教育巴巴 > 初中教案 > 九年级教案 > 数学教案 >

高中数学教育教案范文

时间: 沐钦 数学教案

数学作为研究数字的学科,代数学也是数学最重要的组成部分之一。几何是数学要研究的第一个分支。下面是小编为大家带来的高中数学教育教案范文七篇,希望大家能够喜欢!

高中数学教育教案范文

高中数学教育教案范文【篇1】

教材分析

(一) 教材地位、作用

《古典概型》是高中数学人教A版必修3第三章概率3.2的内容,教学安排是2课时,本节是第一课时。是在随机事件的概率之后,几何概型之前,尚未学习排列组合的情况下教学的。古典概型是一种特殊的数学模型,也是一种最基本的概率模型,它的引入避免了大量的重复试验,而且得到的是概率精确值,同时古典概型

也是后面学习条件概率的基础,它有利于理解概率的概念,有利于计算一些事件的概率,有利于解释生活中的一些问题,起到承前启后的作用,所以在概率论中占有相当重要的地位。

(二)教材处理:

学情分析:学生基础一般,但师生之间,学生之间情感融洽,上课互动氛围良好。他们具备一定的观察,类比,分析,归纳能力,但对知识的理解和方法的掌握在一些细节上不完备,反映在解题中就是思维不慎密,过程不完整。

教学内容组织和安排:根据上面的学情分析,学生思维不严密,意志力薄弱,故而整个教学环节总是创设恰当的问题情境,引导学生积极思考,培养他们的逻辑思维能力。通过对问题情境的分析,引出基本事件的概念,古典概型中基本事件的特点,以及古典概型的计算公式。对典型例题进行分析,以巩固概念,掌握解题方法。

二、三维目标

知识与技能目标:

(1)正确理解古典概型的两大特点:1)试验中所有可能出现的基本事件只有有限个;2)每个基本事件出现的可能性相等;

(2)理解古典概型的概率计算公式 :P(A)=

(3)会用列举法计算一些随机事件所含的基本事件数及事件发生的概率。

过程与方法目标:根据本节课的内容和学生的实际水平,通过模拟试验让学生理解古典概型的特征:试验结果的有限性和每一个试验结果出现的等可能性,观察类比各个试验,归纳总结出古典概型的概率计算公式,体现了化归的重要思想,掌握列举法,学会运用分类讨论的思想解决概率的计算问题。

情感态度与价值观目标:通过各种有趣的,贴近学生生活的素材,激发学生学习数学的热情和兴趣,培养学生勇于探索,善于发现的创新思想;通过参与探究活动,领会理论与实践对立统一的辨证思想;结合问题的现实意义,培养学生的合作精神.

三、 教学重点与难点

1、重点:理解古典概型的概念及利用古典概型求解随机事件的概率。

2、难点:如何判断一个试验是否为古典概型,弄清在一个古典概型中某随机事件包含的基本事件的个数和试验中基本事件的总数

四、教法与学法分析

教法分析:根据本节课的特点,采用引导发现和归纳概括相结合的教学方法,通过提出问题、思考问题、解决问题等教学过程,观察对比、概括归纳古典概型的概念及其概率公式,再通过具体问题的提出和解决,来激发学生的学习兴趣,调动学生的主体能动性,让每一个学生充分地参与到学习活动中来。

学法分析:学生在教师创设的问题情景中,通过观察、类比、思考、探究、概括、归纳和动手尝试相结合,体现了学生的主体地位,培养了学生由具体到抽象,由特殊到一般的数学思维能力,形成了实事求是的科学态度,增强了锲而不舍的求学精神。

五、教学基本流程

六、教学设计

教学设计 设计意图 师生互动 1 课前模拟试验:

①掷一枚质地均匀的硬币的试验;

②掷一枚质地均匀的骰子的试验。

问题1 用模拟试验的方法来求某一随机事件的概率好不好?为什么?

问题2 分别说出上述两试验的所有可能的实验结果是什么?每个结果之间都有什么关系? 模拟实验的目的是创建与新课内容相关的实验模型,把问题具体化,过渡到新课时自然有序,同时也培养了学生的动手能力和与人合作的能力。

问题1的引出,激发学生的求知欲望和学习兴趣

让学生思考讨论问题2,直接进入新课,把课堂交给学生。

学生——实验、思考、讨论

老师——利用试验给出所有可能出现的结果即基本事件。

老师——加以引导与启发,利用基本事件的关系发现基本事件的特点。

学生——归纳与总结,鼓励学生用自己的语言表述,从而提高学生的表达能力与数学语言的组织能力 2 问题一:什么是基本事件?基本事件有什么特征?

例从字母a,b,c,d中任意选出两个不同字母的试验中,有哪些基本事件?

练习(1)在掷骰子的试验中,事件“出现偶数点 ”是哪些基本事件的并事件?

(2)先后抛掷两枚均匀的硬币的试验中,有哪些基本事件?

问题二:上述试验和练习的共同特点是什么?

(1)试验中所有可能出现的基本事件只有有限个;

(2)每个基本事件出现的可能性相等 为了引出古典概型的概念,设计了练习。通过列举法列举基本事件,进一步理解与巩固基本事件的概念;然后设疑:“类比试验与练习中基本事件有什么共同点?”,通过问题的解决让学生体验由特殊到一般的数学思想方法的应用,从而引出古典概型的概念。 老师——引导学生列举时做到不重复、不遗漏

学生——列举出基本事件

老师——引导学生找出共性。我们将具有这两个特点的概率模型称为古典概率模型,简称古典概型。 3 思考:在古典概型下,基本事件出现的概率是多少?随机事件出现的概率又如何计算?

观察:掷硬币与掷骰子的试验完成 例1 .(1)求在抛掷一枚硬币观察哪个面向上的试 验中“正面朝上”和“反面朝上”这2个基本事件的概率?

(2)在抛掷一枚骰子的试验中,出现“1点”、“2点”、“3点”、“4点”、“5点”、“6点”这6个基本事件的概率?

(3)在掷骰子的试验中,事件“出现偶数点”发生的概率是多少?

总结:你能从这些试验中找出规律,总结出公式吗?

了解古典概型的概念之后,就要引领学生探究概率公式。为了突破这个重点我设计了3个环节

首先,让学生带着思考问题观察试验,使其有目的的去寻找答案,有效的利用课堂时间,达到教学目标。

其次,公式的推导是在老师的启发引导下,让学生带着好奇心去观察数学模型。(模型演示)多媒体引入课堂为学生提供了广阔的空间,通过直观感受,使学生对规律的总结快速而准确。

最后,学生在回答例1问题的过程中,逐步感受由特殊性演变到一般性,最终得出结论。过程自然而有序,让学生体验到认知的自然升华,感受数学美妙的意境。 老师——提出问题

高中数学教育教案范文【篇2】

教材分析

? 教材地位及作用 本节课是高中数学3(必修)第三章概率的第二节古典概型的第一课时,是在随机事件的概率之后,几何概型之前,尚未学习排列组合的情况下教学的。古典概型是一种特殊的数学模型,也是一种最基本的概率模型,在概率论中占有相当重要的地位。

学好古典概型可以为其它概率的学习奠定基础,同时有利于理解概率的概念,有利于计算一些事件的概率,有利于解释生活中的一些问题。 ? 教学重点 理解古典概型的概念及利用古典概型求解随机事件的概率。 根据本节课的地位和作用以及新课程标准的具体要求,制订教学重点。 教学难点 如何判断一个试验是否是古典概型,分清在一个古典概型中某随机事件包含的基本事件的个数和试验中基本事件的总数。 根据本节课的内容,即尚未学习排列组合,以及学生的心理特点和认知水平,制定了教学难点。 教

目标 1.知识与技能

(1)理解古典概型及其概率计算公式,

(2)会用列举法计算一些随机事件所含的基本事件数及事件发生的概率。

2.过程与方法

根据本节课的内容和学生的实际水平,通过模拟试验让学生理解古典概型的特征:试验结果的有限性和每一个试验结果出现的等可能性,观察类比各个试验,归纳总结出古典概型的概率计算公式,体现了化归的重要思想,掌握列举法,学会运用数形结合、分类讨论的思想解决概率的计算问题。

3.情感态度与价值观

概率教学的核心问题是让学生了解随机现象与概率的意义,加强与实际生活的联系,以科学的态度评价身边的一些随机现象。适当地增加学生合作学习交流的机会,尽量地让学生自己举出生活和学习中与古典概型有关的实例。使得学生在体会概率意义的同时,感受与他人合作的重要性以及初步形成实事求是地科学态度和锲而不舍的求学精神。 根据新课程标准,并结合学生心理发展的需求,以及人格、情感、价值观的具体要求制订而成。这对激发学生学好数学概念,养成数学习惯,感受数学思想,提高数学能力起到了积极的作用。 ?

项 目 内 容 师生活动 理论依据或意图 

过程分析 一

提出问题引入新课 在课前,教师布置任务,以数学小组为单位,完成下面两个模拟试验:

试验一:抛掷一枚质地均匀的硬币,分别记录“正面朝上”和“反面朝上”的次数,要求每个数学小组至少完成20次(最好是整十数),最后由科代表汇总;

试验二:抛掷一枚质地均匀的骰子,分别记录“1点”、“2点”、“3点”、“4点”、“5点”和“6点”的次数,要求每个数学小组至少完成60次(最好是整十数),最后由科代表汇总。

在课上,学生展示模拟试验的操作方法和试验结果,并与同学交流活动感受。

教师最后汇总方法、结果和感受,并提出问题?

1.用模拟试验的方法来求某一随机事件的概率好不好?为什么?

不好,要求出某一随机事件的概率,需要进行大量的试验,并且求出来的结果是频率,而不是概率。

2.根据以前的学习,上述两个模拟试验的每个结果之间都有什么特点? 学生展示模拟试验的操作方法和试验结果,并与同学交流活动感受,教师最后汇总方法、结果和感受,并提出问题。 通过课前的模拟实验的展示,让学生感受与他人合作的重要性,培养学生运用数学语言的能力。随着新问题的提出,激发了学生的求知欲望,通过观察对比,培养了学生发现问题的能力。

二思考交流形成概念

在试验一中随机事件只有两个,即“正面朝上”和“反面朝上”,并且他们都是互斥的,由于硬币质地是均匀的,因此出现两种随机事件的可能性相等,即它们的概率都是 ;

在试验二中随机事件有六个,即“1点”、“2点”、“3点”、“4点”、“5点”和“6点”,并且他们都是互斥的,由于骰子质地是均匀的,因此出现六种随机事件的可能性相等,即它们的概率都是 。

我们把上述试验中的随机事件称为基本事件,它是试验的每一个可能结果。

基本事件有如下的两个特点:

(1)任何两个基本事件是互斥的;

(2)任何事件(除不可能事件)都可以表示成基本事件的和。

特点(2)的理解:在试验一中,必然事件由基本事件“正面朝上”和“反面朝上”组成;在试验二中,随机事件“出现偶数点”可以由基本事件“2点”、“4点”和“6点”共同组成。 学生观察对比得出两个模拟试验的相同点和不同点,教师给出基本事件的概念,并对相关特点加以说明,加深新概念的理解。 让学生从问题的相同点和不同点中找出研究对象的对立统一面,这能培养学生分析问题的能力,同时也教会学生运 用对立统一的辩证唯物主义观点来分析问题的一种方法。

教师的注解可以使学生更好的把握问题的关键。 项 目 内 ?容 师生活动 理论依据或意图 教

过程分析

二思考交流形成概念 例1 从字母 中任意取出两个不同字母的试验中,有哪些基本事件?

分析:为了解基本事件,我们可以按照字典排序的顺序,把所有可能的结果都列出来。利用树状图可以将它们之间的关系列出来。

我们一般用列举法列出所有基本事件的结果,画树状图是列举法的基本方法,一般分布完成的结果(两步以上)可以用树状图进行列举。

(树状图)

解:所求的基本事件共有6个:

, , ,

, ,

观察对比,发现两个模拟试验和例1的共同特点:

试验一中所有可能出现的基本事件有“正面朝上”和“反面朝上”2个,并且每个基本事件出现的可能性相等,都是 ;

试验二中所有可能出现的基本事件有“1点”、“2点”、“3点”、“4点”、“5点”和“6点”6个,并且每个基本事件出现的可能性相等,都是 ;

例1中所有可能出现的基本事件有“A”、“B”、“C”、“D”、“E”和“F”6个,并且每个基本事件出现的可能性相等,都是 ;

经概括总结后得到:

(1)试验中所有可能出现的基本事件只有有限个;(有限性)

(2)每个基本事件出现的可能性相等。(等可能性)

我们将具有这两个特点的概率模型称为古典概率概型,简称古典概型。

思考交流:

(1)向一个圆面内随机地投射一个点,如果该点落在圆内任意一点都是等可能的,你认为这是古典概型吗?为什么?

先让学生尝试着列出所有的基本事件,教师再讲解用树状图列举问题的优点。

让学生先观察对比,找出两个模拟试验和例1的共同特点,再概括总结得到的结论,教师最后补充说明。

学生互相交流,回答补充,教师归纳。 将数形结合和分类讨论的思想渗透到具体问题中来。由于没有学习排列组合,因此用列举法列举基本事件的个数,不仅能让学生直观的感受到对象的总数,而且还能使学生在列举的时候作到不重不漏。解决了求古典概型中基本事件总数这一难点。

培养运用从具体到抽象、从特殊到一般的辩证唯物主义观点分析问题的能力,充分体现了数学的化归思想。启发诱导的同时,训练了学生观察和概括归纳的能力。通过用表格列出相同和不同点,能让学生很好的理解古典概型。从而突出了古典概型这一重点。

两个问题的设计是为了让学生更加准确的把握古典概型的两个特点。突破了如何判断一个试验是否是古典概型这一教学难点。 项 目 内 容 师生活动 理论依据或意图 教

过程分析 思考交流形成概念 答:不是古典概型,因为试验的所有可能结果是圆面内所有的点,试验的所有可能结果数是无限的,虽然每一个试验结果出现的“可能性相同”,但这个试验不满足古典概型的第一个条件。

(2)如图,某同学随机地向一靶心进行射击,这一试验的结果只有有限个:命中10环、命中9环……命中5环和不中环。你认为这是古典概型吗?为什么?

答:不是古典概型,因为试验的所有可能结果只有7个,而命中10环、命中9环……命中5环和不中环的出现不是等可能的,即不满足古典概型的第二个条件。 ? ? 三

观察分析推导方程 问题思考:在古典概型下,基本事件出现的概率是多少?随机事件出现的概率如何计算?

分析:

实验一中,出现正面朝上的概率与反面朝上的概率相等,即

P(“正面朝上”)=P(“反面朝上”)

由概率的加法公式,得

P(“正面朝上”)+P(“反面朝上”)=P(必然事件)=1

因此 P(“正面朝上”)=P(“反面朝上”)=

即 试验二中,出现各个点的概率相等,即

P(“1点”)=P(“2点”)=P(“3点”)

=P(“4点”)=P(“5点”)=P(“6点”)

反复利用概率的加法公式,我们有

P(“1点”)+P(“2点”)+P(“3点”)+P(“4点”)+P(“5点”)+P(“6点”)=P(必然事件)=1

所以P(“1点”)=P(“2点”)=P(“3点”)

=P(“4点”)=P(“5点”)=P(“6点”)=

进一步地,利用加法公式还可以计算这个试验中任何一个事件的概率,例如,

P(“出现偶数点”)=P(“2点”)+P(“4点”)+P(“6点”)= + + = =

即 根据上述两则模拟试验,可以概括总结出,古典概型计算任何事件的概率计算公式为:

教师提出问题,引导学生类比分析两个模拟试验和例1的概率,先通过用概率加法公式求出随机事件的概率,再对比概率结果,发现其中的联系。 鼓励学生运用观察类比和从具体到抽象、从特殊到一般的辩证唯物主义方法来分析问题,同时让学生感受数学化归思想的优越性和这一做法的合理性,突出了古典概型的概率计算公式这一重点。

高中数学教育教案范文【篇3】

教学目标:(1)理解古典概型及其概率计算公式,

(2)会用列举法计算一些随机事件所含的基本事件数及事件发生的概率。

教学重点:理解古典概型的概念及利用古典概型求解随机事件的概率.

教学难点:如何判断一个试验是否是古典概型,分清在一个古典概型中某随机事件包含的基本事件的个数和试验中基本事件的总数.

教学过程:

导入:故事引入

探究一

试验:

(1)掷一枚质地均匀的硬币的试验

(2)掷一枚质地均匀的骰子的试验

上述两个试验的所有结果是什么?

一.基本事件

1.基本事件的定义:

随机试验中可能出现的每一个结果称为一个基本事件

2.基本事件的特点:

(1)任何两个基本事件是互斥的

(2)任何事件(除不可能事件)都可以表示成基本事件的和。

例1、从字母a,b,c,d中任意取出两个不同的字母的试验中,有几个基本事件?分别是什么?

探究二:你能从上面的两个试验和例题1发现它们的共同特点吗?

二.古典概型

(1)试验中所有可能出现的基本事件只有有限个;(有限性)

(2)每个基本事件出现的可能性相等。(等可能性)

我们将具有这两个特点的概率模型称为古典概率模型,简称古典概型。

思考:判断下列试验是否为古典概型?为什么?

(1).从所有整数中任取一个数

(2).向一个圆面内随机地投一个点,如果该点落在圆面内任意一点都是等可能的。

(3).射击运动员向一靶心进行射击,这一试验的结果只有有限个,命中10环,命中9环,….命中1环和命中0环(即不命中)。

(4).有红心1,2,3和黑桃4,5共5张扑克牌,将其牌点向下置于桌上,现从中任意抽取一张.

高中数学教育教案范文【篇4】

(一)教学内容

本节课选自《普通高中课程标准实验教科书》人教A版必修3第三章第二节《古典概型》,教学安排是2课时,本节课是第一课时。

(二)教学目标

1. 知识与技能:

(1) 通过试验理解基本事件的概念和特点;

(2) 通过具体实例分析,抽离出古典概型的两个基本特征,并推导出古典概型下的概率计算公式;

(3) 会求一些简单的古典概率问题。

2. 过程与方法:经历探究古典概型的过程,体验由特殊到一般的数学思想方法。

3. 情感与价值:用具有现实意义的实例,激发学生的学习兴趣,培养学生勇于探索,善于发现的创新思想。

(三)教学重、难点

重点:理解古典概型的概念,利用古典概型求解随机事件的概率。

难点:如何判断一个试验是否为古典概型,弄清在一个古典概型中基本事件的总数和某随机事件包含的基本事件的个数。

(四)学情分析

[知识储备]

初中:了解频率与概率的关系,会计算一些简单等可能事件发生的概率;

高中:进一步学习概率的意义,概率的基本性质。

[学生特点]

我所带班级的学生思维活跃,但对基本概念重视不足,对知识深入理解不够。善于发现具体事件中的共同点及区别,但从感性认识上升到理性认识有待提高。

(五)教学策略

由身边实例出发,让学生在不断的矛盾冲突中,通过“老师引导”,“小组讨论”,“自主探究”等多种方式逐渐形成发现问题,解决问题的思想。

(六) 教学用具

多媒体课件,投影仪,硬币,骰子。

(七)教学过程

[情景设置]

有一本好书,两位同学都想看。甲同学提议掷硬币:正面向上甲先看,反面向上乙先看。乙同学提议掷骰子:三点以下甲先看,三点以上乙先看。这两种方法是否公平?

☆处理:通过生活实例,快速地将学生的注意力引入课堂。提出公平与否实质上是概率大小问题,切入本堂课主题。

[温故知新]

(1)回顾前几节课对概率求取的方法:大量重复试验。

(2)由随机试验方法的不足之处引发矛盾冲突:我们需要寻求另外一种更为简单易行的方式,提出建立概率模型的必要性。

[探究新知]

一、基本事件

思考:试验1:掷一枚质地均匀的硬币,观察可能出现哪几种结果?

试验2:掷一枚质地均匀的骰子,观察可能出现的点数有哪几种结果?

定义:一次试验中可能出现的每一个结果称为一个基本事件。

☆处理:围绕对两个试验的分析,提出基本事件的概念。类比生物学中对细胞的研究,过渡到研究基本事件对建立概率模型的必要性。

思考:掷一枚质地均匀的骰子

(1)在一次试验中,会同时出现“1点”和“2点”这两个基本事件吗

(2)随机事件“出现点数小于3”与“出现点数大于3”包含哪几个基本事件?

掷一枚质地均匀的硬币

(1)在一次试验中,会同时出现“正面向上”和“反面向上”这两个基本事件吗

(2)“必然事件”包含哪几个基本事件?

基本事件的特点:(1)任何两个基本事件是互斥的;

(2)任何事件(除不可能事件)都可以表示成基本事件的和。

☆处理:引导学生从个性中寻找共性,提升学生发现、归纳、总结的能力。设计随机事件“出现点数小于3”与“出现点数大于3”与课堂引入相呼应,也为后面随机事件概率的求取打下伏笔。

二、古典概型

思考:从基本事件角度来看,上述两个试验有何共同特征?

古典概型的特征:(1)试验中所有可能出现的基本事件的个数有限;

(2)每个基本事件出现的可能性相等。

☆处理:引导学生观察、分析、总结这两个试验的共同点,培养他们从具体到抽象、从特殊到一般的数学思维能力。在提问时明确思考的角度,让学生的思维直指概念的本质,避免不必要的发散。

师生互动:由学生和老师各自举出一些生活实例并分析是否具备古典概型的两个特征。

(1)向一个圆面内随机地投射一个点,如果该点落在圆内任意一点都是等可能的,你认为这一试验能用古典概型来描述吗?为什么?

(2)08年北京奥运会上我国选手张娟娟以出色的成绩为我国赢得了射箭项目的第一枚奥运金牌。你认为打靶这一试验能用古典概型来描述吗?为什么?

设计意图:让学生通过身边实例更加形象、准确的把握古典概型的两个特点,突破如何判断一个试验是否是古典概型这一教学难点。

三、求解古典概型

思考:古典概型下,每个基本事件出现的概率是多少?随机事件出现的概率又如何计算?

(1) 基本事件的概率

试验1:掷硬币

P (“正面向上”)= P (“反面向上”)=

试验2:掷骰子

P(“1点”)=P(“2点”)=P(“3点”)=P(“4点”)=P(“5点”)=P(“6点”)=

结论:古典概型中,若基本事件总数有n个,则每一个基本事件出现的概率为

☆处理:提出“如果不做试验,如何利用古典概型的特征求取概率?”

先由学生分小组讨论掷硬币试验中基本事件的概率如何求取并规范学生解答,同时点出甲同学提出的“掷硬币方案”的公平性;再由学生分析掷骰子试验中基本事件概率的求解过程并得出一般性结论。

(2)随机事件的概率

掷骰子试验中,记事件A为“出现点数小于3” ,事件B为“出现点数大于3”,如何求解P(A)与P(B)?

高中数学教育教案范文【篇5】

函数单调性与(小)值

一、教材分析

1、 教材的地位和作用

(1)本节课主要对函数单调性的学习;

(2)它是在学习函数概念的基础上进行学习的,同时又为基本初等函数的学习奠定了基础,所以他在教材中起着承前启后的重要作用;(可以看看这一课题的前后章节来写)

(3)它是历年高考的热点、难点问题

(根据具体的课题改变就行了,如果不是热点难点问题就删掉)

2、 教材重、难点

重点:函数单调性的定义

难点:函数单调性的证明

重难点突破:在学生已有知识的基础上,通过认真观察思考,并通过小组合作探究的办法来实现重难点突破。(这个必须要有)

二、教学目标

知识目标:(1)函数单调性的定义

(2)函数单调性的证明

能力目标:培养学生全面分析、抽象和概括的能力,以及了解由简单到复杂,由特殊到一般的化归思想

情感目标:培养学生勇于探索的精神和善于合作的意识

(这样的教学目标设计更注重教学过程和情感体验,立足教学目标多元化)

三、教法学法分析

1、教法分析

“教必有法而教无定法”,只有方法得当才会有效。新课程标准之处教师是教学的组织者、引导者、合作者,在教学过程要充分调动学生的积极性、主动性。本着这一原则,在教学过程中我主要采用以下教学方法:开放式探究法、启发式引导法、小组合作讨论法、反馈式评价法

2、学法分析

“授人以鱼,不如授人以渔”,最有价值的知识是关于方法的只是。学生作为教学活动的主题,在学习过程中的参与状态和参与度是影响教学效果最重要的因素。在学法选择上,我主要采用:自主探究法、观察发现法、合作交流法、归纳总结法。

(前三部分用时控制在三分钟以内,可适当删减)

四、教学过程

1、以旧引新,导入新知

通过课前小研究让学生自行绘制出一次函数f(x)=x和二次函数f(x)=x^2的图像,并观察函数图象的特点,总结归纳。通过课上小组讨论归纳,引导学生发现,教师总结:一次函数f(x)=x的图像在定义域是直线上升的,而二次函数f(x)=x^2的图像是一个曲线,在(-∞,0)上是下降的,而在(0,+∞)上是上升的。(适当添加手势,这样看起来更自然)

2、创设问题,探索新知

紧接着提出问题,你能用二次函数f(x)=x^2表达式来描述函数在(-∞,0)的图像?教师总结,并板书,揭示函数单调性的定义,并注意强调可以利用作差法来判断这个函数的单调性。

让学生模仿刚才的表述法来描述二次函数f(x)=x^2在(0,+∞)的图像,并找个别同学起来作答,规范学生的数学用语。

让学生自主学习函数单调区间的定义,为接下来例题学习打好基础。

3、 例题讲解,学以致用

例1主要是对函数单调区间的巩固运用,通过观察函数定义在(—5,5)的图像来找出函数的单调区间。这一例题主要以学生个别回答为主,学生回答之后通过互评来纠正答案,检查学生对函数单调区间的掌握。强调单调区间一般写成半开半闭的形式

例题讲解之后可让学生自行完成课后练习4,以学生集体回答的方式检验学生的学习效果。

例2是将函数单调性运用到其他领域,通过函数单调性来证明物理学的波意尔定理。这是历年高考的热点跟难点问题,这一例题要采用教师板演的方式,来对例题进行证明,以规范总结证明步骤。一设二差三化简四比较,注意要把f(x1)-f(x2)化简成和差积商的形式,再比较与0的大小。

学生在熟悉证明步骤之后,做课后练习3,并以小组为单位找部分同学上台板演,其他同学在下面自行完成,并通过自评、互评检查证明步骤。

4、归纳小结

本节课我们主要学习了函数单调性的定义及证明过程,并在教学过程中注重培养学生勇于探索的精神和善于合作的意识。

5、作业布置

为了让学生学习不同的数学,我将采用分层布置作业的方式:一组 习题1.3A组1、2、3 ,二组 习题1.3A组2、3、B组1、2

6、板书设计

我力求简洁明了地概括本节课的学习要点,让学生一目了然。

(这部分最重要用时六到七分钟,其中定义讲解跟例题讲解一定要说明学生的活动)

五、教学评价

本节课是在学生已有知识的基础上学习的,在教学过程中通过自主探究、合作交流,充分调动学生的积极性跟主动性,及时吸收反馈信息,并通过学生的自评、互评,让内部动机和外界刺激协调作用,促进其数学素养不断提高。

高中数学教育教案范文【篇6】

正弦定理

一 教材分析

本节知识是必修五第一章《解三角形》的第一节内容,与初中学习的三角形的边和角的基本关系有密切的联系与判定三角形的全等也有密切联系,在日常生活和工业生产中也时常有解三角形的问题,而且解三角形和三角函数联系在高考当中也时常考一些解答题。因此,正弦定理和余弦定理的知识非常重要。

根据上述教材内容分析,考虑到学生已有的认知结构心理特征及原有知识水平,制定如下教学目标:

认知目标:在创设的问题情境中,引导学生发现正弦定理的内容,推证正弦定理及简单运用正弦定理与三角形的内角和定理解斜三角形的两类问题。

能力目标:引导学生通过观察,推导,比较,由特殊到一般归纳出正弦定理,培养学生的创新意识和观察与逻辑思维能力,能体会用向量作为数形结合的工具,将几何问题转化为代数问题。

情感目标:面向全体学生,创造平等的教学氛围,通过学生之间、师生之间的交流、合作和评价,调动学生的主动性和积极性,给学生成功的体验,激发学生学习的兴趣。

教学重点:正弦定理的内容,正弦定理的证明及基本应用。

教学难点:正弦定理的探索及证明,已知两边和其中一边的对角解三角形时判断解的个数。

二 教法

根据教材的内容和编排的特点,为是更有效地突出重点,空破难点,以学业生的发展为本,遵照学生的认识规律,本讲遵照以教师为主导,以学生为主体,训练为主线的指导思想, 采用探究式课堂教学模式,即在教学过程中,在教师的启发引导下,以学生独立自主和合作交流为前提,以“正弦定理的发现”为基本探究内容,以生活实际为参照对象,让学生的思维由问题开始,到猜想的得出,猜想的探究,定理的推导,并逐步得到深化。突破重点的手段:抓住学生情感的兴奋点,激发他们的兴趣,鼓励学生大胆猜想,积极探索,以及及时地鼓励,使他们知难而进。另外,抓知识选择的切入点,从学生原有的认知水平和所需的知识特点入手,教师在学生主体下给以适当的提示和指导。突破难点的方法:抓住学生的能力线联系方法与技能使学生较易证明正弦定理,另外通过例题和练习来突破难点

三 学法:

指导学生掌握“观察——猜想——证明——应用”这一思维方法,采取个人、小组、集体等多种解难释疑的尝试活动,将自己所学知识应用于对任意三角形性质的探究。让学生在问题情景中学习,观察,类比,思考,探究,概括,动手尝试相结合,体现学生的主体地位,增强学生由特殊到一般的数学思维能力,形成了实事求是的科学态度,增强了锲而不舍的求学精神。

四 教学过程

第一:创设情景,大概用2分钟

第二:实践探究,形成概念,大约用25分钟

第三:应用概念,拓展反思,大约用13分钟

(一)创设情境,布疑激趣

“兴趣是的老师”,如果一节课有个好的开头,那就意味着成功了一半,本节课由一个实际问题引入,“工人师傅的一个三角形的模型坏了,只剩下如右图所示的部分,∠A=47°,∠B=53°,AB长为1m,想修好这个零件,但他不知道AC和BC的长度是多少好去截料,你能帮师傅这个忙吗?”激发学生帮助别人的热情和学习的兴趣,从而进入今天的学习课题。

(二)探寻特例,提出猜想

1.激发学生思维,从自身熟悉的特例(直角三角形)入手进行研究,发现正弦定理。

2.那结论对任意三角形都适用吗?指导学生分小组用刻度尺、量角器、计算器等工具对一般三角形进行验证。

3.让学生总结实验结果,得出猜想:

在三角形中,角与所对的边满足关系

这为下一步证明树立信心,不断的使学生对结论的认识从感性逐步上升到理性。

(三)逻辑推理,证明猜想

1.强调将猜想转化为定理,需要严格的理论证明。

2.鼓励学生通过作高转化为熟悉的直角三角形进行证明。

3.提示学生思考哪些知识能把长度和三角函数联系起来,继而思考向量分析层面,用数量积作为工具证明定理,体现了数形结合的数学思想。

4.思考是否还有其他的方法来证明正弦定理,布置课后练习,提示,做三角形的外接圆构造直角三角形,或用坐标法来证明

(四)归纳总结,简单应用

1.让学生用文字叙述正弦定理,引导学生发现定理具有对称和谐美,提升对数学美的享受。

2.正弦定理的内容,讨论可以解决哪几类有关三角形的问题。

3.运用正弦定理求解本节课引入的三角形零件边长的问题。自己参与实际问题的解决,能激发学生知识后用于实际的价值观。

(五)讲解例题,巩固定理

1.例1。在△ABC中,已知A=32°,B=81.8°,a=42.9cm.解三角形.

例1简单,结果为解,如果已知三角形两角两角所夹的边,以及已知两角和其中一角的对边,都可利用正弦定理来解三角形。

2. 例2. 在△ABC中,已知a=20cm,b=28cm,A=40°,解三角形.

例2较难,使学生明确,利用正弦定理求角有两种可能。要求学生熟悉掌握已知两边和其中一边的对角时解三角形的各种情形。完了把时间交给学生。

(六)课堂练习,提高巩固

1.在△ABC中,已知下列条件,解三角形.

(1)A=45°,C=30°,c=10cm

(2)A=60°,B=45°,c=20cm

2. 在△ABC中,已知下列条件,解三角形.

(1)a=20cm,b=11cm,B=30°

(2)c=54cm,b=39cm,C=115°

学生板演,老师巡视,及时发现问题,并解答。

(七)小结反思,提高认识

通过以上的研究过程,同学们主要学到了那些知识和方法?你对此有何体会?

1.用向量证明了正弦定理,体现了数形结合的数学思想。

2.它表述了三角形的边与对角的正弦值的关系。

3.定理证明分别从直角、锐角、钝角出发,运用分类讨论的思想。

(从实际问题出发,通过猜想、实验、归纳等思维方法,最后得到了推导出正弦定理。我们研究问题的突出特点是从特殊到一般,我们不仅收获着结论,而且整个探索过程我们也掌握了研究问题的一般方法。在强调研究性学习方法,注重学生的主体地位,调动学生积极性,使数学教学成为数学活动的教学。)

(八)任务后延,自主探究

如果已知一个三角形的两边及其夹角,要求第三边,怎么办?发现正弦定理不适用了,那么自然过渡到下一节内容,余弦定理。布置作业,预习下一节内容。

高中数学教育教案范文【篇7】

指数与指数幂的运算教案

整体设计

教学分析

我们在初中的学习过程中,已了解了整数指数幂的概念和运算性质.从本节开始我们将在回顾平方根和立方根的基础上,类比出正数的n次方根的定义,从而把指数推广到分数指数.进而推广到有理数指数,再推广到实数指数,并将幂的运算性质由整数指数幂推广到实数指数幂.

教材为了让学生在学习之外就感受到指数函数的实际背景,先给出两个具体例子:GDP的增长问题和碳14的衰减问题.前一个问题,既让学生回顾了初中学过的整数指数幂,也让学生感受到其中的函数模型,并且还有思想教育价值.后一个问题让学生体会其中的函数模型的同时,激发学生探究分数指数幂、无理数指数幂的兴趣与欲望,为新知识的学习作了铺垫.

本节安排的内容蕴涵了许多重要的数学思想方法,如推广的思想(指数幂运算律的推广)、类比的思想、逼近的思想(有理数指数幂逼近无理数指数幂)、数形结合的思想(用指数函数的图象研究指数函数的性质)等,同时,充分关注与实际问题的结合,体现数学的应用价值.

根据本节内容的特点,教学中要注意发挥信息技术的力量,尽量利用计算器和计算机创设教学情境,为学生的数学探究与数学思维提供支持.

三维目标

1.通过与初中所学的知识进行类比,理解分数指数幂的概念,进而学习指数幂的性质.掌握分数指数幂和根式之间的互化,掌握分数指数幂的运算性质.培养学生观察分析、抽象类比的能力.

2.掌握根式与分数指数幂的互化,渗透“转化”的数学思想.通过运算训练,养成学生严谨治学,一丝不苟的学习习惯,让学生了解数学来自生活,数学又服务于生活的哲理.

3.能熟练地运用有理指数幂运算性质进行化简、求值,培养学生严谨的思维和科学正确的计算能力.

4.通过训练及点评,让学生更能熟练掌握指数幂的运算性质.展示函数图象,让学生通过观察,进而研究指数函数的性质,让学生体验数学的简洁美和统一美.

重点难点

教学重点

(1)分数指数幂和根式概念的理解.

(2)掌握并运用分数指数幂的运算性质.

(3)运用有理指数幂的性质进行化简、求值.

教学难点

(1)分数指数幂及根式概念的理解.

(2)有理指数幂性质的灵活应用.

课时安排

3课时

教学过程

第1课时

作者:路致芳

导入新课

思路1.同学们在预习的过程中能否知道考古学家如何判断生物的发展与进化,又怎样判断它们所处的年代?(考古学家是通过对生物化石的研究来判断生物的发展与进化的,第二个问题我们不太清楚)考古学家是按照这样一条规律推测生物所处的年代的.教师板书本节课题:指数函数——指数与指数幂的运算.

思路2.同学们,我们在初中学习了平方根、立方根,那么有没有四次方根、五次方根…n次方根呢?答案是肯定的,这就是我们本堂课研究的课题:指数函数——指数与指数幂的运算.

推进新课

新知探究

提出问题

(1)什么是平方根?什么是立方根?一个数的平方根有几个,立方根呢?

(2)如x4=a,x5=a,x6=a,根据上面的结论我们又能得到什么呢?

(3)根据上面的结论我们能得到一般性的结论吗?

(4)可否用一个式子表达呢?

活动:教师提示,引导学生回忆初中的时候已经学过的平方根、立方根是如何定义的,对照类比平方根、立方根的定义解释上面的式子,对问题(2)的结论进行引申、推广,相互交流讨论后回答,教师及时启发学生,具体问题一般化,归纳类比出n次方根的概念,评价学生的思维.

讨论结果:(1)若x2=a,则x叫做a的平方根,正实数的平方根有两个,它们互为相反数,如:4的平方根为±2,负数没有平方根,同理,若x3=a,则x叫做a的立方根,一个数的立方根只有一个,如:-8的立方根为-2.

(2)类比平方根、立方根的定义,一个数的四次方等于a,则这个数叫a的四次方根.一个数的五次方等于a,则这个数叫a的五次方根.一个数的六次方等于a,则这个数叫a的六次方根.

(3)类比(2)得到一个数的n次方等于a,则这个数叫a的n次方根.

(4)用一个式子表达是,若xn=a,则x叫a的n次方根.

教师板书n次方根的意义:

一般地,如果xn=a,那么x叫做a的n次方根(n th root),其中n>1且n∈正整数集.

可以看出数的平方根、立方根的概念是n次方根的概念的特例.

提出问题

(1)你能根据n次方根的意义求出下列数的n次方根吗?(多媒体显示以下题目).

①4的平方根;②±8的立方根;③16的4次方根;④32的5次方根;⑤-32的5次方根;⑥0的7次方根;⑦a6的立方根.

(2)平方根,立方根,4次方根,5次方根,7次方根,分别对应的方根的指数是什么数,有什么特点?4,±8,16,-32,32,0,a6分别对应什么性质 的数,有什么特点?

(3)问题(2)中,既然方根有奇次的也有偶次的,数a有正有负,还有零,结论有一个的,也有两个的,你能否总结一般规律呢?

(4)任何一个数a的偶次方根是否存在呢?

活动:教师提示学生切实紧扣n次方根的概念,求一个数a的n次方根,就是求出的那个数的n次方等于a,及时点拨学生,从数的分类考虑,可以把具体的数写出来,观察数的 特点,对问题(2)中的结论,类比推广引申,考虑要全面,对回答正确的学生及时表扬,对回答不准确的学生提示引导考虑问题的思路.

讨论结果:(1)因为±2的平方等于4,±2的立方等于±8,±2的4次方等于16,2的5次方等于32,-2的5次方等于-32,0的7次方等于0,a2的立方等于a6,所 以4的平方根,±8的立方根,16的4次方根,32的5次方根,-32的5次方根,0的7次方根,a6的立方根分别是±2,±2,±2,2,-2,0,a2.

(2)方根的指数是2,3,4,5,7…特点是有奇数和偶数.总的来看,这些数包括正数,负数和零.

(3)一个数a的奇次方根只有一个,一个正数a的偶次方根有两个,是互为相反数.0的任何次方根都是0.

(4)任何一个数a的偶次方根不一定存在,如负数的偶次方根就不存在,因为没有一个数的偶次方是一个负数.

类比前面的平方根、立方根,结合刚才的讨论,归纳出一般情形,得到n次方根的性质:

①当n为偶数时,正数a的n次方根有两个,是互为相反数,正的n次方根用na表示,如果是负数,负的n次方根用-na表示,正的n次方根与负的n次方根合并写成±na(a>0).

②n为奇数时,正数的n次方根是一个正数,负数的n次方根是一个负数,这时a的n次方根用符号na表示.

③负数没有偶次方根;0的任何次方根都是零.

上面的文字语言可用下面的式子表示:

a为正数:n为奇数, a的n次方根有一个为na,n为偶数, a的n次方根有两个为±na.

a为负数:n为奇数, a的n次方根只有一个为na,n为偶数, a的n次方根不存在.

零的n次方根为零,记为n0=0.

可以看出数的平方根、立方根的性质是n次方根的性质的特例.

思考

根据n次方根的性质能否举例说明上述几种情况?

活动:教师提示学生对方根的性质要分类掌握,即正数的奇偶次方根,负数的奇次方根,零的任何次方根,这样才不重不漏,同时巡视学生,随机给出一个数,我们写出它的平方根,立方根,四次方根等,看是否有意义,注意观察方根的形式,及时纠正学生在举例过程中的问题.

解:答案不,比如,64的立方根是4,16的四次方根为±2,-27的5次方根为5-27,而-27的4次方根不存在等.其中5-27也表示方根,它类似于na的形式,现在我们给式子na一个名称——根式.

根式的概念:

式子na叫做根式,其中a叫做被开方数,n叫做根指数.

如3-27中,3叫根指数,-27叫被开方数.

思考

nan表示an的n次方根,式子nan=a一定成立吗?如果不一定成立,那么nan等于什么?

活动:教师让学生注意讨论n为奇偶数和a的符号,充分让学生多举实例,分组讨论.教师点拨,注意归纳整理.

〔如3(-3)3=3-27=-3,4(-8)4=|-8|=8〕.

解答:根据n次方根的意义,可得:(na)n=a.

通过探究得到:n为奇数,nan=a.

n为偶数,nan=|a|=a,-a,a≥0,a<0.

因此我们得到n次方根的运算性质:

①(na)n=a.先开方,再乘方(同次),结果为被开方数.

②n为奇数,nan=a.先奇次乘方,再开方(同次),结果为被开方数.

n为偶数,nan=|a|=a,-a,a≥0,a<0.先偶次乘方,再开方(同次),结果为被开方数的绝对值.

应用示例

思路1

例 求下列各式的值:

(1)3(-8)3;(2)(-10)2;(3)4(3-π)4;(4)(a-b)2(a>b).

活动:求某些式子的值,首先考虑的应是什么,明确题目的要求是什么,都用到哪些知识,关键是啥,搞清这些之后,再针对每一个题目仔细分析.观察学生的解题情况,让学生展示结果,抓住学生在解题过程中出现的问题并对症下药.求下列各式的值实际上是求数的方根,可按方根的运算性质来解,首先要搞清楚运算顺序,目的是把被开方数的符号定准,然后看根指数是奇数还是偶数,如果是奇数,无需考虑符号,如果是偶数,开方的结果必须是非负数.

解:(1)3(-8)3=-8;

(2)(-10)2=10;

(3)4(3-π)4=π-3;

(4)(a-b)2=a-b(a>b).

点评:不注意n的奇偶性对式子nan的值的影响 ,是导致问题出现的一个重要原因,要在理解的基础上,记准,记熟,会用,活用.

变式训练

求出下列各式的值:

(1)7(-2)7;

(2)3(3a-3)3(a≤1);

(3)4(3a-3)4.

解:(1)7(-2)7=-2,

(2)3(3a-3)3(a≤1)=3a-3,

(3)4(3a-3)4=

点评:本题易错的是第(3)题,往往忽视a与1大小的讨论,造成错解.

思路2

例1 下列各式中正确的是(  )

A.4a4=a

B.6(-2)2=3-2

C.a0=1

D.10(2-1)5=2-1

活动:教师提示,这是一道选择题,本题考查n次方根的运算性质,应首先考虑根据方根的意义和运算性质来解,既要考虑被开方数,又要考虑根指数,严格按求方根的步骤,体会方根运算的实质,学生先思考哪些地方容易出错,再回答.

解析:(1)4a4=a,考查n次方根的运算性质,当n为偶数时,应先写nan=|a|,故A项错.

(2)6(-2)2=3-2,本质上与上题相同,是一个正数的偶次方根,根据运算顺序也应如此,结论为6(-2)2=32,故B项错.

(3)a0=1是有条件的,即a≠0,故C项也错.

(4)D项是一个正数的偶次方根,根据运算顺序也应如此,故D项正确.所以答案选D.

答案:D

点评:本题由于考查n次方根的运算性质与运算顺序,有时极易选错,选四个答案的情况都会有,因此解题时千万要细心.

例2 3+22+3-22=__________.

活动:让同学们积极思考,交流讨论,本题乍一看内容与本节无关,但仔细一想,我们学习的内容是方根,这里是带有双重根号的式子,去掉一层根号,根据方根的运算求出结果是解题的关键,因此将根号下面的式子化成一个完全平方式就更为关键了,从何处入手?需利用和的平方公式与差的平方公式化为完全平方式.正确分析题意是关键,教师提示,引导学生解题的思路.

解析:因为3+22=1+22+(2)2=(1+2)2=2+1,

3-22=(2)2-22+1=(2-1)2=2-1,

所以3+22+3-22=22.

答案:22

点评:不难看出3-22与3+22形式上有些特点,即是对称根式,是A±2B形式的式子,我们总能找到办法把其化成一个完全平方式.

思考

上面的例2还有别的解法吗?

活动:教师引导,去根号常常利用完全平方公式,有时平方差公式也可,同学们观察两个式子的特点,具有对称性,再考虑并交流讨论,一个是“+”,一个是“-”,去掉一层根号后,相加正好抵消.同时借助平方差,又可去掉根号,因此把两个式子的和看成一个整体,两边平方即可,探讨得另一种解法.

另解:利用整体思想,x=3+22+3-22,

两边平方,得x2=3+22+3-22+2(3+22)(3-22)=6+232-(22)2=6+2=8,所以x=22.

点评:对双重二次根式,特别是A±2B形式的式子,我们总能找到办法将根号下面的式子化成一个完全平方式,问题迎刃而解,另外对A+2B±A-2B的式子,我们可以把它们看成一个整体利用完全平方公式和平方差公式去解.

变式训练

若a2-2a+1=a-1,求a的取值范围.

解:因为a2-2a+1=a-1,而a2-2a+1=(a-1)2=|a-1|=a-1,

即a-1≥0,

所以a≥1.

点评:利用方根的运算性质转化为去绝对值符号,是解题的关键.

知能训练

(教师用多媒体显示在屏幕上)

1.以下说法正确的是(  )

A.正数的n次方根是一个正数

B.负数的n次方根是一个负数

C.0的n次方根是零

D.a的n次方根用na表示(以上n>1且n∈正整数集)

答案:C

2.化简下列各式:

(1)664;(2)4(-3)2;(3)4x8;(4)6x6y3;(5)(x-y)2.

答案:(1)2;(2)3;(3)x2;(4)|x|y;(5)|x-y|.

3.计算7+40+7-40=__________.

解析:7+40+7-40

=(5)2+25?2+(2)2+(5)2-25?2+(2)2

=(5+2)2+(5-2)2

=5+2+5-2

=25.

答案:25

拓展提升

问题:nan=a与(na)n=a(n>1,n∈N)哪一个是恒等式,为什么?请举例说明.

活动:组织学生结合前面的例题及其解答,进行分析讨论,解决这一问题要紧扣n次方根的定义.

通过归纳,得出问题结果,对a是正数和零,n为偶数时,n为奇数时讨论一下.再对a是负数,n为偶数时,n为奇数时讨论一下,就可得到相应的结论.

解:(1)(na)n=a(n>1,n∈N).

如果xn=a(n>1,且n∈N)有意义,则无论n是奇数或偶数,x=na一定是它的一个n次方根,所以(na)n=a恒成立.

例如:(43)4=3,(3-5)3=-5.

(2)nan=a,|a|,当n为奇数,当n为偶数.

当n为奇数时,a∈R,nan=a恒成立.

例如:525=2,5(-2)5=-2.

当n为偶数时,a∈R,an≥0,nan表示正的n次方根或0,所以如果a≥0,那么nan=a.例如434=3,40=0;如果a<0,那么nan=|a|=-a,如(-3)2=32=3,

即(na)n=a(n>1,n∈N)是恒等式,nan=a(n>1,n∈N)是有条件的.

点评:实质上是对n次方根的概念、性质以及运算性质的深刻理解.

课堂小结

学生仔细交流讨论后,在笔记上写出本节课的学习收获,教师用多媒体显示在屏幕上.

1.如果xn=a,那么x叫a的n次方根,其中n>1且n∈正整数集.用式子na表示,式子na叫根式,其中a叫被开方数,n叫根指数.

(1)当n为偶数时,a的n次方根有两个,是互为相反数,正的n次方根用na表示,如果是负数,负的n次方根用-na表示,正的n次方根与负的n次方根合并写成±na(a>0).

(2)n为奇数时,正数的n次方根是一个正数,负数的n次方根是一个负数,这时a的n次方根用符号na表示.

(3)负数没有偶次方根.0的任何次方根都是零.

2.掌握两个公式:n为奇数时,(na)n=a,n为偶数时,nan=|a|=a,-a,a≥0,a<0.

作业

课本习题2.1A组 1.

补充作业:

1.化简下列各式:

(1)681;(2)15-32;(3)6a2b4.

解:(1)681=634=332=39;

(2)15-32=-1525=-32;

(3)6a2b4=6(|a|?b2)2=3|a|?b2.

2.若5<a<8,则式子(a-5)2-(a-8)2的值为__________.< p="">

解析:因为5<a<8,所以(a-5)2-(a-8)2=a-5-8+a=2a-13.< p="">

答案:2a-13

3.5+26+5-26=__________.

解析:对双重二次根式,我们觉得难以下笔,我们考虑只有在开方的前提下才可能解出,由此提示我们想办法去掉一层根式,

不难看出5+26=(3+2)2=3+2.

同理5-26=(3-2)2=3-2.

所以5+26+5-26=23.

答案:23

设计感想

学生已经学习了数的平方根和立方根,根式的内容是这些内容的推广,本节课由于方根和根式的概念和性质难以理解,在引入根式的概念时,要结合已学内容,列举具体实例,根式na的讲解要分n是奇数和偶数两种情况来进行,每种情况又分a>0,a<0,a=0三种情况,并结合具体例子讲解,因此设计了大量的类比和练习题目,要灵活处理这些题目,帮助学生加以理解,所以需要用多媒体信息技术服务教学.

第2课时

作者:郝云静

导入新课

思路1.碳14测年法.原来宇宙射线在大气层中能够产生放射性碳14,并与氧结合成二氧化碳后进入所有活组织,先为植物吸收,再为动物吸收,只要植物和动物生存着,它们就会不断地吸收碳14在机体内保持一定的水平.而当有机体死亡后,即会停止吸收碳14,其组织内的碳14便以约5 730年的半衰期开始衰变并消失.对于任何含碳物质只要测定剩下的放射性碳14的含量,便可推断其年代(半衰期:经过一定的时间,变为原来的一半).引出本节课题:指数与指数幂的运算之分数指数幂.

思路2.同学们,我们在初中学习了整数指数幂及其运算性质,那么整数指数幂是否可以推广呢?答案是肯定的.这就是本节的主讲内容,教师板书本节课题——指数与指数幂的运算之分数指数幂.

推进新课

新知探究

提出问题

(1)整数指数幂的运算性质是什么?

(2)观察以下式子,并总结出规律:a>0 ,

① ;

②a8=(a4)2=a4= ,;

③4a12=4(a3)4=a3= ;

④2a10=2(a5)2=a5= .

(3)利用(2)的规律,你能表示下列式子吗?

, , , (x>0,m,n∈正整数集,且n>1).

(4)你能用方根的意义来解释(3)的式子吗?

(5)你能推广到一般的情形吗?

活动:学生回顾初中学习的整数指数幂及运算性质,仔细观察,特别是每题的开始和最后两步的指数之间的关系,教师引导学生体会方根的意义,用方根的意义加以解释,指点启发学生类比(2)的规律表示,借鉴(2)(3),我们把具体推广到一般,对写正确的同学及时表扬,其他学生鼓励提示.

讨论结果:(1)整数指数幂的运算性质:an=a?a?a?…?a,a0=1(a≠0);00无意义;

a-n=1an(a≠0);am?an=am+n;(am)n=amn;(an)m=amn;(ab)n=anbn.

(2)①a2是a10的5次方根;②a4是a8的2次方根;③a3是a12的4次方根;④a5是a10的2次方根.实质上①5a10= ,②a8= ,③4a12= ,④2a10= 结果的a的指数是2,4,3,5分别写成了105,82,124,105,形式上变了,本质没变.

根据4个式子的最后结果可以总结:当根式的被开方数的指数能被根指数整除时,根式可以写成分数作为指数的形式(分数指数幂形式).

(3)利用(2)的规律,453= ,375= ,5a7= ,nxm= .

(4)53的四次方根是 ,75的三次方根是 ,a7的五次方根是 ,xm的n次方根是 .

结果表明方根的结果和分数指数幂是相通的.

(5)如果a>0,那么am的n次方根可表示为nam= ,即 =nam(a>0,m,n∈正整数集,n>1).

综上所述,我们得到正数的正分数指数幂的意义,教师板书:

规定:正数的正分数指数幂的意义是 =nam(a>0,m,n∈正整数集,n>1).

提出问题

(1)负整数指数幂的意义是怎样规定的?

(2)你能得出负分数指数幂的意义吗?

(3)你认为应怎样规定零的分数指数幂的意义?

(4)综合上述,如何规定分数指数幂的意义?

(5)分数指数幂的意义中,为什么规定a>0,去掉这个规定会产生什么样的后果?

(6)既然指数的概念就从整数指数推广到了有理数指数,那么整数指数幂的运算性质是否也适用于有理数指数幂呢?

活动:学生回想初中学习的情形,结合 自己的学习体会回答,根据零的整数指数幂的意义和负整数指数幂的意义来类比,把正分数指数幂的意义与负分数指数幂的意义融合起来,与整数指数幂的运算性质类比可得有理数指数幂的运算性质,教师在黑板上板书,学生合作交流,以具体的实例说明a>0的必要性,教师及时作出评价.

讨论结果:(1)负整数指数幂的意义是:a-n=1an(a≠0),n∈N+.

(2)既然负整数指数幂的意义是这样规定的,类比正数的正分数指数幂的意义可得正数的负分数指数幂的意义.

规定:正数的负分数指数幂的意义是 = =1nam(a>0,m,n∈=N+,n>1).

(3)规定:零的分数指数幂的意义是:零的正分数次幂等于零,零的负分数指数幂没有意义.

(4)教师板书分数指数幂的意义.分数指数幂的意义就是:

正数的正分数指数幂的意义是 =nam(a>0,m,n∈正整数集,n>1),正数的负分数指数幂的意义是 = =1nam(a>0,m,n∈正整数集,n>1),零的正分数次幂等于零,零的负分数指数幂没有意义.

(5)若没有a>0这个条件会怎样呢?

如 =3-1=-1, =6(-1)2=1具有同样意义的两个式子出现了截然不同的结果,这只说明分数指数幂在底数小于零时是无意义的.因此在把根式化成分数指数时,切记要使底数大于零,如无a>0的条件,比如式子3a2= ,同时负数开奇次方是有意义的,负数开奇次方时,应把负号移到根式的外边,然后再按规定化成分数指数幂,也就是说,负分数指数幂在有意义的情况下总表示正数,而不是负数,负数只是出现在指数上.

(6)规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数.

有理数指数幂的运算性质:对任意的有理数r,s,均有下面的运算性质:

①ar?as=ar+s(a>0,r,s∈Q),

②(ar)s=ars(a>0,r,s∈Q),

③(a?b)r=arbr(a>0,b>0,r∈Q).

我们利用分数指数幂的意义和有理数指数幂的运算性质可以解决一些问题,来看下面的例题.

应用示例

例1 求值:(1) ;(2) ;(3)12-5;(4) .

活动:教师引导学生考虑解题的方法,利用幂的运算性质计算出数值或化成最简根式,根据题目要求,把底数写成幂的形式,8写成23,25写成52,12写成2-1,1681写成234,利用有理数幂的运算性质可以解答,完成后,把自己的答案用投影仪展示出来.

解:(1) =22=4;

(2) =5-1=15;

(3)12-5=(2-1)-5=2-1×(-5)=32;

(4) =23-3=278.

点评:本例主要考查幂值运算,要按规定来解.在进行幂值运算时,要首先考虑转化为指数运算,而不是首先转化为熟悉的根式运算,如 =382=364=4.

例2 用分数指数幂的形式表示下列各式.

a3?a;a2?3a2;a3a(a>0).

活动:学生观察、思考,根据解题的顺序,把根式化为分数指数幂,再由幂的运算性质来运算,根式化为分数指数幂时,要由里往外依次进行,把握好运算性质和顺序,学生讨论交流自己的解题步骤,教师评价学生的解题情况,鼓励学生注意总结.

解:a3?a=a3? = ;

a2?3a2=a2? = ;

a3a= .

点评:利用分数指数幂的意义和有理数指数幂的运算性质进行根式运算时,其顺序是先把根式化为分数指数 幂,再由幂的运算性质来运算.对于计算的结果,不强求统一用什么形式来表示,没有特别要求,就用分数指数幂的形式来表示,但结果不能既有分数指数又有根式,也不能既有分母又有负指数.

例3 计算下列各式(式中字母都是正数).

(1) ;

(2) .

活动:先由学生观察以上两个式子的特征,然后分析,四则运算的顺序是先算乘方,再算乘除,最后算加减,有括号的先算括号内的,整数幂的运算性质及运算规律扩充到分数指数幂后,其运算顺序仍符合我们以前的四则运算顺序,再解答,把自己的答案用投影仪展示出来,相互交流,其中要注意到(1)小题是单项式的乘除运算,可以用单项式的乘除法运算顺序进行,要注意符号,第(2)小题是乘方运算,可先按积的乘方计算,再按幂的乘方进行计算,熟悉后可以简化步骤.

解:(1)原式=[2×(-6)÷(-3)] =4ab0=4a;

(2) =m2n-3=m2n3.

点评:分数指数幂不表示相同因式的积,而是根式的另一种写法.有了分数指数幂,就可把根式转化成分数指数幂的形式,用分数指数幂的运算法则进行运算了.

本例主要是指数幂的运算法则的综合考查和应用.

变式训练

求值:(1)33?33?63;

(2)627m3125n64.

解:(1)33?33?63= =32=9;

(2)627m3125n64= =9m225n4=925m2n-4.

例4 计算下列各式:

(1)(325-125)÷425;

(2)a2a?3a2(a>0).

活动:先由学生观察以上两个式子的特 征,然后分析,化为同底.利用分数指数幂计算,在第(1)小题中,只含有根式,且不是同次根式,比较难计算,但把根式先化为分数指数幂再计算,这样就简便多了,第(2)小题也是先把根式转化为分数指数幂后再由运算法则计算,最后写出解答.

解:(1)原式=

= =65-5;

(2)a2a?3a2= =6a5.

知能训练

课本本节练习 1,2,3

【补充练习】

教师用实物投影仪把题目投射到屏幕上让学生解答,教师巡视,启发,对做得好的同学给予表扬鼓励.

1.(1)下列运算中,正确的是(  )

A.a2?a3=a6 B.(-a2)3=(-a3)2

C.(a-1)0=0 D.(-a2)3=-a6

(2)下列各式①4(-4)2n,②4(-4)2n+1,③5a4,④4a5(各式的n∈N,a∈R)中,有意义的是(  )

A.①② B.①③ C.①②③④ D.①③④

(3)(34a6)2?(43a6)2等于(  )

A.a B.a2 C.a3 D.a4

(4)把根式-25(a-b)-2改写成分数指数幂的形式为(  )

A. B.

C. D.

(5)化简 的结果是(  )

A.6a B.-a C.-9a D.9a

2.计算:(1) --17-2+ -3-1+(2-1)0=__________.

(2)设5x=4,5y=2,则52x-y=__________.

3.已知x+y=12,xy=9且x<y,求 p="" 的值.

答案:1.(1)D (2)B (3)B (4)A (5)C 2.(1)19 (2)8

3.解: .

因为x+y=12,xy=9,所以(x-y)2=(x+y)2-4xy=144-36=108=4×27.

又因为x<y,所以x-y=-2×33=-63.< p="">

所以原式= =12-6-63=-33.

拓展提升

1.化简: .

活动:学生观察式子特点,考虑x的指数之间的关系可以得到解题思路,应对原式进行因式分解,根据本题的特点,注意到:

x-1= -13= ;

x+1= +13= ;

.

构建解题思路教师适时启发提示.

解:

=

=

=

= .

点拨:解这类题目,要注意运用以下公式,

=a-b,

=a± +b,

=a±b.

2.已知 ,探究下列各式的值的求法.

(1)a+a-1;(2)a2+a-2;(3) .

解:(1)将 ,两边平方,得a+a-1+2=9,即a+a-1=7;

(2)将a+a-1=7两边平方,得a2+a-2+2=49,即a2+ a-2=47;

(3)由于 ,

所以有 =a+a-1+1=8.

点拨:对“条件求值”问题,一定要弄清已知与未知的联系,然后采取“整体代换”或“求值后代换”两种方法求值.

课堂小结

活动:教师,本节课同学们有哪些收获?请把你的学习收获记录在你的笔记本上,同学们之间相互交流.同时教师用投影仪显示本堂课的知识要点:

(1)分数指数幂的意义就是:正数的正分数指数幂的意义是 =nam(a>0,m,n∈正整数集,n>1),正数的负分数指数幂的意义是 = =1nam(a>0,m,n∈正整数集,n>1),零的正分数次幂等于零,零的负分数指数幂没有意义.

(2)规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数.

(3)有理数指数幂的运算性质:对任意的有理数r,s,均有下面的运算性质:

①ar?as=ar+s(a>0,r,s∈Q),

②(ar)s=ars(a>0,r,s∈Q),

③(a?b)r=arbr(a>0,b>0,r∈Q).

(4)说明两点:

①分数指数幂的意义是一种规定,我们前面所举的例子只表明这种规定的合理性,其中没有推出关系.

②整数指数幂的运算性质对任意的有理数指数幂也同样适用.因而分数指数幂与根式可以互化,也可以利用 =am来计算.

作业

课本习题2.1A组 2,4.

设计感想

本节课是分数指数幂的意义的引出及应用,分数指数是指数概念的又一次扩充,要让学生反复理解分数指数幂的意义,教学中可以通过根式与分数指数幂的互化来巩固加深对这一概念的理解,用观察、归纳和类比的方法完成,由于是硬性的规定,没有合理的解释,因此多安排一些练习,强化训练,巩固知识,要辅助以信息技术的手段来完成大容量的课堂教学任务.

第3课时

作者:郑芳鸣

导入新课

思路1.同学们,既然我们把指数从正整数推广到整数,又从整数推广到正分数到负分数,这样指数就推广到有理数,那么它是否也和数的推广一样,到底有没有无理数指数幂呢?回顾数的扩充过程,自然数到整数,整数到分数(有理数),有理数到实数.并且知道,在有理数到实数的扩充过程中,增添的数是无理数.对无理数指数幂,也是这样扩充而来.既然如此,我们这节课的主要内容是:教师板书本堂课的课题〔指数与指数幂的运算(3)〕之无理数指数幂.

思路2.同学们,在初中我们学习了函数的知识,对函数有了一个初步的了解,到了高中,我们又对函数的概念进行了进一步的学习,有了更深的理解,我们仅仅学了几种简单的函数,如一次函数、二次函数、正比例函数、反比例函数、三角函数等,这些远远不能满足我们的需要,随着科学的发展,社会的进步,我们还要学习许多函数,其中就有指数函数,为了学习指数函数的知识,我们必须学习实数指数幂的运算性质,为此,我们必须把指数幂从有理数指数幂扩充到实数指数幂,因此我们本节课学习:指数与指数幂的运算(3)之无理数指数幂,教师板书本节课的课题.

推进新课

新知探究

提出问题

(1)我们知道2=1.414 213 56…,那么1.41,1.414,1.414 2,1.414 21,…,是2的什么近似值?而1.42,1.415,1.414 3,1.414 22,…,是2的什么近似值?

(2)多媒体显示以下图表:同学们从上面的两个表中,能发现什么样的规律?

2的过剩近似值

的近似值

1.5 11.180 339 89

1.42 9.829 635 328

1.415 9.750 851 808

1.414 3 9.739 872 62

1.414 22 9.738 618 643

1.414 214 9.738 524 602

1.414 213 6 9.738 518 332

1.414 213 57 9.738 517 862

1.414 213 563 9.738 517 752

… …

的近似值

2的不足近似值

9.518 269 694 1.4

9.672 669 973 1.41

9.735 171 039 1.414

9.738 305 174 1.414 2

9.738 461 907 1.414 21

9.738 508 928 1.414 213

9.738 516 765 1.414 213 5

9.738 517 705 1.414 213 56

9.738 517 736 1.414 213 562

… …

(3)你能给上述思想起个名字吗?

(4)一个正数的无理数次幂到底是一个什么性质的数呢?如 ,根据你学过的知识,能作出判断并合理地解释吗?

(5)借助上面的结论你能说出一般性的结论吗?

活动:教师引导,学生回忆,教师提问,学生回答,积极交流,及时评价学生,学生有困惑时加以解释,可用多媒体显示辅助内容:

问题(1)从近似值的分类来考虑,一方面从大于2的方向,另一方面从小于2的方向.

问题(2)对图表的观察一方面从上往下看,再一方面从左向右看,注意其关联.

问题(3)上述方法实际上是无限接近,最后是逼近.

问题(4)对问题给予大胆猜测,从数轴的观点加以解释.

问题(5)在(3)(4)的基础上,推广到一般的情形,即由特殊到一般.

讨论结果:(1)1.41,1.414,1.414 2,1.414 21,…这些数都小于2,称2的不足近似值,而1.42,1.415,1.414 3,1.414 22,…,这些数都大于2,称2的过剩近似值.

(2)第一个表:从大于2的方向逼近2时, 就从51.5,51.42,51.415,51.414 3,51.414 22,…,即大于 的方向逼近 .

第二个表:从小于2的方向逼近2时, 就从51.4,51.41,51.414,51.414 2,51.414 21,…,即小于 的方向逼近 .

从另一角度来看这个问题,在数轴上近似地表示这些点,数轴上的数字表明一方面 从51.4,51.41,51.414,51.414 2,51.414 21,…,即小于 的方向接近 ,而另一方面 从51.5,51.42,51.415,51.414 3,51.414 22,…,即大于 的方向接近 ,可以说从两个方向无限地接近 ,即逼近 ,所以 是一串有理数指数幂51.4,51.41,51.414,51.414 2,51.414 21,…,和另一串有理数指数幂51.5,51.42,51.415,51.414 3,51.414 22,…,按上述变化规律变化的结果,事实上表示这些数的点从两个方向向表示 的点靠近,但这个点一定在数轴上,由此我们可得到的结论是 一定是一个实数,即51.4<51.41<51.414<51.414 2<51.414 21<…< <…<51.414 22<51.414 3<51.415<51.42<51.5.

充分表明 是一个实数.

(3)逼近思想,事实上里面含有极限的思想,这是以后要学的知识.

(4)根据(2)(3)我们可以推断 是一个实数,猜测一个正数的无理数次幂是一个实数.

(5)无理数指数幂的意义:

一般地,无理数指数幂aα(a>0,α是无理数)是一个确定的实数.

也就是说无理数可以作为指数,并且它的结果是一个实数,这样指数概念又一次得到推广,在数的扩充过程中,我们知道有理数和无理数统称为实数.我们规定了无理数指数幂的意义,知道它是一个确定的实数,结合前面的有理数指数幂,那么,指数幂就从有理数指数幂扩充到实数指数幂.

提出问题

(1)为什么在规定无理数指数幂的意义时,必须规定底数是正数?

(2)无理数指数幂的运算法则是怎样的?是否与有理数指数幂的运算法则相通呢?

(3)你能给出实数指数幂的运算法则吗?

活动:教师组织学生互助合作,交流探讨,引导他们用反例说明问题,注意类比,归纳.

对问题(1)回顾我们学习分数指数幂的意义时对底数的规定,举例说明.

对问题(2)结合有理数指数幂的运算法则,既然无理数指数幂aα(a>0,α是无理数)是一个确定的实数,那么无理数指数幂的运算法则应当与有理数指数幂的运算法则类似,并且相通.

对问题(3)有了有理数指数幂的运算法则和无理数指数幂的运算法则,实数的运算法则自然就得到了.

讨论结果:(1)底数大于零的必要性,若a=-1,那么aα是+1还是-1就无法确定了,这样就造成混乱,规定了底数是正数后,无理数指数幂aα是一个确定的实数,就不会再造成混乱.

(2)因为无理数指数幂是一个确定的实数,所以能进行指数的运算,也能进行幂的运算,有理数指数幂的运算性质,同样也适用于无理数指数幂.类比有理数指数幂的运算性质可以得到无理数指数幂的运算法则:

①ar?as=ar+s(a>0,r,s都是无理数).

②(ar)s=ars(a>0,r,s都是无理数).

③(a?b)r=arbr(a>0,b>0,r是无理数).

(3)指数幂扩充到实数后,指数幂的运算性质也就推广到了实数指数幂.

实数指数幂的运算性质:

对任意的实数r,s,均有下面的运算性质:

①ar?as=ar+s(a>0,r,s∈R).

②(ar)s=ars(a>0,r,s∈R).

③(a?b)r=arbr(a>0,b>0,r∈R).

应用示例

例1 利用函数计算器计算.(精确到0.001)

(1)0.32.1;(2)3.14-3;(3) ;(4) .

活动:教师教会学生利用函数计算器计算,熟悉计算器的各键的功能,正确输入各类数,算出数值,对于(1),可先按底数0.3,再按xy键,再按幂指数2.1,最后按=,即可求得它的值;

对于(2),先按底数3.14,再按xy键,再按负号-键,再按3,最后按=即可;

对于(3),先按底数3.1,再按xy键,再按3÷4,最后按=即可;

对于(4),这种无理指数幂,可先按底数3,其次按xy键,再按 键,再按3,最后按=键.有时也可按2ndf或shift键,使用键上面的功能去运算.

学生可以相互交流,挖掘计算器的用途.

解:(1)0.32.1≈0.080;(2)3.14-3≈0.032;(3) ≈2.336;(4) ≈6.705.

点评:熟练掌握用计算器计算幂的值的方法与步骤,感受现代技术的威力,逐步把自己融入现代信息社会;用四舍五入法求近似值,若保留小数点后n位,只需看第(n+1)位能否进位即可.

例2 求值或化简.

(1)a-4b23ab2(a>0,b>0);

(2) (a>0,b>0);

(3)5-26+7-43-6-42.

活动:学生观察,思考,所谓化简,即若能化为常数则化为常数,若不能化为常数则应使所化式子达到最简,对既有分数指数幂又有根式的式子,应该把根式统一化为分数指数幂的形式,便于运算,教师有针对性地提示引导,对(1)由里向外把根式化成分数指数幂,要紧扣分数指数幂的意义和运算性质,对(2)既有分数指数幂又有根式,应当统一起来,化为分数指数幂,对(3)有多重根号的式子,应先去根号,这里是二次根式,被开方数应凑完全平方,这样,把5,7,6拆成(3)2+(2)2,22+(3)2,22+(2)2,并对学生作及时的评价,注意总结解题的方法和规律.

解:(1)a-4b23ab2= =3b46a11 .

点评:根式的运算常常化成幂的运算进行,计算结果如没有特殊要求,就用根式的形式来表示.

(2)

=

=425a0b0=425.

点评:化简这类式子一般有两种办法,一是首先用负指数幂的定义把负指数化成正指数,另一个方法是采用分式的基本性质把负指数化成正指数.

(3)5-26+7-43-6-42

=(3-2)2+(2-3)2-(2-2)2

=3-2+2-3-2+2=0.

点评:考虑根号里面的数是一个完全平方数,千万注意方根的性质的运用.

例3 已知 ,n∈正整数集,求(x+1+x2)n的值.

活动:学生思考,观察题目的特点,从整体上看,应先化简,然后再求值,要有预见性, 与 具有对称性,它们的积是常数1,为我们解题提供了思路,教师引导学生考虑问题的思路,必要时给予提示.

= .

这时应看到1+x2= ,

这样先算出1+x2,再算出1+x2,代入即可.

解:将 代入1+x2,得1+x2= ,

所以(x+1+x2)n=

=

= =5.

点评:运用整体思想和完全平方公式是解决本题的关键,要深刻理解这种做法.

知能训练

课本习题2.1A组 3.

利用投影仪投射下列补充练习:

1.化简: 的结果是(  )

A. B.

C. D.

解析:根据本题的特点,注意到它的整体性,特别是指数的规律性,我们可以进行适当的变形.

因为 ,所以原式的分子分母同乘以 .

依次类推,所以 .

答案:A

2.计算2790.5+0.1-2+ -3π0+9-0.5+490.5×2-4.

解:原式=

=53+100+916-3+13+716=100.

3.计算a+2a-1+a-2a-1(a≥1).

解:原式=(a-1+1)2+(a-1-1)2=a-1+1+|a-1-1|(a≥1).

本题可以继续向下做,去掉绝对值,作为思考留作课下练习.

4.设a>0, ,则(x+1+x2)n的值为__________.

解析:1+x2= .

这样先算出1+x2,再算出1+x2,

将 代入1+x2,得1+x2= .

所以(x+1+x2)n=

= =a.

答案:a

拓展提升

参照我们说明无理数指数幂的意义的过程,请你说明无理数指数幂 的意义.

活动:教师引导学生回顾无理数指数幂 的意义的过程,利用计算器计算出3的近似值,取它的过剩近似值和不足近似值,根据这些近似值计算 的过剩近似值和不足近似值,利用逼近思想,“逼出” 的意义,学生合作交流,在投影仪上展示自己的探究结果.

解:3=1.732 050 80…,取它的过剩近似值和不足近似值如下表.

3的过剩近似值

的过剩近似值

3的不足近似值

的不足近似值

1.8 3.482 202 253 1.7 3.249 009 585

1.74 3.340 351 678 1.73 3.317 278 183

1.733 3.324 183 446 1.731 3.319 578 342

1.732 1 3.322 110 36 1.731 9 3.321 649 849

1.732 06 3.322 018 252 1.732 04 3.321 972 2

1.732 051 3.321 997 529 1.732 049 3.321 992 923

1.732 050 9 3.321 997 298 1.732 050 7 3.321 996 838

1.732 050 81 3.321 997 091 1.732 050 79 3.321 997 045

… … … …

我们把用2作底数,3的不足近似值作指数的各个幂排成从小到大的一列数

21.7,21.72,21.731,21.731 9,…,

同样把用2作底数,3的过剩近似值作指数的各个幂排成从大到小的一列数:

21.8,21.74,21.733,21.732 1,…,不难看出3的过剩近似值和不足近似值相同的位数越多,即3的近似值精确度越高,以其过剩近似值和不足近似值为指数的幂2α会越来越趋近于同一个数,我们把这个数记为 ,

即21.7<21.73<21.731<21.731 9<…< <…<21.732 1<21.733<21.74<21.8.

也就是说 是一个实数, =3.321 997 …也可以这样解释:

当3的过剩近似值从大于3的方向逼近3时,23的近似值从大于 的方向逼近 ;

当3的不足近似值从小于3的方向逼近3时,23的近似值从小于 的方向逼近 .

所以 就是一串有理指数幂21.7,21.73,21.731,21.731 9,…,和另一串有理指数幂21.8,21.74,21.733,21.732 1,…,按上述规律变化的结果,即 ≈3.321 997.

课堂小结

(1)无理指数幂的意义.

一般地,无理数指数幂aα(a>0,α是无理数) 是一个确定的实数.

(2)实数指数幂的运算性质:

对任意的实数r,s,均有下面的运算性质:

①ar?as=ar+s(a>0,r,s∈R).

②(ar)s=ars(a>0,r,s∈R).

③(a?b)r=arbr(a>0,b>0,r∈R).

(3)逼近的思想,体会无限接近的含义.

作业

课本习题2.1 B组 2.

设计感想

无理数指数是指数概念的又一次扩充, 教学中要让学生通过多媒体的演示,理解无理数指数幂的意义,教学中也可以让学生自己通过实际情况去探索,自己得出结论,加深对概念的理解,本堂课内容较为抽象,又不能进行推理,只能通过多媒体的教学手段,让学生体会,特别是逼近的思想、类比的思想,多作练习,提高学生理解问题、分析问题的能力.

备课资料

【备用习题】

1.以下各式中成立且结果为最简根式的是(  )

A.a?5a3a?10a7=10a4

B.3xy2(xy)2=y?3x2

C.a2bb3aab3=8a7b15

D.(35-125)3=5+125125-235?125

答案:B

2.对于a>0,r,s∈Q,以下运算中正确的是(  )

A.ar?as=ars B.(ar)s=ars

C.abr=ar?bs D.arbs=(ab)r+s

答案:B

3.式子x-2x-1=x-2x-1成立当且仅当(  )

A.x-2x-1≥0 B.x≠1 C.x<1 D.x≥2

解析:方法一:

要使式子x-2x-1=x-2x-1成立,需x-1>0,x-2≥0,即x≥2.

若x≥2,则式子x-2x-1=x-2x-1成立.

故选D.

方法二:

对A,式子x-2x-1≥0连式子成立也保证不了,尤其x-2≤0,x-1<0时式子不成立.

对B,x-1<0时式子不成立.

对C,x<1时x-1无意义.

对D正确.

答案:D

4.化简b-(2b-1)(1<b<2).< p="">

解:b-(2b-1)=(b-1)2=b-1(1<b<2).< p="">

5.计算32+5+32-5.

解:令x=32+5+32-5,

两边立方得x3=2+5+2-5+332+5?32-5?(32+5+32-5),即x3=4-3x,x3+3x-4=0.∴(x-1)(x2+x+4)=0.

∵x2+x+4=x+122+154>0,∴x-1=0,即x=1.

∴32+5+32-5=1.

27588