教育巴巴 > 教案模板 >

简单四年级数学教案

时间: 新华 教案模板

简单四年级数学教案篇1

一、指导思想和理论依据

数学是研究现实世界的空间形式和数量关系的科学,因此数形结合思想是重要的数学思想方法之一,也是分析问题、解决问题的有力工具。著名数学家华罗庚指出:“数缺形时少直观,形少数时难入微”。这句话说明了“数”与“形”是紧密联系的。我们在研究“数”的时候,往往要借助于“形”,在探讨“形”的性质时,又往往离不开“数”。数形结合具体地说就是将抽象的数学语言与直观图形结合起来,使抽象思维与形象思维结合起来,通过“数”与“形”之间的对应和转换来解决数学问题。

二、教材分析

乘法分配律的教学是在学习乘法和加法的交换律与结合律的基础上进行的。目的是让学生对大量运算中的一类特殊的积和运算进行概括,使学生的计算在积累一定经验之后上升到一种理性认识,在小学阶段渗透恒等变换的思想,从而更好地发展数与代数的运算能力。

三、学情分析

在初步学习了三个运算定律后,当学生碰到“计算下面各题,能简算的要简算”此类题时,错误就更多了。究其原因,因为这类题不仅要求学生能明确运算顺序,正确计算,而且还要求学生有一定的观察能力,甚至要有一些直觉,能够进行合理的分析,找出其中能够进行简便运算的部分,并合理地进行简便运算。要想顺利完成这种题,学生必须要透彻理解简算的原理,完全把握简算的本质,既不能把可以简算的题轻易忽略了简算,也不能把无法简算的题错误地进行简算。经过整理归类,我发现学生简便运算主要是对运算定律混淆不清。

如:18×101=18×100×1=1800

125×48=125×(40+8)=125×40+8=5008

125×48=125×(40+8)=125×40×125×8=5000000

101×52=(100+1)×(50+2)=100×50+1×2=5002

25×64×125=25×(60+4)×125=25×60+4×125=20__

这些错误的发生,说明了学生对乘法结合律和乘法分配律这两条运算定律产生了混淆。这是由于乘法结合律与乘法分配律在表现形式上十分相近,致使一些学生造成知觉上的错误。

四、我的思考

著名数学家华罗庚指出:“数缺形时少直观,形少数时难入微”。这句话说明了“数”与“形”是紧密联系的。我们在研究“数”的时候,往往要借助于“形”,在探讨“形”的性质时,又往往离不开“数”。数形结合具体地说就是将抽象的数学语言与直观图形结合起来,使抽象思维与形象思维结合起来,通过“数”与“形”之间的对应和转换来解决数学问题。

在教学乘法运算定律:“乘法交换律、结合律和分配律”时出现的各种问题,很多老师都是从“数”的角度来帮孩子加强理解,这对于孩子是有用处的。也有很多老师提出要加强练习,这样的做法也是有用处的。“练习不等同于重复”,练习不等于简单机械的重复操练,而是要敏锐发现学生学习的节点,分析成因,找到真正的症结所在,针对学生的学习困难,设计有价值的课堂教学。“数形结合的思想”是一种数学思想方法。通过“数形结合思想”在乘法运算定律中的教学,使复杂的问题简单化、使抽象的问题形象化、使模糊的问题明朗化,孩子们对知识本质的理解更加深入了,使他们由最初的迷茫发展至现在的茅塞顿开,达到了非常好的学习效果,提高了学习的效率。

教学目标:

根据以上分析我确定了本节课的教学目标:

1.引导学生将结合律、分配律的简便计算应用于解决现实生活中的实际问题,同时注意解决问题策略的多样化。

2.借用数学模型(点子图)帮助学生区分结合律和分配律的本质特征。(结合律是拆数等分成相同的几组,所以连乘,分配律是不等分分成几个不同的块,所以乘加或者乘减。)

3.通过回顾错题的练习,让学生自觉用点子图帮助找错误原因,以提高正确率。

教学重难点:

重点:借用数学模型(电子图)帮助学生理解乘法结合律和分配律知识的本质特征,让学生能够正确区分使用这两种定律。

难点:正确认识乘法结合律和分配律的本质特征。

教学过程:

一、借助点子图帮助学生区分结合律和分配律的本质

(一)创设情境,引出点子图

1.光明学校要组织一些学生参加区运动会的入场式表演,同学们要站成这样的队形(PPT出示人站成的图形15×18),要求一共有多少人,谁会列算式?

(15×18)

2.如果用一个黑点来代表一名学生,站好的队形就成了这样的方阵(PPT出示点子图15×18)。

设计意图:创设情境,由生活中的方阵计算一共要多少名学生,转化为点子图求一共有多少个点,让学生体会数学来源于生活。

(二)展示算法多样化

1.学生四人一小组,看哪个小组能用尽量多的不同的方法来帮助巧算,并结合点子图把算式里的想法在点子图里圈一圈,一种方法用1张图,用彩笔圈点子图,圈的时候先要想好了再圈。四人一组,讨论操作。

2.汇报

(预设)15×18=15×9×2

15×18=15×6×3

15×18=15×(10+8)=15×10+15×8

15×18=15×(20-2)=15×20-15×2

15×18=5×18×3

15×18=(10+5)×18=10×18+5×18

15×18=(20-5)×18=20×18-5×18

学生分别把7种解法的点子图做个说明。

设计意图:由于本节课是在学生学习了乘法结合律和分配律之后进行的,一方面了解学生掌握知识的情况,另一方面展示算法多样化。

(三)分类,观察分析点子图及算式,找到两种定律的本质区别

1.分类

学生尝试把这些方法分分类并说一说为什么这么分?

2.找到结合律的特点:因为等分成几组,所以连乘

观察结合律的点子图分析其特点。

学生举例说明:15×18=15×2×9

15×18=15×6×3

15×18=5×18×3

3.找到分配律的特点:因为不等分,分几个不同的块,所以乘加或者乘减

观察分配律的点子图分析其特点。

学生举例说明:15×18=15×(10+8)=15×10+15×8

15×18=15×(20-2)=15×20-15×2

15×18=(20-5)×18=20×18-5×18

设计意图:通过分类,了解学生观察算式的角度,分类一共有两种情况:按方法分成结合律(点子图的特点“等分”)和分配律(点子图的特点“不等分”);按拆18和拆15分类。通过比较、引导学生观察“等分”成几组只能连乘;不等分,分几个不同的块,所以乘加或者乘减。从而找到结合律和分配律最本质的区别。

(四)概括:不同的拆分一定会带来不同的方法,要时刻想着点子图

PPT出示:

总结:看来我们在做题的时候,脑子里得想着点子图,是等分成几组,还是不等分分成几块,如果等分成几组就得连乘,不等分分成几块就得乘加或者乘减。看来不同的拆分一定会带来不同的方法,相同的方法也会有不同的做法。点子图真是帮了我们的大忙,找到了结合律和分配律最本质的区别。

设计意图:通过对比,观察拆数,让学生掌握在做相关类型题的时候看着拆数的不同,头脑中要结合点子图的特征,从而让学生明确“不同的拆分一定会带来不同的方法,相同的方法也会有不同的做法”。

二、回顾错题,利用点子图分析错误原因

回顾过去的学习出现过的错误利用点子图进行分析

(PPT:错题1)125×48=125×40×8

(PPT:错题2)如:125×48=125×(40+8)=125×40+8

设计意图:用探究到的结合律和分配律的本质区别,结合点子图说明错误原因,使学生加深对本质区别的理解。

三、拓展练习

8×12+4×36

四、课堂总结

今天这节课你印象最深的是什么?

总结:今天我们借助图来帮助我们研究数的问题,其实不光是点子图,还有其它图形也能帮助研究数的问题,希望同学们下次在碰到有关数的问题的时候能够想到我们的图形朋友。

简单四年级数学教案篇2

教学目标

1、使学生比较系统地、牢固地掌握有关整数、分数、小数、百分数的基础知识。

2、进一步弄清概念间的联系与区别。

教学重点

使学生比较系统地、牢固地掌握整数、小数、分数、百分数的基础知识。

教学难点

弄清概念间的联系和区别。

教学步骤

一、铺垫孕伏。

1.填空【演示课件“数的意义”】

0、1、79、、0.25、0.6、100、、、、85%、30、90%、7、8、2.35……

学生分类填数:

2.导入:上题同学们填得很正确,这就是我们在小学阶段学习的几种数:整数、分数、小数、百分数。这节课我们就把这几种数的意义和有关知识进行一下整理和复习。(板书课题:数的意义)

二、探究新知【继续演示课件“数的意义”】

(一)整数

1.小组讨论。

2.师生总结。

自然数:0、1、2、3、……

自然数是整数。

教师说明:在小学只学大于0和等于0的整数,进入初中就要学习小于0的整数。

想一想:自然数有什么特征?

总结:最小的自然数是0,没有最大的自然数,说明自然数的个数是无限的。

(二)分数。

1.引导学生思考:

①把单位“1”平均分成若干份,表示这样的一份或几份的数叫什么数?(分数)

表示其中一份的数是这个分数的什么?(分数单位)

②在整数范围内能计算2÷9吗?有了分数以后能计算吗?为什么?

2.填空练习。

①把单位“1”平均分成4份,表示这样的3份是;把3平均分成4份,每一份是.

②的分数单位是(),它至少再添上()个这样的单位就成了整数。

3.教师说明:两个数相除,它们的商可以用分数表示。

即:

4.教师提问:同学们想一想,分数可以分为哪几类?

教师板书:

谁能说出真、假分数的意义及有关知识?(举例说明)

①分子比分母小的分数叫做真分数。真分数小于1.

②分子比分母大或者分子和分母相等的分数,叫做假分数。假分数大于1或者等于1.

③分子是分母的倍数的假分数可以化成整数。

④分子不是分母倍数的假分数可以化成带分数。

⑤反之,整数和带分数也可以化成假分数。

教师板书:假分数

教师说明:假分数、带分数、整数可以相互转化。带分数是由整数和真分数合成的数,它是分子不是分母倍数的假分数的另一种形式。

(三)小数。

教师引导:从分数的意义联想一下,小数的意义又是什么呢?还学了哪些有关的知识呢?你能举例说明吗?

教师板书:

教师说明:整数和小数都是按十进制计数法写出的数,其中个、十、百……以及十分之一、百分之—……都是计数单位。各个计数单位所占的位置,叫做数位。数位是按一定的顺序排列的。

(四)百分数。

教师提问:你们还记得百分数的意义吗?

教师板书:百分数(百分率或百分比):用%表示。

三、全课小结。

这节课我们整理和复习了数的意义及有关知识,并形成了知识网络,对数概念间的联系与区别有了更清楚的认识。

四、随堂练习【继续演示课件“数的意义”】

1.填空。

(1)把根3米长的铁丝平均分成7段,每一段长是这根铁丝的,每段长米.

(2)分数单位是的最大真分数是,它至少再添上()个这样的分数单位就成了假分数

简单四年级数学教案篇3

加法结合律

教学内容:P18:例2 “做一做”。

教学目标

1、知识与技能:结合具体的情境,引导学生认识和理解加法结合律的含义。

2、过程与方法:能用字母式子表示加法结合律,初步学会应用结合律进行一些简便运算。

3、情感态度与价值观:体验自主探索、合作交流,感受成功的愉悦,树立学习数学的自信心,发展对数学的积极情感。培养学生观察,比较,抽象,概括的初步思维能力。

教学重点:认识和理解加法交换律和结合律的含义。

教学难点:引导学生抽象概括加法结合律。

教具学具:多媒体课件

教学过程

一、 创设情境

1、多媒体展示:李叔叔三天骑车的路程统计。

(1)找出信息解决问题。 问:你能解决李叔叔提出的问题吗? 学生独立完成后交流。

多媒体展示线段图:根据学生列出的不同算式,表示三天路程的线段先后出现。

问:通过线段图的演示,你们发现什么?(不论哪两天的路程先相加,总长度不变。)

我们来研究把三天所行路程依次连加的算式,可以怎样计算:

比较 88+104+96 88+104+96

=192+96 =88+200

=288 =288

为什么要先算104+96呢?(后两个加数先相加,正好能凑成整百数。)

出示(88+104)+96○88+(104+96),怎么填?

(2)你能再举几个这样的例子吗?

问:观察、比较这些算式,说一说你发现了什么秘密?(鼓励学生用自己的话来说。)

(3)揭示规律。

三个数相加,先把前两个数相加,或者先把后两个数相加,和不变,这就是加法结合律。

(4)用符号表示。(学生独立完成,集体核对。)

(▲+★)+●=____+(____+____)

(a+b)+c=____+(____+____)

(5)问:①用语言表达与用字母表示,哪一种更一目了然?

②这里的a、b、c可以表示哪些数?

二、练习练习

1、完成P18做一做2。

2、根据运算定律,在下面 里填上适当的数。

287+129+118=287+( +118) (32+47)+65=32+( + )

3、教材练习五

四、小结

1.今天我们发现了哪些数学规律?

2.这些运算定律是怎样发现、归纳的?

板书设计 加法结合律

88+104+96 88+104+96

=192+96 =88+(104+96 )

=288 =88+200

=288

加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。

简单四年级数学教案篇4

教学目标:

1.使学生掌握求一个小数的近似数的方法.

2.能正确地用“四舍五人法”求近似数.

3.使学生理解保留小数位数越多,精确程度越高.

教学重点:

使学生理解取近似值对结果的精确程度的影响.

教学难点:

理解保留小数位数越多,精确程度越高.

教学方法:

探究交流法

教学准备:

多媒体课件

课时课型:

1课时新授课

教学过程:

(一)、创设情境

1.出示情境图,电子秤上显示的数据和售货员的话,提出疑问怎么会不一样?引出“四舍五入法”

2.引出近似数,复习整数求近似数。

(二)探究交流

1.出示情境图,在实际应用小数时,往往也没有必要说出它的准确数,只要它的近似数就可以了。提出0.984的近似数是多少?小组讨论后指名汇报。

(根据学生汇报现场操作展示在多媒体PPT中,插入函数能在播放时在方框里输入学生汇报结果,能及时将学生的想法展现在课件上)

2根据汇报结果,分别具体探讨保留两位小数的近似数,保留一位小数,保留整数后的近似数。并说一说操作的过程。

3、强调取近似数的要求不同表示方法

4、小组探讨1与1.0的精确度

5、引导通过线段图理解保留一位小数是1.0,小数末尾的0,应当保留,不能去掉。

6、总结:刚才是利用什么方法求0.984的近似数?独立完成想一想后在小组中交流,找不同说原因。

(三)巩固练习

1、选择,学生独立完成,指名汇报

(1)保留()位小数,表示精确到十分位。

①一位②两位③三位

(2)如果要求保留三位小数,表示精确到()位。

①分②百分③千分

2、求下面小数的近似数

(1)保留两位小数

0.25612.0061.0987

(2)精确到十分位

3.720.589.0548

(选两组,整组4人一起在电脑前讨论后,将本组答案用电脑操作展现在课件上放映呈现给大家)

3、按要求填出表中的近似数

4、拓展题

四、全课总结

1、数学课将结束了,你有哪些收获?在哪方面还需努力?

2、今天我们学习的是课本73页的知识,打开课本,认真看一看课本,找出书中你认为需要掌握的知识用笔做个记号,然后大声地朗读出来。

课后作业:1.从课后习题中选取;

2.完成练习册本课时的习题

板书设计:

求一个小数的近似数

0.984≈0.980.984≈1.00.984≈1

小于5,舍去大于5,向前一位进1大于5,向前一位进1

表示近似数的时,0不能去掉

课后反思:

简单四年级数学教案篇5

教学内容:

二期教材四年级第一学期课本P22-23

教材分析:

本节内容主要是对常用的面积单位进行一个梳理,一方面进一步借助学生的低阶面积单位的表象累积形成平方千米的表象,另一方面,使学生熟悉平方厘米、平方分米、平方米、平方千米之间的进率关系,能够进行简单的换算。

教学目标:

(一)知识与技能

1、初步学会根据实际需要,选用适当的面积单位,丰富面积单位的量感。

2、借助问题情景,合作探究平方米与平方千米之间的进率,进一步丰富1平方千米的量感。

(二)过程与方法

经历常用的面积单位的梳理过程,自主建构面积单位的换算方法,初步提高整理归纳能力。

(三)情感与态度

逐步体会数学与日常生活的密切联系,感知数学的价值。

重点难点:

1、丰富1平方千米的量感,掌握常用面积单位间的换算方法。

2、理解常用面积单位间进率的推算方法。

教学过程:

一、引入阶段

1、感受平方千米

同学们,你们觉得我们学校大吗?我们泗泾镇大吗?那么松江区呢?这些区域用我们新学的面积单位km2来表示,是多少呢?请看大屏幕:(出示)

我们美丽的校园占地面积约0.03平方千米。

我们家园——泗泾镇占地面积约24.2平方千米。

我们的松江区总面积约604平方千米。

你得到了什么信息?有什么感受?你觉得平方千米常用在什么样的区域?(对比,交流)

小结:平方千米常用来表示面积大的区域。

[从学生所处的生活环境展开,通过“区域大”但表示的“数字小”这一强烈对比,丰富平方千米的量感]

2、感知常用的小面积单位

我们还学过哪些常用的面积单位?谁能从大到小说出来呢?它们之间的进率是多少呢?让我们用手势来比划一下它们的大小吧!1km2能用手势来表示吗?(不能)为什么?(1km2太大)

板书

km21m2=100dm21dm2=100cm2[通过记忆性口答与形象的手势感知,双重复习所学面积单位,再现常用面积单位的表象。]

3、感知练习

同学们对面积单位的量感不错,就让我们打开课本P23页,完成第三题,比比看,谁填的有快又准

在下面()中填入适当的面积单位(课本23页)。

一张邮票的面积约9()

一张乒乓球台面约410()

一间教室的面积约63()

一张软盘的面积约1()

一个排球场占地约162()

上海野生动物园占地约2()

[在前面面积单位的充分感知铺垫下,通过填写适当的单位,促使学生将熟悉实物的某个面或某块区域与面积单位建立起联系,既诊断学生已学知识的掌握情况,又激活他们已有单位面积的量感。]

二、探究阶段

1、情景设疑:通过刚才的单位填写,同学们对面积单位的都很熟悉了,接着让我们来解决前面学习中留下的问题:(出示)如果1m2可以挤下17人,那么1km2能不能挤得下整个上海的人?(上海总人口为16737700人)

要想解决这个问题,我们需要知道什么?同桌交流:需要知道1km2等于多少m2,即km2与m2之间的进率,就可以求出1km2可以挤多少人,最终把问题解决。

2、合作探究:我们知道1km2就是边长为1km的正方形的面积,(出示边长为1km的正方形图形)。

那么km2与m2之间的进率是多少呢?你们能从1km2的定义来找出它们之间的进率吗?请小组合作完成。

(1)组内尝试解决,师巡视指导。

(2)全班交流解法:(板书)

1km×1km=1km2

1000m×1000m=1000000

m21km2=1000000m2

(3)再次交流:通过在1km2定义的关系式中把km转换成m,我们很容易就找到了它们之间的关系。现在让我们同桌之间再把这个过程互相交流一下。

3、问题解决:知道了1km2=1000000m2,那么1km2能不能挤得下整个上海的人呢?谁来说说看?指名交流。这个结果让你有什么想说的吗?

4、完善面积单位进率:现在我们已经把所学的面积单位之间的进率都找到了,请同学们把P22的面积单位的关系填写完整。(媒体演示课本23页单位面积的累积过程)

1km2=()m21m2=()dm21dm2=()cm2

[通过问题设疑,激发学生的求知欲,让学生主动去探究km2和m2的进率。为了使学生形成清晰的量感,启发学生从定义去推理,把学生的思维引入深处,从而让学生在合作的尝试计算中直观获得1km2=1000000m2。其实学生以前在学习平方米,平方分米,平方厘米间的进率时已经经历了这样一个推理过程,在这里学生运用以往的经验解决今天所学的新问题,体现了知识的迁移。通过平方米和平方千米间关系的探究,对学生进一步理解单位面积的含义和进率的由来,促进学生表象记忆的形成都有好处,也激发了学生的求知__和解决问题的兴趣,为以下单位换算提供了一个良好的情知背景。]

三、运用阶段

1、分层练习:(说出思考过程)

(1)25m2=()dm23km2=()m2

(2)3400dm2=()m29000000m2=()km2580cm2=()dm2

(3)70000000㎡-7k㎡=()k㎡

[学生在三年级时已经积累了一些重量、长度、面积单位换算的经验,并且会用小数表示单位之间的转换。这里先安排两组“从高到低”与“从低到高”的单位转换练习,就想让学生通过尝试找到换算的一般方法:高级单位化成低级单位时乘进率,低级单位聚成高级单位时除以进率。从而在思考方法上予以归纳提升,建构单位换算的基本策略。接着出示带有不同单位的计算题,提高学生的综合运用能力。同时借助学生思考过程的表达,便于检测学生对方法的理解,发展他们的演绎思维。]

2、拓展练习(同桌讨论)

判断下列各题是否正确,错的请改正。

(1)一个铅笔盒表面的宽度约5c㎡

(2)教室的面积约30d㎡

(3)一个粉笔盒的表面约0.75c㎡

(4)上海市的总面积约6341000000k㎡

[在实际应用中,学生往往对长度单位和面积单位容易混淆,并且在选用面积单位时不善于实际问题的需要。通过判断纠错练习,一方面强化长度单位和面积单位的区别,另一方面想从“数”与“量”两个维度探索修改的方法(修正数据或计量单位),既巩固了单位面积的大小观念,又渗透小数点位置移动引起数的大小变化的思想,拓展了学生的思维。]

3、生活应用:(小组合作)

出示:为了扩大我国的绿化面积,人们要在长3km,宽2km的一块长方形的高原上植树,如果每平方米栽1棵树,运来60万棵树苗够吗?

解决这个问题我们要先算出什么?需要注意什么?写出你们的解题过程。交流探讨并板书解题过程。

[通过问题解决,再现本节课的重点新知“平方千米与平方米的转化”,同时让学生通过层层问题的分析,理清问题解决的思路,拓展思维,感受数学在生活问题解决中的应用价值。]

四、总结

这节课我们一起整理了“从平方厘米到平方千米”(板书)的面积单位,谁来谈谈这节课中你的收获?

简单四年级数学教案篇6

教学内容:

人教版小学数学四年级下册第八单元《数学广角--植树问题》

教材分析:

植树问题是人教版四年级下册数学广角的内容,教材将植树问题分为几个层次:两端都栽、两端不栽、环形情况以及方阵问题等。其侧重点是:在解决植树问题的过程中,向学生渗透一种在数学学习上、研究问题上都很重要的数学思想方法化归思想,通过现实生活中一些常见的实际问题,让学生从中发现一些规律,抽取出其中的数学模型,然后再用发现的规律解决生活中的一些简单实际问题,同时使学生感悟到应用数学模型解题所带来的便利。本课的教学,并非只是让学生会熟练解决与植树问题相类似的实际问题,而是把解决植树问题作为渗透数学思想方法的一个学习支点。借助内容的教学发展学生的思维,提高学生一定的思维能力。

学情分析:

从学生的思维特点看,四年级学生仍以形象思维为主,但抽象思维能力也有了初步的发展,具备了一定的分析综合、抽象概括、归类梳理的数学活动经验。这部分内容放在这个学段,说明这个内容本身具有很高的数学思维和很强的探究空间,既需要教师的有效引领,也需要学生的自主探究。

教学目标:

1.知识与技能性:利用学生熟悉的生活情境,通过动手操作的实践活动,让学生发现间隔数与植树棵数之间的关系。了解同一直线上植树问题的三种基本情况,能阐述不同情况下棵数与间隔数的关系。通过小组合作、交流,使学生能理解间隔数与植树棵数之间的规律。能够借助图形,利用规律来解决简单植树的问题。

2.过程与方法:进一步培养学生从实际问题中发现规律,应用规律解决问题的能力。渗透数形结合的思想,培养学生借助图形解决问题的意识。培养学生的合作意识,养成良好的交流习惯。

3.情感态度与价值观:通过实践活动激发热爱数学的情感,感受日常生活中处处有数学、体验学习成功的喜悦。

教学重点:

引导探究、发现两端都栽时棵数与间隔数之间关系。

教学难点:

运用棵数与间隔数之间的关系,解决逆向思维的实际问题。

教学方法:

植树问题虽然是日常生活中常见的生活现象,但对四年级的学生还是有很大的难度。美国教育家杜威说过:教育不是告知和被告知的事情,而是学生主动性建设的过程。因此教学中我让学生在动手实践中找方法--在方法中找规律在规律中学应用。

教学过程:

一、创设情境,引入课题

1.我以学生的小手为载体引入本课

【以学生身体的一部分为游戏主体,充分调动学生的参与积极性,利用学生的表现欲望和爱玩的天性,使学生对要学的内容产生好奇心理,顺利解决植树问题中的间隔含义,同时让学生在生活实例和亲身实践中,直观地感受一一对应的数学思想。】

2.3月12日植树节对学生进行环境教育。

通过创设生动有趣的情境,激发学生的求知欲望,顺利过渡到第二个环节。

二、探索规律建立模型

先出示引例:同学们在全长20米的小路一边植树,每隔5米栽一棵(两端要栽),一共需要多少棵树苗?

指导学生读题

1.从题目你们知道了什么?(说一说)

2.题目中每隔5米栽一棵是什么意思?

3.题目中有什么地方要提醒大家的吗?(一边,两端要栽)

4.一共需要多少棵树苗?你能自己想办法找到问题答案吗?有困难的同学可以借助线段图画一画。

5.交流。

6.反馈。

(1)请你们两人把你们的方法写到黑板上展示给大家看看,好吗?

(2)学生分别说想法。使学生明确:间隔数+1=棵数。

三、巩固练习实际应用

在这一环节我还原例1,让学生解决

四、回顾整理反思提升

1、我会填,让学生现一次巩固总长,棵数,间隔数之间的关系。研究两端都种的情况。如果路长是10米、15米、25米、30米,每隔5米种一棵(两端都种),各要种多少棵树呢?先想一想,再用一条线段表示小路画一画,验证一下!每隔5米种一棵(两端都种)路长(米)画一画间隔数棵数

每隔5米种一棵(两端都种)

路长(米)画一画间隔数棵数

(1)反馈交流:可以种几棵?你是怎么种的?

(2)观察比较表格中的数据,有什么发现?小组内交流自己的发现。

(3)全班交流汇报,引导学生概括规律(板书规律)。

两端都种时:棵数=间隔数+1

间隔数=总长间隔

2、我会算,设计两旁都要栽的练习。出示119页做一做

3、智力大比拼,通过两端都要栽的情况顺理成章地使其明白另外两种植树问题。联系生活,完善建构。

(1)感知植树问题的三种模型。

看课件三种情况。(两端种、两端都不种、一端不种)

(2)想一想,生活中有类似这样的植树问题吗?请举例说一说!

课件出示例2(两端不种)

【数学来源于生活,而又服务于生活。在学生初步感知植树问题基础上,引出另外不同的种法,创设与学生的生活环境和知识背景密切相关的、学生感兴趣的、以便能更好的理解与植树问题有关的生活题型,让学生在具体生活中理解数学现象,并运用规律解决形式各异的生活问题,使学生深深地体会到数学的价值与魅力。】

4、应用模型,解决问题(植树问题并不只是与植树有关,生活中海油许多现象和植树问题相似。)如

(1)垃圾箱问题.为净化环境,公园沿一条600米长的小路一侧设置垃圾箱,每隔30米放一个(路的一头不放),一共需要多少个垃圾箱?

(2)一根木头长10米,要把它平均分成5段。每锯下一段需要8分钟,锯完一共要花多少分钟?

(3)学校召开秋季运动会,在笔直的跑道一旁插彩旗。跑道全长100米,每隔2米插一面(两端都要插)。需要多少面彩旗?

(4)在全长2000米的街道两旁安装路灯(两端也要装)。每隔50米安一座,一共要安装多少座路灯?指名读题,引导学生理解题意后独立解题。教师追问思考过程。

(5)园林工人沿公路一侧植树,每隔6米种一棵,一共种了36棵,从第1棵到最后一棵的距离是多远?

(6)广场上的大钟5时敲响5下,8秒敲完。12时敲12下,需要多长时间?【练习紧扣中心,拓展情境,让学生运用规律独立解决简单的实际问题,。这样不但巩固了新知,而且完成了建构,更重要的是训练了学生的多向思维。】

五、回顾整理反思提升

1、谈谈这节课的收获。

【如此设计是基于学生的思维状态,引导学生说说对这部分内容的学习收获,进一步深入总结,给学生留有回味和发展的空间。】

2、只要我们细心观察,生活中还有更多更有挑战性的问题等着我们去解决,比如小朋友们排队,如果排成个圈儿,棵数与间隔数之间会藏着怎样的秘密呢?就留给大家课后去思考吧!

简单四年级数学教案篇7

设计理念:

创设情境,激发学学生参与探究的兴趣和_,引导学生在自主探索、合作交流的过程中主动构建数学知识模型,并运用建构的规律解决问题,在建构、运用过程中渗透数学思想和方法。

教学目标:

1、经历探索的过程,发现商不变的规律。

2、能运用商不变的规律,进行除法的简便计算。

3、培养学生观察、概括以及提出问题、分析问题、解决问题的能力。

4、学生在参与观察、比较、猜想、概括、验证等学习活动过程中,体验成功,培养学生爱数学的情感。

教学重点:

理解并归纳出商不变的规律。

教学难点:

会初步运用商不变的规律进行一些简便计算。

教具学具:

小黑板、计算题卡。

教学过程:

一、创设情境,激发兴趣。

师:同学们注意了,我讲一个故事给你们听。你们看过《西游记》吗?里面的内容很精彩,老师知道同学们都很喜欢里面的孙悟空,今天老师就给大家讲个孙悟空分桃子的故事。孙悟空西天取经回来后,就迫不及待的来到花果山看他的孩儿们,它给孩儿们带来礼物——桃子,他对身边的两只猴子说:“把8个桃子平均分给你们2只猴子吧!”这两只猴子连连摇头:“太少了!太少了!”外面的猴子听说后又进来一些猴子。孙悟空就说:“那好吧,把80个桃子平均分给20只猴子,怎么样?”猴子们得寸进尺,挠挠头皮,试探地说:“大王,再多点行不行啊?”所有的猴子都听到分桃子了,一起跑到孙悟空身边。孙悟空一拍胸脯,显示出慷慨大度的样子:“那就把800个桃子平均分给200只猴子,你们总该满意了吧?小猴子们笑了,孙悟空也笑了。

[设计意思:通过学生喜爱的故事,引入新课,激发学生投入学习的兴趣,也给学生创设一个宽松的课堂氛围,并引导学生在故事情境中发现问题,提出问题,从而为解决问题做好铺垫。]

二、探究规律,发现规律。

㈠师:同学们,小猴子和孙悟空都笑了,谁的笑是聪明的一笑,为什么?

学生思考后回答。

(预设)生1:……猴王的笑是聪明的一笑,桃子的总数与猴子的总只数变了,但每只猴子分到的桃子个数没有变。

生2:……猴王的笑是聪明的一笑,因为猴王把小猴子给骗了,每只小猴子还是分到4个桃子。

师:你(们)是怎样看出来的?从哪儿看出来的?

(预设)生:……(计算的)

师:能列出算式吧吗?

引导学生列出算式,并结合板书把算式补充完整。

板书①8÷2=4②80÷20=4③800÷200=4

㈡1、这些都是什么运算的算式,第一竖的数叫什么?第二竖的数又叫什么?第三竖的数又叫什么

2、师:请同学们仔细观察这组算式,你发现了什么?

〔预设意图:这样预设,给学生创设发挥的空间,要比直接引导学生从上往下或从下往上观察预留的思维空间要大,课堂上观察学生反应情况,学生发现不了,再逐步引导。〕

生独立观察思考。

师:你有重要发现吗?把你的重要发现说一说好吗?

小组交流,师巡视辅导。

全班交流汇报。

生:我发现它们的得数都是4,商不变。

师:她发现一个非常重要的数学现象,商不变。(板书:商不变)

师:这节课,我们就来研究“商不变的规律”。(板书课题)

师:商不变,谁发生了变化?怎样变的?

(预设)生1:被除数和除数同时乘上了10(扩大10倍)。

师:这个同学说了一个很好的词,你们知道是什么词吗?“同时”是什么意思?你能说一说吗?

生:……

师:“同时”指被除数和除数都扩大了10倍。(而不是一个扩大,一个缩小,或一个扩大,一个不变。)

(预设)生2:②式和①式比较……

师:他用一个非常好的方法发现规律,用两个算式进行比较,这是多好的学习方法呀!你能像他这样去发现其它算式的一些规律吗?

生:……

师:同学们发现那么多的规律,真聪明!能用一句话概括你发现的规律吗?

生:……

师:被除数和除数,同时乘10,100,1000,商不变。(板书)

师:同学们刚才是从上往下看,发现了这么重要的规律,那么从下往上看,有规律吗?

生汇报,师板书。

师:被除数和除数同时除以10、100、1000商不变

师:是不是只有被除数和除数同时乘或除以10,100,1000,商不变呢?那你能验证吗?请你多写几个商是4的除法算式,看看有没有这个规律。

生写算式,师出示

师:请同学们仔细观察这组算式,符合这个规律吗?

生观察,汇报。

师引导:看来这里扩大和缩小的不一定是整十整百,整千的位数,也可以是1倍、2倍、3倍、4倍等,那么我们就要把10倍、100倍……改成“相同的倍数”了。

师在板书上改写。

师:这里所有数都可以吗?

(预设)生:……(零除外)

师:为什么要零除外?

生:因为零乘任何数都得零,零不能当除数。

师:我们发现的就是重要的“商不变的规律”,这个规律在所有除法中都适用吗?

师:请请同们列一组算式验证一下。

生验证,指名汇报。

师小结:看来这个规律对所有除法都适用。

[设计意图:这一环节通过学生自主探索,小组合作,全班交流三个层次,引导学生逐步构建“商不变的规律”这一数学知识的模型,让学生经历“发现----探索----构建”的学习过程,培养学生学数学的方法。]

三、应用规律,拓展延伸。

师:同学们对这一规律理解了吗?智慧老爷爷想考考你到底掌握的怎么样?可以吗?

1、请你计算。

8000÷2000=

80……0÷20……0=在板书下补充

100个0100个0

生做过后师:你们是一部高级电脑,比普通电脑快多了,看来这个规律的作用太大了,这么大的数同学们都能计算出来。

2、P75T1板书到小黑板。

3、从上到下,先算出每组题中第一题的商,然后很快地写出下面两组的商。

72÷9=36÷3=80÷4=720÷90=360÷30=800÷40=7200÷900=3600÷300=8000÷400=

4、判断,下面的计算对吗?为什么不对?

14÷2=715÷3=5

(14×2)÷(2÷2)=7()150÷30=5()

(14×5)÷(2×3)=7()150÷30=50()

(14×0)÷(2×0)=7()1500÷300=500()5、比赛。

比一比,在1分钟内看谁写出相等的除法算式最多。赛后,让第1名同学说说取胜秘诀。

6、P75页,观察与思考

感受规律的作用真大(可以使计算简便)。

[设计意图:设计不同层次的变式练习,突破难点,让学生进一步能理解运用所探索的规律,以达到灵活运用知识解决问题,培养学生应用意识和能力。]

四、总结全课,概括梳理。

师:这节课,你学会了什么,有什么新发现?数学有趣吗?

师总结:通过同学们的探索,发出了那么重要“商不变规律”,并且那么有用,同学们真了不起!下节课,你们的老师将带着你们把它运用到竖式计算中,还可以使竖式计算简便呢!

五、作业

列举出几组数学算式,说一说商不变的规律。

板书设计:

商不变的规律

①8÷2=46÷3=2

②80÷20=424÷12=2

③800÷200=448÷24=2

8000÷2000=4120÷60=2

80……0÷20……0=4

100个0100个0被除数和除数同时扩大或缩小相同的倍数,商不变。

57684