC的延长线相交于G,CE⊥AG于E,CF⊥AB于F

(1)请写出图中4组相等的线段。(已知的相等线段除外)

(2)选择(1)中你所写的一组相等线段,说说它们相等的理由。

解:(1)DG=CG,DE=BF,CF=CE,AF=AE,AG=BG

(2)证明AG=BG,因为在梯形ABCD中,

AB‖DC,AD=BC,所以梯形ABCD为等腰梯形

∴∠GAB=∠GBA

∴AG=BG

课堂小结:

本节课的学习要注意转化的思想方法,有关等腰梯形的问题往往通过作辅助线将其转化为更特殊的四边形和三角形,常见办法是平移腰,延长腰,作高分割,平移对角线等方法。

九年级数学教学教案【篇4】

一.一元一次不等式组:关于同一个未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组。一元一次不等式组的概念可以从以下几个方面理解:

(1)组成不等式组的不等式必须是一元一次不等式;

(2)从数量上看,不等式的个数必须是两个或两个以上;

(3)每个不等式在不等式组中的位置并不固定,它们是并列的.

二.一元一次不等式组的解集及解不等式组:在一元一次不等式组中,各个不等式的解集的公共部分就叫做这个一元一次不等式组的解集。求这个不等式组解集的过程就叫解不等式组。解一元一次不等式组的步骤:

(1)先分别求出不等式组中各个不等式的解集;

(2)利用数轴或口诀求出这些解集的公共部分,也就是得到了不等式组的解集.

三.不等式(组)的解集的数轴表示:

一元一次不等式组知识点

1.用数轴表示不等式的解集,应记住下面的规律:大于向右画,小于向左画,有等号的画实心原点,无等号的画空心圆圈;

2.不等式组的解集,可以在数轴上先画同各个不等式的解集,找出公共部分即为不等式的解集。公共部分也就各不等式解集在数轴上的重合部分;

3..我们根据一元一次不等式组,化简成最简不等式组后进行分类,通常就能把一元一次不等式组分成如上四类。

说明:当不等式组中,含有“≤”或“≥”时,在解题时,我们可以不关注这个等号,这样就这类不等式组化归为上述四种基本不等式组中的某一种类型。但是,在解题的过程中,这个等号要与不等号相连,不能分开。

四.求一些特解:求不等式(组)的正整数解,整数解等特解(这些特解往往是有限个),解这类问题的步骤:先求出这个不等式的解集,然后借助于数轴,找出所需特解。

【一元一次不等式组考点分析】

(1)考查不等式组的概念;

(2)考查一元一次不等式组的解集,以及在数轴上的表示;

(3)考查不等式组的特解问题;

(4)确定字母的取值。

【一元一次不等式组知识点误区】

(1)思维误区,不等式与等式混淆;

(2)不能正确地确定出不等式组解集的公共部分;

(3)在数轴上表示不等式组解集时,混淆界点的表示方法;

(4)考虑不周,漏掉隐含条件;

(5)当有多个限制条件时,对不等式关系的发掘不全面,导致未知数范围扩大;

(6)对含字母的不等式,没有对字母取值进行分类讨论。

九年级数学教学教案【篇5】

一、教学目标

【知识与技能】

了解数轴的概念,能用数轴上的点准确地表示有理数。

【过程与方法】

通过观察与实际操作,理解有理数与数轴上的点的对应关系,体会数形结合的思想。

【情感、态度与价值观】

在数与形结合的过程中,体会数学学习的乐趣。

二、教学重难点

【教学重点】

数轴的三要素,用数轴上的点表示有理数。

【教学难点】

数形结合的思想方法。

三、教学过程

(一)引入新课

提出问题:通过实例温度计上数字的意义,引出数学中也有像温度计一样可以用来表示数的轴,它就是我们今天学习的数轴。

(二)探索新知

学生活动:小组讨论,用画图的形式表示东西向马路上杨树,柳树,汽车站牌三者之间的关系:

提问1:上面的问题中,“东”与“西”、“左”与“右”都具有相反意义。我们知道,正数和负数可以表示具有相反意义的量,那么,如何用数表示这些树、电线杆与汽车站牌的相对位置呢?

学生活动:画图表示后提问。

提问2:“0”代表什么?数的符号的实际意义是什么?对照体温计进行解答。

教师给出定义:在数学中,可以用一条直线上的点表示数,这条直线叫做数轴,它满足:任取一个点表示数0,代表原点;通常规定直线上向右(或上)为正方向,从原点向左(或下)为负方向;选取合适的长度为单位长度。

提问3:你是如何理解数轴三要素的?

师生共同总结:“原点”是数轴的“基准”,表示0,是表示正数和负数的分界点,正方向是人为规定的,要依据实际问题选取合适的单位长度。

(三)课堂练习

如图,写出数轴上点A,B,C,D,E表示的数。

(四)小结作业

提问:今天有什么收获?

引导学生回顾:数轴的三要素,用数轴表示数。

课后作业:

课后练习题第二题;思考:到原点距离相等的两个点有什么特点?

九年级数学教学教案【篇6】

一、教学目标

1.通过观察、猜想、比较、具体操作等数学活动,学会用计算器求一个锐角的三角函数值。

2.经历利用三角函数知识解决实际问题的过程,促进观察、分析、归纳、交流等能力的发展。

3.感受数学与生活的密切联系,丰富数学学习的成功体验,激发学生继续学习的好奇心,培养学生与他人合作交流的意识。

二、教材分析

在生活中,我们会经常遇到这样的问题,如测量建筑物的高度、测量江河的宽度、船舶的定位等,要解决这样的问题,往往要应用到三角函数知识。在上节课中已经学习了30°,45°,60°角的三角函数值,可以进行一些特定情况下的计算,但是生活中的问题,仅仅依靠这三个特殊角度的三角函数值来解决是不可能的。本节课让学生使用计算器求三角函数值,让他们从繁重的计算中解脱出来,体验发现并提出问题、分析问题、探究解决方法直至最终解决问题的过程。

三、学校及学生状况分析

九年级的.学生年龄一般在15岁左右,在这个阶段,学生以抽象逻辑思维为主要发展趋势,但在很大程度上,学生仍然要依靠具体的经验材料和操作活动来理解抽象的逻辑关系。另外,计算器的使用可以极大减轻学生的负担。因此,依据教材中提供的背景材料,辅以计算器的使用,可以使学生更好地解决问题。

学生自小学起就开始使用计算器,对计算器的操作比较熟悉。同时,在前面的课程中学生已经学习了锐角三角函数的定义,30°,45°,60°角的三角函数值以及与它们相关的简单计算,具备了学习本节课的知识和技能。

四、教学设计

(一)复习提问

1.梯子靠在墙上,如果梯子与地面的夹角为60°,梯子的长度为3米,那么梯子底端到墙的距离有几米?

学生活动:根据题意,求出数值。

2.在生活中,梯子与地面的夹角总是60°吗?

不是,可以出现各种角度,60°只是一种特殊现象。

图1(二)创设情境引入课题

1?如图1,当登山缆车的吊箱经过点A到达点B时,它走过了200m。已知缆车的路线与平面的夹角为∠A=16°,那么缆车垂直上升的距离是多少?

哪条线段代表缆车上升的垂直距离?

线段BC。

利用哪个直角三角形可以求出BC?

在Rt△ABC中,BC=ABsin16°,所以BC=200sin16°。

你知道sin16°是多少吗?我们可以借助科学计算器求锐角三角形的三角函数值。那么,怎样用科学计算器求三角函数呢?

用科学计算器求三角函数值,要用sincos和tan键。教师活动:(1)展示下表;(2)按表口述,让学生学会求sin16°的值。按键顺序显示结果sin16°sin16=sin16°=0?275637355

学生活动:按表中所列顺序求出sin16°的值。

你能求出cos42°,tan85°和sin72°38′25″的值吗?

学生活动:类比求sin16°的方法,通过猜想、讨论、相互学习,利用计算器求相应的三角函数值(操作程序如下表):

按键顺序显示结果cos42°cos42=cos42°=0?743144825tan85°tan85=tan85°=11?4300523sin72°38′25″sin72D′M′S

38D′M′S2

5D′M′S=sin72°38′25″→

0?954450321

师:利用科学计算器解决本节一开始的问题。

生:BC=200sin16°≈52?12(m)。

说明:利用学生的学习兴趣,巩固用计算器求三角函数值的操作方法。

(三)想一想

师:在本节一开始的问题中,当缆车继续由点B到达点D时,它又走过了200m,缆车由点B到达点D的行驶路线与水平面的夹角为∠β=42°,由此你还能计算什么?

学生活动:(1)可以求出第二次上升的垂直距离DE,两次上升的垂直距离之和,两次经过的水平距离,等等。(2)互相补充并在这个过程中加深对三角函数的认识。

(四)随堂练习

1.一个人由山底爬到山顶,需先爬40°的山坡300m,再爬30°的山坡100m,求山高(结果精确到0.1m)。

2.如图2,∠DAB=56°,∠CAB=50°,AB=20m,求图中避雷针CD的长度(结果精确到0.01m)。

图2图3

(五)检测

如图3,物华大厦离小伟家60m,小伟从自家的窗中眺望大厦,并测得大厦顶部的仰角是45°,而大厦底部的俯角是37°,求大厦的高度(结果精确到0?1m)。

说明:在学生练习的同时,教师要巡视指导,观察学生的学习情况,并针对学生的困难给予及时的指导。

(六)小结

学生谈学习本节的感受,如本节课学习了哪些新知识,学习过程中遇到哪些困难,如何解决困难,等等。

(七)作业

1.用计算器求下列各式的值:

(1)tan32°;(2)cos24?53°;(3)sin62°11′;(4)tan39°39′39″。

图42?如图4,为了测量一条河流的宽度,一测量员在河岸边相距180m的P,Q两点分别测定对岸一棵树T的位置,T在P的正南方向,在Q的南偏西50°的方向,求河宽(结果精确到1m)。

五、教学反思

1.本节是学习用计算器求三角函数值并加以实际应用的内容,通过本节的学习,可以使学生充分认识到三角函数知识在现实世界中有着广泛的应用。本节课的知识点不是很多,但是学生通过积极参与课堂,提高了分析问题和解决问题的能力,并且在意志力、自信心和理性精神等方面得到了良好的发展。

九年级数学教学教案【篇7】

一、学情分析:

九年级(1)、(2)班成绩一般,两极分化严重,经过上一学期的努力,很多学生在学习风气上有了较大的改变,学习积极性有所提高,也有不少学生自知能力较差,特别是到了最后一学期,,最自己要求不严,甚至自暴自弃,这些都需要针对不同情况采取相应的措施,耐心教育,此外,面临中考阶段对学生要有总体的掌握,使之考出好成绩。

二、本册教材教学目标:

1、情感目标及价值观:

通过学习交流、合作、讨论的方式,积极探索,激发学生的学习兴趣,改进学生的学习方式,提高学习质量,逐步形成正确的教学价值观,使学生的情感得到发展。

2、知识与技能

理解点、直线、圆与圆的位置关系,弧长和扇形的面积,圆锥的侧面展开图,平行投影和中心投影,三视图,掌握圆的切线及与圆有关的角等概念和计算。教育学生掌握基础知识与基本技能,培养学生的逻辑思维能力、运算能力、空间观念和解决简单实际问题的能力,使学生逐步学会正确、合理的进行运算,逐步学会观察分析、综合、抽象、概括。会用归纳演绎、类比进行简单的推理,提高学生学习数学的兴趣,逐步培养学生具有良好的学习习惯,实事求是的态度,掌握初中数学教材、数学学科“基本要求”的知识点。

3、过程与方法:

经历探索过程,让学生进一步体会数学来源与实践,又反应用于实践,通过探索、学习,使学生逐步学会正确、合理的进行运算,逐步学会观察、分析、综合、抽象、会用归纳、演绎、类比进行简单的推理,围绕初中数学教材、数学学科“基本要求”进行知识梳理,围绕初中数学主要内容进行专题复习,适时地进行分层教学,面向全体学生、培养学生、发展全体学生。

三、本册教材分析

本学期的内容只剩两章,:圆与统计估计。

圆这一章的主要内容是圆的定义和性质,点、直线、圆与圆的位置关系,圆的切线,弧长和扇形的面积,圆锥的侧面展开图,平行投影和中心投影,视图。本章设涉及的概念、定理较多,应弄清来龙去脉,准确理解和掌握概念和定理。垂径定理及推论、圆的切线的判定定理和性质定理是本章的重点。垂径定理、圆周角定理的证明、运用与圆有关的性质解决实际问题,以及根据三视图描述基本几何体或实物原型,是本章的难点。

统计估计这章有总体与样本、用样本估计这两节内容。统计是统计理论和应用的一项重要内容,其基本思想是通过部分估计全体。本章在介绍总体、个体、样本、样本容量的概念后,先后以百分比、平均数和方差为例,介绍了用样本估计总体的统计思想方法。

除了这两章,还要复习初中数学教材其他的内容。

四、教学重难点

重点:

圆这章中垂径定理及推论、圆的切线的判定定理和性质定理是本章

的重点。

统计估计这章的重点是用样本的某种特殊性来估计总体的统计思想方法。

难点:

垂径定理、圆周角定理的证明、运用与圆有关的性质解决实际问题,以及根据三视图描述基本的几何体或实物原型。

统计估计是用样本的某种特殊性来估计总体的统计思想方法。

五、教学中要采取的措施:

1、认真学习钻研新课标,通盘熟悉初中数学教材及教学目标,认真备好每一堂课,精心制作总复习计划。

2、认真上好每一堂课,抓住关键,分散难点,突出重点,在培养能力上下功夫。

3、重视课后反思,及时将每一节课的得失记录下来,不断的积累教学经验。

4、积极与其他老师沟通,提高教学水平。

5、积极听取学生良好的合理建议。

6、以“两头”带“中间”的战略。

7、注重教学中的自主学习、合作学习、探索学习等学习方法的引导。

8、开展课内、课外活动,激发学生的学习兴趣。

复习计划

一、第一阶段:全面复习基础知识,加强基本技能训练

这个阶段的复习目的是让学生全面掌握初中数学基础知识,提高基本技能,做到全面、扎实、系统,形成知识网络。

1、重视课本,系统复习。现在中考命题仍然以基础题为主,有些基础题是课本上的原题或改造,后面的大题虽是“高于教材”,但原型一般还是教材中的例题或习题,是教材中题目的引伸、变形或组合,所以第一阶段复习应以课本为主。

2、按知识板块组织复习。把知识进行归类,将全初中数学知识分为十一讲:第一讲数与式;第二讲方程与不等式;第三讲函数;第四讲统计与概率;第五讲基本图形;第六讲图形与变换;第七讲角、相交线和平行线;第八讲三角形;第九讲四边形;第十讲三角函数;第十一讲圆。

复习中由教师提出每个讲节的复习提要,指导学生按“提要”复习,同时要注意引导学生根据个人具体情况把遗忘了知识重温一遍,边复习边作知识归类,加深记忆,注意引导学生弄清概念的内涵和外延,掌握法则、公式、定理的推导或证明,例题的选择要有针对性、典型性、层次性,并注意分析例题解答的思路和方法。

3、重视对基础知识的理解和基本方法的指导。基础知识即初中数学课程中所涉及的概念、公式、公理、定理等。要求学生掌握各知识点之间的内在联系,理清知识结构,形成整体的认识,并能综合运用。例如一元二次方程的根与二次函数图形与x轴交点之间的关系,是中考常常涉及的内容,在复习时,应从整体上理解这部分内容,从结构上把握教材,达到熟练地将这两部分知识相互转化。又如一元二次方程与几何知识的联系的题目有非常明显的特点,应掌握其基本解法。

中考数学命题除了着重考查基础知识外,还十分重视对数学方法的考查,如配方法,判别式法等操作性较强的数学方法。在复习时应对每一种方法的内涵,它所适应的题型,包括解题步骤都应熟练掌握。

4、重视对数学思想的理解及运用。如函数的思想,方程思想,数形结合的思想等

二、第二阶段:综合运用知识,加强能力培养

中考复习的第二阶段应以构建初中数学知识结构和网络为主,从整体上把握数学内容,提高能力。

培养综合运用数学知识解题的能力,是学习数学的重要目的之一。这个阶段的复习目的是使学生能把各个讲节中的知识联系起来,并能综合运用,做到举一反三、触类旁通。这个阶段的例题和练习题要有一定的难度,但又不是越难越好,要让学生可接受,这样才能既激发学生解难求进的学习欲望,又使学生从解决较难问题中看到自己的力量,增强前进的信心,产生更强的求知欲。第二阶段就是第一阶段复习的延伸和提高,应侧重培养学生的数学能力。这一阶段尤其要精心设计每一节复习课,注意数学思想的形成和数学方法的掌握。初中总复习的内容多,复习必须突出重点,抓住关键,解决疑难,这就需要充分发挥教师的.主导作用。而复习内容是学生已经学习过的,各个学生对教材内容掌握的程度又各有差异,这就需要教师千方百计地激发学生复习的主动性、积极性,引导学生有针对性的复习,根据个人的具体情况,查漏补缺,做知识归类、解题方法归类,在形成知识结构的基础上加深记忆。除了复习形式要多样,题型要新颖,能引起学生复习的兴趣外,还要精心设计复习课的教学方法,提高复习效益。

34483