教育巴巴 > 教案模板 >

初三数学教案反思

时间: 新华 教案模板

初三数学教案反思篇1

教学目标

1、在了解用集合的观点定义圆的基础上,进一步使学生了解轨迹的有关概念以及熟悉五种常用的点的轨迹;

2、培养学生从形象思维向抽象思维的过渡;

3、提高学生数学来源于实践,反过来又作用于实践的辩证唯物主义观点的认识。

重点、难点

1、重点:对圆点的.轨迹的认识。

2、难点:对点的轨迹概念的认识,因为这个概念比较抽象。

教学活动设计(在老师与学生的交流对话中完成教学目标)

(一)创设学习情境

1、对“圆”的形成观察——理解——引出轨迹的概念

(使学生在老师的引导下从感性知识到理性知识)

观察:圆是到定点的距离等于定长的的点的集合;(电脑动画)

理解:圆上的点具有两个性质:

(1)圆上各点到定点(圆心O)的距离都等于定长(半径的长r);

(2)到定点距离等于定长的的点都在圆上;(结合下图)

引出轨迹的概念:我们把符合某一条件的所有的点所组成的图形,叫做符合这个条件的点的轨迹.这里含有两层意思:(1)图形是由符合条件的那些点组成的,就是说,图形上的任何一点都符合条件;(2)图形包含了符合条件的所有的点,就是说,符合条件的任何一点都在图形上.(轨迹的概念非常抽象,是教学的难点,这里教师要精讲,细讲)

上面左图符合(1)但不符合(2);中图不符合(1)但符合(2);只有右图(1)(2)都符合.因此“到定点距离等于定长的点的轨迹”是圆.

轨迹1:“到定点距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆”。(研究圆是轨迹概念的切入口、基础和关键)

(二)类比、研究1

(在老师指导下,通过电脑动画,学生归纳、整理、概括、迁移,获得新知识)

轨迹2:和已知线段两个端点距离相等的点的轨迹,是这条线段的垂直平分线;

轨迹3:到已知角两边的距离相等的点的轨迹,是这个角的平分线;

(三)巩固概念

练习:画图说明满足下列条件的点的轨迹:

(1)到定点A的距离等于3cm的点的轨迹;

(2)到∠AOC的两边距离相等的点的轨迹;

(3)经过已知点A、B的圆O,圆心O的轨迹.

(A层学生独立画图,回答满足这个条件的轨迹是什么?归纳出每一个题的点的轨迹属于哪一个基本轨迹;B、C层学生在老师的指导或带领下完成)

(四)类比、研究2

(这是第二次“类比”,目的:使学生的知识和能力螺旋上升.这次通过电脑动画,使A层学生自己做,进一步提高学生归纳、整理、概括、迁移等能力)

轨迹4:到直线l的距离等于定长d的点的轨迹,是平行于这条直线,并且到这条直线的距离等于定长的两条直线;

轨迹5:到两条平行线的距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线.

(五)巩固训练

练习题1:画图说明满足下面条件的点的轨迹:

1.到直线l的距离等于2cm的点的轨迹;

2.已知直线AB∥CD,到AB、CD距离相等的点的轨迹.

(A层学生独立画图探索;然后回答出点的轨迹是什么,对B、C层学生回答有一定的困难,这时教师要从规律上和方法上指导学生)

练习题2:判断题

1、到一条直线的距离等于定长的点的轨迹,是平行于这条直线到这条直线的距离等于定长的直线.()

2、和点B的距离等于5cm的点的轨迹,是到点B的距离等于5cm的圆.()

3、到两条平行线的距离等于8cm的点的轨迹,是和这两条平行线的平行且距离等于8cm的一条直线.()

4、底边为a的等腰三角形的顶点轨迹,是底边a的垂直平分线.()

(这组练习题的目的,训练学生思维的准确性和语言表达的正确性.题目由学生自主完成、交流、反思)

(教材的练习题、习题即可,因为这部分知识属于选学内容,而轨迹概念又比较抽象,不要对学生要求太高,了解就行、理解就高要求)

(六)理解、小结

(1)轨迹的定义两层意思;

(2)常见的五种轨迹。

(七)作业

教材P82习题2、6

初三数学教案反思篇2

教学内容

一元二次方程概念及一元二次方程一般式及有关概念.教学目标

2

了解一元二次方程的概念;一般式ax+bx+c=0(a≠0)及其派生的概念;?应用一元二次方程概念解决一些简单题目.

1.通过设臵问题,建立数学模型,?模仿一元一次方程概念给一元二次方程下定义.2.一元二次方程的一般形式及其有关概念.3.解决一些概念性的题目.

4.通过生活学习数学,并用数学解决生活中的问题来激发学生的学习热情.重难点关键

1.?重点:一元二次方程的概念及其一般形式和一元二次方程的有关概念并用这些概念解决问题.2.难点关键:通过提出问题,建立一元二次方程的数学模型,?再由一元一次方程的概念迁移到一元二次方程的概念.教学过程

一、复习引入

学生活动:列方程.问题(1)古算趣题:“执竿进屋”

笨人执竿要进屋,无奈门框拦住竹,横多四尺竖多二,没法急得放声哭。有个邻居聪明者,教他斜竿对两角,笨伯依言试一试,不多不少刚抵足。借问竿长多少数,谁人算出我佩服。

如果假设门的高为x?尺,?那么,?这个门的宽为_______?尺,长为_______?尺,?根据题意,?得________.整理、化简,得:__________.二、探索新知

学生活动:请口答下面问题.

(1)上面三个方程整理后含有几个未知数?

(2)按照整式中的多项式的规定,它们次数是几次?(3)有等号吗?还是与多项式一样只有式子?老师点评:(1)都只含一个未知数x;(2)它们的次数都是2次的;(3)?都有等号,是方程.因此,像这样的方程两边都是整式,只含有一个未知数(一元),并且未知数的次数是2(二次)的方程,叫做一元二次方程.

2

一般地,任何一个关于x的一元二次方程,?经过整理,?都能化成如下形式ax+bx+c=0(a≠0).这种形式叫做一元二次方程的一般形式.

2

一个一元二次方程经过整理化成ax+bx+c=0(a≠0)后,其中ax是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项.

例1.将方程3x(x-1)=5(x+2)化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数及常数项.

2

分析:一元二次方程的一般形式是ax+bx+c=0(a≠0).因此,方程3x(x-1)=5(x+2)必须运用整式运算进行整理,包括去括号、移项等.

解:略

注意:二次项、二次项系数、一次项、一次项系数、常数项都包括前面的符号.

2

例2.(学生活动:请二至三位同学上台演练)将方程(x+1)+(x-2)(x+2)=?1化成一元二次方程的一般形式,并写出其中的二次项、二次项系数;一次项、一次项系数;常数项.

22

分析:通过完全平方公式和平方差公式把(x+1)+(x-2)(x+2)=1化成ax+bx+c=0(a≠0)的形式.解:略

三、巩固练习

教材练习1、2

补充练习:判断下列方程是否为一元二次方程?

(1)3x+2=5y-3(2)x=4(3)3x-2

2

22

5222

=0(4)x-4=(x+2)(5)ax+bx+c=0x

四、应用拓展

22

例3.求证:关于x的方程(m-8m+17)x+2mx+1=0,不论m取何值,该方程都是一元二次方程.

2

分析:要证明不论m取何值,该方程都是一元二次方程,只要证明m-8m+17?≠0即可.

22

证明:m-8m+17=(m-4)+1

2

∵(m-4)≥0

22

∴(m-4)+1>0,即(m-4)+1≠0

∴不论m取何值,该方程都是一元二次方程.

2

?练习:1.方程(2a—4)x—2bx+a=0,在什么条件下此方程为一元二次方程?在什么条件下此方程为

一元一次方程?

/4m/-4

2.当m为何值时,方程(m+1)x+27mx+5=0是关于的一元二次方程五、归纳小结(学生总结,老师点评)本节课要掌握:

2

(1)一元二次方程的概念;(2)一元二次方程的一般形式ax+bx+c=0(a≠0)?和二次项、二次项系数,一次项、一次项系数,常数项的概念及其它们的运用. 

初三数学教案反思篇3

教学目标

1、使学生理解弦、弧、弓形、同心圆、等圆、等孤的概念;初步会运用这些概念判断真假命题。

2、逐步培养学生阅读教材、亲自动手实践,总结出新概念的能力;进一步指导学

生观察、比较、分析、概括知识的能力。

3、通过动手、动脑的全过程,调动学生主动学习的积极性,使学生从积极主动获得知识。

教学重点、难点和疑点

1、重点:理解圆的有关概念.

2、难点:对“等圆”、“等弧”的定义中的“互相重合”这一特征的理解.

3、疑点:学生容易把长度相等的两条弧看成是等弧。让学生阅读教材、理解、交流和与教师对话交流中排除疑难。

教学过程设计:

(一)阅读、理解

重点概念:

1、弦:连结圆上任意两点的线段叫做弦.

2、直径:经过圆心的弦是直径.

3、圆弧:圆上任意两点间的部分叫做圆弧.简称弧.

半圆弧:圆的任意一条直径的两个端点分圆成两条弧,每一条弧叫做半圆;

优弧:大于半圆的弧叫优弧;

劣弧:小于半圆的弧叫做劣弧.

4、弓形:由弦及其所对的弧组成的图形叫做弓形.

5、同心圆:即圆心相同,半径不相等的两个圆叫做同心圆.

6、等圆:能够重合的两个圆叫做等圆.

7、等弧:在同圆或等圆中,能够互相重合的弧叫做等弧.

(二)小组交流、师生对话

问题:

1、一个圆有多少条弦?最长的弦是什么?

2、弧分为哪几种?怎样表示?

3、弓形与弦有什么区别?在一个圆中一条弦能得到几个弓形?

4、在等圆、等弧中,“互相重合”是什么含义?

(通过问题,使学生与学生,学生与老师进行交流、学习,加深对概念的理解,排除疑难)

(三)概念辨析:

判断题目:

(1)直径是弦()(2)弦是直径()

(3)半圆是弧()(4)弧是半圆()

(5)长度相等的两段弧是等弧()(6)等弧的长度相等()

(7)两个劣弧之和等于半圆()(8)半径相等的两个半圆是等弧()

(主要理解以下概念:(1)弦与直径;(2)弧与半圆;(3)同心圆、等圆指两个图形;(4)等圆、等弧是互相重合得到,等弧的条件作用.)

(四)应用、练习

例1、已知:如图,AB、CB为⊙O的两条弦,试写出图中的所有弧.

解:一共有6条弧.、、、、、.

(目的:让学生会表示弧,并加深理解优弧和劣弧的概念)

例2、已知:如图,在⊙O中,AB、CD为直径.求证:AD∥BC.

(由学生分析,学生写出证明过程,学生纠正存在问题.锻炼学生动口、动脑、动手实践能力,调动学生主动学习的积极性,使学生从积极主动获得知识.)

巩固练习:

教材P66练习中2题(学生自己完成).

(五)小结

教师引导学生自己做出总结:

1、本节所学似的知识点;

2、概念理解:①弦与直径;②弧与半圆;③同心圆、等圆指两个图形;④等圆和等弧.

3、弧的表示方法.

(六)作业

教材P66练习中3题,P82习题l(3)、(4).

初三数学教案反思篇4

教材分析

本节内容是上一节课在学习余角补角基础上学习的,学生有了一定的基础,为以后学__面直角坐标系的学习做好准备。

学情分析

本节课对于学生来说学习起来并不太难,在小学阶段学生已经接触过方位角的内容,而且本节课内容和生活中的方向联系紧密,故学生比较有兴趣。

教学目标

理解方位角的意义,掌握方位角的判别和应用,通过现实情境,充分利用学生的生活经验去体会方位角的意义。

教学重点和难点

重点:方位角的判别与应用

难点:方位角的画法及变式题

教学过程(本文来自优秀教育资源网斐.斐.课.件.园)

教学环节教师活动预设学生行为设计意图

一、创设情境,导入新课

二、讲授新课

三、巩固练习

四、课时小结五、布置作业由四面八方这个成语引出学生对八个方位的理解

1.先以一个具体图形告诉学生基本知识点,方位角一般是以正南正北为基准,然后向东或西旋转所成的角的始边方向。

2.师示范方位角的画法

3.出示补充例题,引对学生通过小组合作完成。思考并回答老师提出的问题

生观察图并理解老师的讲解。

生观察并独立完成书中的例题

生先独立思考然后与同学合作完成。激发学生的学习兴趣

通辽具体图形使学生初步认识方位角的表示方法。

使学生通辽具体操作掌握画方位角的方法

进一步掌握方位角的有关知识,达到知识提升。

板书设计

4.3.3余角和补角(二)——方位角

学生学习活动评价设计

我先将学生按人数分成若干小组,在课前先给学生发放导学单,课上先给学生充分的讨论时间后学生由小组推荐代表发言,累积分数,每个小组轮流回答一次,学生代表回答完毕后,其它同学补充纠错,然后从知识点是否准确,语言是否流利,思维是否创新,逻辑是否合理严密等方面来做出评价,然后给出相应分数。累积到小组积分中课上知识回答后在练习部分,设计抢答题,小组抢答完成。最后计算出总分评出本节课小组及个人奖,给予口头表扬。

教学反思

本节课是在上节课余角和补角的基础上学习的,而且在小学阶段也已经接触过这部分知识了,基于这个特点,在课堂上我主要采取了自主学习的方式,学生接受的不错,本节课的知识虽然简单但很重要是为以后学__面直角坐标系做准备的。出现的问题是有个别同学对于A看B是北偏东30度,则B看A是什么方向不太清楚,我采取的措施是让明白的同学讲给不明白的同学听,指导其主要从哪方面入手解决此类问题,还有一点,学生在画图后容易忽略写结论,应强调。以前在上本节课时,我是采取的讲授法,感觉学生不是很爱听,后来一想,知道了是因为小学时他们已经接触了这部分知识,所以不爱听,针对于这种情况,这次我采用了自主学习的方式感觉学生的积极性上来了,一节课气氛很好,相信效果也不错。以后再讲这节课我将继续采用这种方式,在此基础上使其更加完善。

初三数学教案反思篇5

二次根式

教学目标

1、了解二次根式的概念、

2、掌握二次根式的基本性质

教学过程

一、提出问题

上一节我们学习了平方根和算术平方根的意义,引进了一个新的记号,现在请同学们思考并回答下面两个问题:

1、表示什么?

2、a需要满足什么条件?为什么?

二、合作交流,解决问题

让学生合作交流,然后回答问题(可以补充),归纳为;

1、当a是正数时,表示a的算术平方根,即正数a的两个平方根中的一个正数;

2、当a是零时,表示零,也叫零的算术平方根;

3、a≥0,因为任何一个有理数的平方都大于或等于零

三、归纳特点,引入二次根式概念

1、基本性质、

问题1 你能用一句话概括以上3个结论吗?

让一个学生回答、其他学生补充,概括为:(a≥0)表示非负数a的算术平方根,也就是说,(a≥0)是一个非负数,即≥0(a≥0)。

问题2 ()2(a≥0)等于什么?说说你的理由并举例验证。

让学生小组讨论或自主探索得出结论:()2=a(a≥0),如()2=4,()2=2等、

以上两个问题的结论就是基本性质,特别是()2=a(a≥0)可以当公式使用,直接应用于计算。反过来,把()2=a(a≥0)写成a=()2(a≥0)的形式,这说明:任何一个非负数a都可以写成一个数的平方的形式、例如:3=()2,0.3= ()2

提问:

(1)0=()2对不对?

(2)-5=()2对不对?如果不对,错在哪里?

2、二次根式概念

形如(a≥0)的式子叫做二次根式、

说明:二次根式必须具备以下特点;

(1)有二次根号;

(2)被开方数不能小于0。

让学生举出二次根式的几个例子,并判断,(a<0)、、(a<o)是不是二次根式。< p="">

四、范例

例1、要使式子有意义,字母x的取值必须满足什么条件?

提问:

若将式子改为,则字母x的取值必须满足什么条件?

五、课堂练习

Pl0页练习1、2、

六、思考提高

我们已经研究了()2(a≥0)等于a,现在研究等于什么

提问:

1、对于抽象问题的研究,常常采用什么策略?

2、在中,a的取值有没有限制?

3、取一些数值来验证。通过验证,你能发现什么规律?

因此,今后我们遇到时,可先改写成a的绝对值|a|,再按照a取正数值,0还是负数值来取值、例如当x<0时,=|4x|=-4x

4、()2与是一样的吗?说说你的理由,并与同学交流。

七、小结

1、什么叫做二次根式?你们能举出几个例子吗?

2、二次根式有哪两个形式上的特点?

3、二次根式有哪些性质?

八、作业

习题22.1第1、2、3、4题、

教学后记:

初三数学教案反思篇6

回顾与反思当自变量x取同一数值时,这两个函数的函数值之间有什么关系?反映在图象上,相应的两个点之间的位置又有什么关系?

探索观察这两个函数,它们的开口方向、对称轴和顶点坐标有那些是相同的?又有哪些不同?你能由此说出函数与的图象之间的关系吗?

例2.在同一直角坐标系中,画出函数与的图象,并说明,通过怎样的平移,可以由抛物线得到抛物线.

解列表.

x…-3-2-10123…

…-8-3010-3-8…

…-10-5-2-1-2-5-10…

描点、连线,画出这两个函数的图象,如图26.2.4所示.

可以看出,抛物线是由抛物线向下平移两个单位得到的.

回顾与反思抛物线和抛物线分别是由抛物线向上、向下平移一个单位得到的.

探索如果要得到抛物线,应将抛物线作怎样的平移?

例3.一条抛物线的开口方向、对称轴与相同,顶点纵坐标是-2,且抛物线经过点(1,1),求这条抛物线的函数关系式.

解由题意可得,所求函数开口向上,对称轴是y轴,顶点坐标为(0,-2),

因此所求函数关系式可看作,又抛物线经过点(1,1),

所以,,

解得.

故所求函数关系式为.

回顾与反思(a、k是常数,a≠0)的图象的开口方向、对称轴、顶点坐标归纳如下:

开口方向对称轴顶点坐标

[当堂课内练习]

1.在同一直角坐标系中,画出下列二次函数的图象:

,,.

观察三条抛物线的相互关系,并分别指出它们的开口方向及对称轴、顶点的位置.你能说出抛物线的开口方向及对称轴、顶点的位置吗?

2.抛物线的开口,对称轴是,顶点坐标是,它可以看作是由抛物线向平移个单位得到的.

3.函数,当x时,函数值y随x的增大而减小.当x时,函数取得最值,最值y=.

[本课课外作业]

A组

1.已知函数,,.

(1)分别画出它们的图象;

(2)说出各个图象的开口方向、对称轴、顶点坐标;

(3)试说出函数的图象的开口方向、对称轴、顶点坐标.

2.不画图象,说出函数的开口方向、对称轴和顶点坐标,并说明它是由函数通过怎样的平移得到的.

3.若二次函数的图象经过点(-2,10),求a的值.这个函数有还是最小值?是多少?

B组

4.在同一直角坐标系中与的图象的大致位置是()

5.已知二次函数,当k为何值时,此二次函数以y轴为对称轴?写出其函数关系式.

59692