教育巴巴 > 教案模板 >

小学数学教案课件

时间: 新华 教案模板

小学数学教案课件篇1

“分类”教学设计

教学内容:教科书38页、40页练习六1~3题

教学目标 :

1.引导学生观察商场实物的摆放情况,初步感知分类的意义;通过操作学会分类的方法。

2.通过分一分、看一看培养学生的操作能力、观察能力、判断能力、语言表达能力。

3.培养学生合作交流的意识。

4.让学生体会到生活中处处有数学。

教学重、难点:学会物体进行分类方法。

教学具准备:

学具袋(6袋不同的物品)。

教学过程 :

一 、创设情境,探求新知

1.感知分类。

教师出示书柜,把手中的书本非常整齐的摆放在书柜中.

提问:你看到了什么?发现了什么?

引导学生说出,老师是把一样的物品放在了一起。

[从生活引入,创设情境,使学生产生亲切感,激发学习兴趣。通过看录像,培养学生观察能力,通过学生相互叙述,使叙述在观察、思维、想像、交流中初步感知分类的方法。]

2.明确分类。

揭示概念:像老师这样,把一样的东西放在一起就叫分类。(板书课题)

教师再出示一个书柜,比较乱,书和练习本放在一起了,让学生谈一谈观看这样的'书柜的感受.进一步明确分类的意义.

[通过学生观察,进一步体会分类的意义,分类使生活更方便了,同时感受到在我们的生活周围就有数学。]

二、巩固发展,体验分类。

1.摆一摆。

出示书柜,引导学生以小组为单位把相应物品分类摆放在柜台里。

学生汇报物品是如何摆放的,教师从而明确分类的必要性──通过分类使每种物品看得更清楚了,也为我们的生活提供了许多方便。

[调动学生主动参与的积极性,使学生在分类中初步体验分类的必要性。]

2.分一分,完成做一做。

(1)教师出示很多水果和蔬菜,说明以小组为单位进行分类活动。

[为学生提供“做”的机会,通过亲手操作进一步体验分类。]

(2)小组活动,组内互相交流是怎样分的,体验分类的方法。

通过分一分的活动,使学生进一步体验分类的作用。

[小组活动,培养学生合作学习的意识。]

(3)汇报交流

教师在巡视中指导,同时注意西红柿的分法,及时纠正错误.

3.练习,练习六1—3题。

(1)第1题

启发学生在书上圈一圈,并说一说是怎样圈的?为什么这样圈?

(2)第2题

指导学生独立完成。订正时,将学生的作品展示出来。

启发说出:前、后4辆车是同一类的。

(2)第3题

教师说明题意,学生互相交流,使学生明确其中一个与其它三个不是同类。

[通过学生独立练习,加深对分类的理解和体验,同时渗透集合思想。]

4、补充练习

(1)每组一袋物品,明确要求:先议一议怎样分,哪一组分得又快、又准确。然后汇报说明。

(2)出示很多蔬菜和水果,请小组同学分类.然后派代表汇报.最后对容易出现错误的西红柿要进行指导.

[补充练习是对所学知识的综合练习,使学生体验分类的技巧。]

5、拓展练习

出示9张卡片,要求学生分类。学生进行汇报。(可出现两种分类的标准)。教师小结:分析事物要从多角度去看。

三、全课小结

这节课我们学习了分类,回家之后自己整理书包和书柜,看谁整理的最干净、整齐。

小学数学教案课件篇2

1、在具体情境中,回顾和整理小学阶段的数,理顺各种数之间的关系,构建数的认识的知识网络。

2、在解决实际问题的过程中体会数的扩充过程,会用负数表示一些日常生活中的问题。

3、能认、读、写亿以内的数,会表示较大的数。

4、结合现实素材感受大数的意义,能进行估算并能比较万以上的大数。

重点难点 重点:建立知识网络,掌握复习数学的方法,数学思想。

难点:逐步形成知识网络。

主 要 导 学 过 程 教 学

环 节 时间分配 活动内容 导学策略与方法 备注

一、导入新课

师:数在数学界里有举足轻重的地位,在小学阶段,你们都学过哪些数?

师:能用自己的方式把他们表示出来吗? 回顾旧知,为新知的构建打下基础

二、探究新知:

1、出示教材网格图。

师:你能根据网格图,说说你对数的理解吗?

2、出示数轴

师:请在数轴上将学过的数找出来,说一说你的发现。

3、呈现课本情景

第一幅图:

师:第一幅图表示了什么?你发现了那些生活中的数?

第二幅图:

师:在第二幅图中是怎样表示“没有”的?

第三幅图:

师:怎样表示不能平均分的量?

第四幅图:

师:如何表示零下二摄氏度?

4、整数的意义、读写方法。

5、自然数。

6、计数单位与数位。

7、数的整除。

师:你还记得五年级时学过的倍数与因数吗? 学生先独立看网格图,在与同桌交流。

小组合作,找出学过的数,交流发现。

理解正整数的产生背景

四人小组,合作探究,集体订正。

三,当堂检测

按照要求完成活动单问题检测部分

15分 1、教材第43页习题。

2、教材第44页第2、3、4题。

3、小组合作出题,组与组之间交换所出习题,交流完成。

四.小结与评价

师:通过这节课的学习,你有什么收获?

五.布置作业

板书设 计

板书设计

数的认识(一)整数

1、 整数的意义、读写、改写。

2、自然数:0、1、2、3…

3、计数单位

4、数位

5、数的整除

小学数学教案课件篇3

教学目标:

1.进一步认识自然数。

2.认识自然数的6种含义。

3.能根据已有的生活经验来认识自然数,及自然数的一些含义。

教学重难点:

认识自然数的6种含义。

教学用具:

教学课件

教学过程:

一、新课导入

看图编题。

出示图片、学生编题

小结:自然数0、1、2、3、4、5等,可以表示物体的个数。

二、揭示课题

认识自然

三、新课探索

(一)探究一:自然数

1.数苹果,看个数。

(1)出示:1个苹果。

提问:现在你看到了什么?

回答:1个苹果。

(板书:1)

(2)逐步的一个一个添加苹果。

提问:现在有多少只苹果?

根据学生的回答板书成:1、2、3、4、5„„

提问:这里的1、2、3、4、5„„表示什么?

回答:苹果的个数。

(板书:表示个数)

2.找名次,看序数。

(1)出示:刘翔110米栏比赛后的领奖的情景

提问:谁得了冠军?冠军还可以怎么表示呢?

回答:第1名。

(板书:1)

提问:那亚军和季军又可以怎样表示?

(板书:2、3)

(2)提问:这里的1、2、3表示什么?

回答:表示比赛的名次。

小结:比赛的名次是一种有序的排列。1、2、3也可以表示这样的序数

板书:表示序数

3.小结:像1、2、3„„这些用来表示计数编序的数在生活中随处可见,它们被称为自然数。今天这节课我们就一起来深入地了解自然数。

(出示课题:自然数)

4.认识自然数。

(1)提问:谁能说说看你在平时生活中的哪些情况下可以用自然数表示?

(2)学生举例回答

(3)小结:所以用来表示物体个数的数叫做自然数。

(二)探究二:自然数所表示的6种含义

1.自学。

2.交流反馈。

学生逐步归纳自然数的6种含义。

3.小结。

①表示序数——如第3个。

②表示个数——如3个。

③表示代码——如:邮政编码中的3,3号运动员等。

④表示量数——如:“多长?多大?多重?”。

⑤表示计算结果——如:2+1=3。

⑥表示重复计算的次数——如:2重复加3次:2+2+2=3×2=62重复乘3次:2×2×2=23=8㈢

探究三:“0”的认识

1.提问:“0”是自然数吗?说说你的理由。

(1)学生介绍说理。

(2)小结:从历看,国内外数学界对于0是不是自然数历来有两种观点:一种认为0是自然数,另一种认为0不是自然数。建国以来,我国的中小学教材一直规定自然数不包括0。目前,国外的数学界大部分都规定0是自然数。为了方便于国际交流,1993年颁布的《中华人民共和国国家标准》(GB3100-3102-93)《量和单位》(11-2.9)第311页,规定自然数包括0。所以在近几年进行的中小学数学教材修订中,教材研究编写人员根据上述国家标准进行了修改。即一个物体也没有,用0表示。0也是自然数。

(3)自然数:表示物体个数的数0、1、2、3、4、5、6、„„叫自然数,简单说就是大于等于零的整数。

(4)板书:0是自然数。

2.提问:有比“0”更小的自然数吗?

(1)回答:“0”是最小的自然数。

(2)提问:的自然数会是几?

(3)回答:没有的自然数。

(4)板书:最小的自然数是0,没有的自然数。

3.小结。

0是自然数中最小的一个。0加1得1,1加1得2,2加1得3,„„这样继续下去可以得到任意一个自然数。而从自然数的排列顺序可知,后面一个自然数比前面一个自然数多1。因此,任何一个自然数都是由若干个1合并而成,所以1是自然数的单位。0可以看成是由0个1组成的自然数。自然数由0开始,一个接一个,组成一个无穷集合。如果把任意一个自然数用字母n表示,那接在这个自然数后面的一个自然数可以表示成“n+1”。

板书:每个自然数都只有一个自然数接在它的后面。自然数n的后一个自然数是“n+1”。

四、课内练习

1.找出下面哪些是自然数。

18、100.01、0、10000000、-9

2.判断。

(1)从1开始的表示物体个数的数叫自然数。()

(2)大于或等于0的整数都是自然数。()

(3)没有的自然数,也没有最小的自然数。()

(4)接在自然数18后面的自然数只有1个。()

(5)在4.2和8.5之间有4个数。()

3.有三个连续的自然数,中间的一个数可以表示为(a—1),那么另外两个自然数可以表示为()和()。

五、本课小结

提问:通过今天的学习,你对自然数有哪些深入地了解呢?

1.0是自然数。

2.每个自然数都只有一个自然数接在它的后面。自然数n的后一个自然数是“n+1”。

3.最小的自然数是0,没有的自然数。

六、课后作业

找找身边的自然数,说一说它所表示的含义。

小学数学教案课件篇4

学习目标:

1、复习面积的意义、常用的面积单位、长方形和正方形的面积计算公式,初步建立图形的等积变形思想。

2、体会转化、估计等解决问题的策略,为教学平行四边形等图形的面积计算作比较充分的知识准备和思想准备。

3、学习重难点:

对图形进行分解与组合、分割与移拼的转化方法

学具准备:学具盒

学习过程:

一、分一分、数一数

1、下面两个图形的面积相等吗?

2、怎样数的?在小组里交流一下。

二、移一移、数一数

1、怎样移动右边图形中的一部分,能很快数出它的面积?

2、利用分割与平移,保持面积不变,把多边形转化为长方形,计算它的面积。

这个图形的面积是多少?

三、数一数、算一算

1、下面是牧场中一个池塘的平面图。先把池塘上面整格的和不满整格的分别涂上不同的颜色,数一数各有多少个,再算出池塘面积大约是多少平方米?(不满整格的,都按半格计算)。

2、你算出的面积大约是多少?

这样的算法合理吗?

在小组里说说自己的想法。

3、你能算出右边树叶的面积大约是多少平方厘米吗?

四、估一估、算一算

1、采集几片树叶,先估计他们的面积个是多少平方厘米,再把树叶描在第122页的方格纸上,用数方格的方法算促他们的面积。

2、你能用这样的方法算出自己手掌的面积吗?

五、小结:今天我们进行面积是多少实践活动,怎样计算不规则图形的面积呢?

小学数学教案课件篇5

一、说教材

1、教学内容:六年制小学数学第八册P100例1、2。

小数的性质是一节概念教学课,是在学习了“小数的意义”的基础上深入学习小数有关知识的开始。掌握小数的性质,不但可以加深对小数意义的理解,而且它是小数四则计算的基础。根据小数的性质可以把末尾有零的小数化简,也可以不改变小数的大小,把一个数改写成指定位数的小数。

2、教材的重点和难点:

掌握小数性质的含义是教学的重点,理解小数性质归纳的过程是教学的难点。

3、教学目标:

(1)利用知识的迁移规律,让学生在自主探究、合作交流中理解和掌握小数的性质,提高学生运用知识进行判断、推理的能力。

(2)让学生进一步体验教学与日常生活的密切联系,体验数学问题的探究性和挑战性,从而激发学习数学的兴趣,以主动参与数学活动。

(3)在教学中渗透事物是普遍联系和相互转化的辩证唯物主义观点。

二、说教法

1、通过直观、图示,让学生充分感知,经过比较归纳,最后概括出小数的性质;从而使学生的思维从形象思维过渡到抽象思维。

2、采用引探教学法,依据学生认知规律对例题进行加工调整,在探求知识规律处适当给予启发、引导,以调动学生学习的自觉性、积极性,从而达到感知新知,概括新知,应用新知,巩固和深化新知的目的。

三、说学法

通过本节教学,要使学生掌握一些基本的学习方法:

1、学会通过比较、归纳,最后概括出一类事物的本质属性。

2、引导学生自主探究,培养他们用已有知识解决新问题的能力。

3、通过指导独立看书,汇报交流活动,培养学生的自学能力和合作交流的好习惯。

四、说教学程序

(一)情景导入激趣揭题

(课件出示)唐僧师徒一起去西天取经,有一天,他们口渴了,唐僧要把三根甘蔗分给三个徒弟吃,事先他把甘蔗分别装进三个袋子里,上面标注着长度:0.l米、0.10米、0.100米,馋嘴的八戒抢先一步说:“我的肚子大,我吃长的。”说着拿回了注有“0.100米”的袋子。沙和尚好不服气,上前对师傅说:“八戒好吃懒做,长的应该让给大师兄悟空吃。”悟空笑了笑说:“两位徒弟别吵了,无论哪个袋子都一样呀!”唐僧听了悟空的话,微笑着点了点头。

同学们,你们知道为什么师傅对悟空的话点头微笑呢?这是因为大师兄悟空掌握了小数很重要的性质,学习了这节课,我们就知道其中的奥秘了”。(板书:小数的性质)

这样的设汁,旨在把枯燥的数学知识贯穿在小学生喜闻乐道的故事中,引发起学主的学习兴趣,点燃他们求知欲望的火花,从而进入的学习状态,为主动探究新知识聚集动力。

(二)调整例题探索新知

1.教学例1

(1)出示米尺投影图

(2)引导学生观察米尺图,提问:

A、0.1米是几分之几米(1/10米)?用整数表示就是多少分米?(l分米)

B、0.10O米是几个几分之1米?(10个1/100米)1/100米用整数表示是几厘米(1厘米)?10个1/100米就是多少毫米?(10厘米)

C、0.100米就是几个几分之1米(100个1/1000米)?1/1000米用整数表示是几毫米(1毫米)?那么100个1/1000米就是多少毫米?(100毫米)

结合学生回答,例1图上的标注应改为:

0.1米是1/10米,就是1分米

0.10米是10个1/100米,就是10厘米

0.100米就是10个1/1000米,就是100毫米

因为1分米=10厘米=100毫米

所以0.l米=0.10米=0.100米

这样,学生根据小数的意义,主动从“0.l米、0.10米、0.100米”出发研究问题。在问题得以解决的.过程中,学生锻炼了运用已有知识解答新问题的能力,培养了运用数学知识的意识。《数学课程标准》强调:数学活动必须建立在学生的认知发展水平和已有的知识经验基础上,这样教学,也正是使本节课牢牢地扎根于小数意义的基础上,是小数意义的运用,而不是简单的重复,因而是有意义学习。

接着教师指着“0.l米=0.10米=0.100米"这个等式,并标上思考符号“→”,先让学生从左往右观察、比较,提问三个小数0.1、0.10、0.100有什么不同?(小数的位数不同,但在0.l米的末尾添上一个“0”或两个“0”,表示的实际长度不变,板书在小数的末尾添上0,小数的大小不变)。再标出思考箭头“→”,让学生从右往左观察,发现什么规律,补充板书小数的末尾去掉“0”。

这样教学,把静态的知识结论转化动态的求知过程,让学生真正成为学习的主人,对所学的内容理解深刻,记忆牢固,不但知其然,而且知其所以然。同时,还培养了学生归纳概括事物本质属性的能力。

2.教学例2

在例1的学习过程中,学生已经初步掌握了探求新知的方法。所以例2的教学,教师出示自学提纲,提倡学生先独立看书,然后小组讨论,汇报交流:

(1)左图把1个正方形平均分成几份?阴影分用分数怎样表示?用小数怎样表示?

(2)右图把同样的正方形平均分成几份?阴影部分用分数怎样表示?用小数怎样表示?分页标题e

(3)从左图到右图有什么变了,什么没变?(份数变了,正方形的大小和阴影面积的大小没变)

(4)怎样比较0.30和0.3的大小?(0.30是30个1/100,0.3是3个1/10,因为10个1/100是1个1/10,30个1/100也就是31/10,所以两个小数的大小相等)。

这样使学生的思维从形象思维逐步过渡到抽象思维,达到突破难点的目的,同时,通过看书交流,培养了学生的自学能力和合作意识。通过两道例题,让学生进一步掌握规律,全面概括出小数的性质。

3.呼应课始,揭示奥秘:由于悟空掌握了小数的性质,所以他面对两位师弟的争执说:“无论哪一袋都一样”。

4.联系生活,再现新知:还有同学们在商场看到货物的标价为2.50元、3.00元,这样写,不但没有改变小数的大小,而且让顾客很清楚地知道是几元几角几分。

(三)巩固深化拓展思维

这是教学中不可缺少的环节,这一阶段是学生巩固知识,形成技能,技巧,发展智力的重要过程。在这一阶段,特别是抓住学生的求胜心理进行了练习、要进一步激发学生的学习兴趣,确保学习任务的圆满完成。

1.判断下面小数哪些0去掉是对的,哪些0去掉是错的?

8.0808.0880.0080.80800

2.判断下面各组两个数是否相等?为什么?

0.25和0.25000.25和0.2050.7和0.073和3003和3.00

3.闭眼听判:

“小数点的末尾添上‘0’或去掉“0’,小数大小不变”这种说法对吗?为什么?这样设计、让学生对新知识的各种误解进行辨析、判断,使得所学知识真正转化为能力。

(四)全课小结(完)

小学数学教案课件篇6

植树问题是人教版四年级下册数学广角的内容,教材将植树问题分为几个层次:两端都栽、两端不栽、环形情况以及方阵问题等。其侧重点是:在解决植树问题的过程中,向学生渗透一种在数学学习上、研究问题上都很重要的数学思想方法化归思想,同时使学生感悟到应用数学模型解题所带来的便利。本课的教学,并非只是让学生会熟练解决与植树问题相类似的实际问题,而是把解决植树问题作为渗透数学思想方法的一个学习支点。借助内容的教学发展学生的思维,提高学生一定的思维能力。

我所执教的是教材第117页的内容,主要教学两端都栽的植树问题,这节课主要目标是向学生渗透复杂问题从简单入手的思想。使学生有更多的机会从周围的事物中学习数学和理解数学,体会到数学就在身边,体验到数学的魅力。因此在设计这节课时,我主要是运用这样的教学理念:以问题情境为载体,以认知冲突为诱因,以数学活动为形式,使学生经历生活数学化,数学生活化的全过程,从中学到解决问题的思想方法。以此为基础,根据学生的认知规律,我设计了以下几个环节。

一、通过课前活动,以大家都熟悉的手为素材,从让学生初步认识间隔,感知间隔数与手指数的关系。

二、以一道植树问题为载体,营造突破全课教学重点及难点的高潮。

三、以生活中植树问题的应用为研究对象,引导学生了解植树问题的实质。

四、多角度的应用练习巩固,拓展学生对植树问题的认识。

反思整个教学过程,我认为这节课有以下几点做得比较好:

一、创设浅显易懂的生活原型,让数学走近生活。

创设与学生的生活环境和知识背景密切相关的、学生感兴趣的学习情境有利于学生积极主动地投入到数学活动中。课前活动时,我选择学生的小手为素材,引入植树问题的学习。学生在手指并拢、张开的活动中,清晰地看出手指的个数与空格数之间是相差1的。然后做快速问答的游戏,使学生直观认识并总结出了间隔和点数的关系,为下面的学习作了铺垫,同时也激起了学生的学习兴趣。

在处理教材时我把例题改为条件开放的植树问题,不规定间距,同时改小数据,将路的长度变成20米。如此修改的意图是,让学生在开放的情境中,突现学生的知识起点,从而用一一对应的思想方法让学生理解多1少1的原因,建立起深刻、整体的表象,提炼出植树问题解题的方法。在这里数据小了,便于学生利用线段图操作,建立数形结合,有利于学生的思考,降低了学习的难度。

二、注重学生的自主探索,体验探究之乐。

体验是学生从旧知识向隐含的新知识迁移的过程。教学中,我创设了情境,向学生提供多次体验的机会,为学生创设了一种民主、宽松、和谐的学习氛围,给了学生充分的时间与空间。如果说生活经验是学习的基础,生生间的合作交流是学习的推动力,那么借助图形帮助理解是学生建构知识的一个拐杖。有了这根拐杖,学生们才能走得更稳、更好。因此,在教学过程中,我注重了对数形结合意识的渗透。教学中我先激励学生自己做设计师,想办法设计植树方案,在学生自主探索的过程中很多学生采用了画线段图的方式,交流时利用多媒体再现线段图,让学生看到把一条线段平均分成4段,加上两个端点,一共有5个点,也就是要栽5棵树。使学生发现植树时准备树苗的问题并不能简单的用除法来解决。改变间距后,段数和棵数相应也发生了变化,紧接着提出问题:你能找出什么规律?启发学生透过现象发现规律,也就是栽树的棵数要比段数(间隔数)多1。最后按照教材要求应用发现的规律来解决前面的植树问题:100米长的小路,按5米可以平均分成20段,也就是共有20个间隔,而栽树的棵数比间隔数多1,因此一共要准备21棵树苗。这样就把整个分析、思考、解决问题的全过程展示出来,让学生经历这个过程并从中学习一些解决问题的方法和策略。

三、利用学生资源,加强生生合作

学生的认知起点与知识结构逻辑起点存在差异。生生之间的差异是学习的资源,这种资源应在小组交流的平台上得到充分的展示与合理的利用。在设计植树方案这一环节上,学生将间距定为1米、2米、4米、5米、10米,体现了思维的多样性。

四、关注植树问题模型的拓展和应用

植树问题的模型是现实世界中一类相近事件的放大,它源于现实,又高于生活。所以,在现实中有着广泛的应用价值。为了让学生理解这一建模的意义,加强了模型应用功能的练习,本课练习有以下两个层次:

(1)直接应用模型解决简单的实际问题。课堂上,安排学生自主完成已知总长和间距求棵数、已知棵数和间距求总长的练习,让学生从正反两个方面出发,直接应用模型解决简单的实际问题。训练学生双向可逆思维的能力。

(2)推广到与植树问题相近的一些问题中,让学生进一步体会,现实生活中的许多不同事件,如教室里的座位的事件,公共汽车站台的事件,都含有与植树问题相同的数量关系,它们都可以利用植树问题的模型来解决它,感悟数学建模的重要意义。以图片的形式让孩子们了解生活中与植树问题相似的现象,最后还把刘翔年雅典奥运会上精彩夺冠的场景再次重现,并出示110米栏的图,从中找到间隔,同时,渗透爱国主义教育。

这节课充分利用了多媒体设备,所以课堂容量较大,但是也造成个别学生吃不透的现象。在以后的教学中要注意把握好度,适当进行取舍,照顾好中差生。

小学数学教案课件篇7

教学内容:教科书第26页例1例2,做一做。

教学目的:

1.使学生能够利用电子计算器进行简单的计算。

2.使学生知道用电子计算器计算顺序和笔算顺序是一样的。

3.让学生善于观察发现数学的秘密,能够对一些有规律的数进行口算。

教学重点:能够利用计算器进行简单的计算。

教学难点:懂得观察发现一些有规律的数的计算。

教学过程:

一、利用计算器计算:

386+179=

说说你是怎样使用的。

(先按“386”,屏幕上显示386,再按“+”,屏幕显示不变,再按“179”,屏幕显示179,按“=”,显示结果565。)

试试ce键有什么功能?(清除)

自己试试看:

26×39=312÷8=

l.你觉得使用计算器需要注意些什么?

看清数,别摁错了;每次计算前要清0。

2.计算。

54+46=60×2=

198÷49=50+30=

38×79=201+99=

计算后说一说你怎么算的这么快?(并不是任何时候用计算器计算都是的,像可以直接口算的、能简算的题目,就不需要使用计算器了。)

3.做一做练习。

让学生在小组内做一做,然后同桌做一做。

二、观察发现

1.比一比,看谁做的又对又快。

(以四人小组为单位进行)

9999×1=9999×2=9999×3=9999×4=

说说你为什么做的又对又快。

观察上面的算式和结果,你发现什么规律?

生畅所欲言。

师:根据你们的发现大胆猜测,能不用计算器,直接写出下面各题的答案吗?

9999×5=9999×7=9999×9=

师总结:碰到9999乘9以内的自然数(0除外)答案都是五位数,位和个位就是自然数与9的乘积,中间三位数都是9。

三、练习

做一做。练习30页的第11、12题。

第11题用比赛的方式进行,以巩固学生使用计算器计算。

第12题学生独立完成,全班讲评。

四、课堂小结

今天你有什么收获?

57550