教育巴巴 > 教案模板 >

八年级数学下册教案课件

时间: 新华 教案模板

八年级数学下册教案课件篇1

教学目标

1.知识与技能

了解因式分解的意义,以及它与整式乘法的关系.

2.过程与方法

经历从分解因数到分解因式的类比过程,掌握因式分解的概念,感受因式分解在解决问题中的作用.

3.情感、态度与价值观

在探索因式分解的方法的活动中,培养学生有条理的思考、表达与交流的能力,培养积极的进取意识,体会数学知识的内在含义与价值.

重、难点与关键

1.重点:了解因式分解的意义,感受其作用.

2.难点:整式乘法与因式分解之间的关系.

3.关键:通过分解因数引入到分解因式,并进行类比,加深理解.

教学方法

采用“激趣导学”的教学方法.

教学过程

一、创设情境,激趣导入

【问题牵引】

请同学们探究下面的2个问题:

问题1:720能被哪些数整除?谈谈你的想法.

问题2:当a=102,b=98时,求a2-b2的值.

二、丰富联想,展示思维

探索:你会做下面的填空吗?

1.ma+mb+mc=()();

2.x2-4=()();

3.x2-2xy+y2=()2.

【师生共识】把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解,也叫做分解因式.

三、小组活动,共同探究

【问题牵引】

(1)下列各式从左到右的变形是否为因式分解:

①(x+1)(x-1)=x2-1;

②a2-1+b2=(a+1)(a-1)+b2;

③7x-7=7(x-1).

(2)在下列括号里,填上适当的项,使等式成立.

①9x2(______)+y2=(3x+y)(_______);

②x2-4xy+(_______)=(x-_______)2.

四、随堂练习,巩固深化

课本练习.

【探研时空】计算:993-99能被100整除吗?

五、课堂总结,发展潜能

由学生自己进行小结,教师提出如下纲目:

1.什么叫因式分解?

2.因式分解与整式运算有何区别?

六、布置作业,专题突破

选用补充作业.

板书设计

八年级数学下册教案课件篇2

教学目标:

1.知道负整数指数幂=(a≠0,n是正整数).

2.掌握整数指数幂的运算性质.

3.会用科学计数法表示小于1的数.

教学重点:

掌握整数指数幂的运算性质。

难点:

会用科学计数法表示小于1的数。

情感态度与价值观:

通过学习课堂知识使学生懂得任何事物之间是相互联系的,理论来源于实践,服务于实践。能利用事物之间的类比性解决问题.

教学过程:

一、课堂引入

1.回忆正整数指数幂的运算性质:

(1)同底数的幂的乘法:am?an=am+n(m,n是正整数);

(2)幂的乘方:(am)n=amn(m,n是正整数);

(3)积的乘方:(ab)n=anbn(n是正整数);

(4)同底数的幂的除法:am÷an=am?n(a≠0,m,n是正整数,m>n);

(5)商的乘方:()n=(n是正整数);

2.回忆0指数幂的规定,即当a≠0时,a0=1.

3.你还记得1纳米=10?9米,即1纳米=米吗?

4.计算当a≠0时,a3÷a5===,另一方面,如果把正整数指数幂的运算性质am÷an=am?n(a≠0,m,n是正整数,m>n)中的m>n这个条件去掉,那么a3÷a5=a3?5=a?2,于是得到a?2=(a≠0)。

二、总结:一般地,数学中规定:当n是正整数时,=(a≠0)(注意:适用于m、n可以是全体整数)教师启发学生由特殊情形入手,来看这条性质是否成立.事实上,随着指数的取值范围由正整数推广到全体整数,前面提到的运算性质都可推广到整数指数幂;am?an=am+n(m,n是整数)这条性质也是成立的.

三、科学记数法:

我们已经知道,一些较大的数适合用科学记数法表示,有了负整数指数幂后,小于1的正数也可以用科学记数法来表示,例如:0.000012=1.2×10?5.即小于1的正数可以用科学记数法表示为a×10?n的形式,其中a是整数位数只有1位的正数,n是正整数。启发学生由特殊情形入手,比如0.012=1.2×10?2,0.0012=1.2×10?3,0.00012=1.2×10?4,以此发现其中的规律,从而有0.0000000012=1.2×10?9,即对于一个小于1的正数,如果小数点后到第一个非0数字前有8个0,用科学记数法表示这个数时,10的指数是?9,如果有m个0,则10的指数应该是?m?1.

八年级数学下册教案课件篇3

第三十四学时:14、2、1平方差公式

一、学习目标:

1、经历探索平方差公式的过程。

2、会推导平方差公式,并能运用公式进行简单的运算。

二、重点难点

重点:平方差公式的推导和应用;

难点:理解平方差公式的结构特征,灵活应用平方差公式。

三、合作学习

你能用简便方法计算下列各题吗?

(1)20_×1999(2)998×1002

导入新课:计算下列多项式的积、

(1)(x+1)(x—1);

(2)(m+2)(m—2)

(3)(2x+1)(2x—1);

(4)(x+5y)(x—5y)。

结论:两个数的和与这两个数的差的积,等于这两个数的平方差。

即:(a+b)(a—b)=a2—b2

四、精讲精练

例1:运用平方差公式计算:

(1)(3x+2)(3x—2);

(2)(b+2a)(2a—b);

(3)(—x+2y)(—x—2y)。

例2:计算:

(1)102×98;

(2)(y+2)(y—2)—(y—1)(y+5)。

随堂练习

计算:

(1)(a+b)(—b+a);

(2)(—a—b)(a—b);

(3)(3a+2b)(3a—2b);

(4)(a5—b2)(a5+b2);

(5)(a+2b+2c)(a+2b—2c);

(6)(a—b)(a+b)(a2+b2)。

五、小结

(a+b)(a—b)=a2—b2

八年级数学下册教案课件篇4

【教学目标】

1.了解分式概念.

2.理解分式有意义的条件,分式的值为零的条件;能熟练地求出分式有意义的条件,分式的值为零的条件.

【教学重难点】

重点:理解分式有意义的条件,分式的值为零的条件.

难点:能熟练地求出分式有意义的条件,分式的值为零的条件.

【教学过程】

一、课堂导入

1.让学生填写[思考],学生自己依次填出:,,,.

2.问题:一艘轮船在静水中的最大航速为20千米/时,它沿江以最大航速顺流航行100千米所用实践,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?

设江水的流速为x千米/时.

轮船顺流航行100千米所用的时间为小时,逆流航行60千米所用时间小时,所以=.

3.以上的式子,,,,有什么共同点?它们与分数有什么相同点和不同点?可以发现,这些式子都像分数一样都是A÷B的形式.分数的分子A与分母B都是整数,而这些式子中的A、B都是整式,并且B中都含有字母.

[思考]引发学生思考分式的分母应满足什么条件,分式才有意义?由分数的分母不能为零,用类比的方法归纳出:分式的分母也不能为零.注意只有满足了分式的分母不能为零这个条件,分式才有意义.即当B≠0时,分式才有意义.

二、例题讲解

例1:当x为何值时,分式有意义.

【分析】已知分式有意义,就可以知道分式的分母不为零,进一步解出字母x的取值范围.

(补充)例2:当m为何值时,分式的值为0?

(1);(2);(3).

【分析】分式的值为0时,必须同时满足两个条件:①分母不能为零;②分子为零,这样求出的m的解集中的公共部分,就是这类题目的解.

三、随堂练习

1.判断下列各式哪些是整式,哪些是分式?

9x+4,,,,,

2.当x取何值时,下列分式有意义?

3.当x为何值时,分式的值为0?

四、小结

谈谈你的收获.

五、布置作业

课本128~129页练习.

八年级数学下册教案课件篇5

第三十四学时:14.2.1平方差公式

一、学习目标:

1.经历探索平方差公式的过程。

2.会推导平方差公式,并能运用公式进行简单的运算。

二、重点难点

重点:平方差公式的推导和应用;

难点:理解平方差公式的结构特征,灵活应用平方差公式。

三、合作学习

你能用简便方法计算下列各题吗?

(1)20_×1999(2)998×1002

导入新课:计算下列多项式的积.

(1)(x+1)(x—1);

(2)(m+2)(m—2)

(3)(2x+1)(2x—1);

(4)(x+5y)(x—5y)。

结论:两个数的和与这两个数的差的积,等于这两个数的平方差。

即:(a+b)(a—b)=a2—b2

四、精讲精练

例1:运用平方差公式计算:

(1)(3x+2)(3x—2);

(2)(b+2a)(2a—b);

(3)(—x+2y)(—x—2y)。

例2:计算:

(1)102×98;

(2)(y+2)(y—2)—(y—1)(y+5)。

随堂练习

计算:

(1)(a+b)(—b+a);

(2)(—a—b)(a—b);

(3)(3a+2b)(3a—2b);

(4)(a5—b2)(a5+b2);

(5)(a+2b+2c)(a+2b—2c);

(6)(a—b)(a+b)(a2+b2)。

五、小结

(a+b)(a—b)=a2—b2

八年级数学下册教案课件篇6

一、教学目标

1.使学生了解判定定理1及直角三角形相似定理的证明方法并会应用,掌握例2的结论.

2.继续渗透和培养学生对类比数学思想的认识和理解.

3.通过了解定理的证明方法,培养和提高学生利用已学知识证明新命题的能力.

4.通过学习,了解由特殊到一般的唯物辩证法的观点.

二、教学设计

类比学习,探讨发现

三、重点及难点

1.教学重点:是判定定理l及直角三角形相似定理的应用,以及例2的结论.

2.教学难点 :是了解判定定理1的证题方法与思路.

四、课时安排

1课时

五、教具学具准备

多媒体、常用画图工具、

六、教学步骤

[复习提问]

1.什么叫相似三角形?什么叫相似比?

2.叙述预备定理.由预备定理的题所构成的三角形是哪两种情况.

[讲解新课]

我们知道,用相似三角形的定义可以判定两个三角形相似,但涉及的条件较多,需要有

三对对应角相等,三条对应边的比也都相等,显然用起来很不方便.那么从本节课开始我们

来研究能不能用较少的几个条件就能判定三角形相似呢?

上节课讲的预备定理实际上就是一个判定三角形相似的方法,现在再来学习几种方法.

我们已经知道,全等三角形是相似三角形当相似比为1时的特殊情况,判定两个三角形

全等的三个公理和判定两个三角形相似的三个定理之间有内在的联系,不同处仅在于前者是后者相似比等于1的情况,教学时可先指出全等三角形与相似三角形之间的关系,然后引导学生自己用类比的方法找出新的命题,如:

问:判定两个三角形全等的方法有哪几种?

答:SAS、ASA(AAS)、SSS、HL.

问:全等三角形判定中的“对应角相等”及“对应边相等”的语句,用到中应如何说?

答:“对应角相等”不变,“对应边相等”说成“对应边成比例”.

问:我们知道,一条边是写不出比的,那么你能否由“ASA”或“AAS”,采用类比的方法,引出一个关于三角形相似判定的新的命题呢?

答:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.

强调:(1)学生在回答中,如出现问题,教师要予以启发、引导、纠正.

(2)用类比方法找出的新命题一定要加以证明.

如图5-53,在△ABC和△ 中, , .

问:△ABC和△ 是否相似?

分析:可采用问答式以启发学生了解证明方法.

问:我们现在已经学习了哪几个判定三角形相似的方法?

答:①三角形的定义,②上一节学习的预备定理.

问:根据本命题条件,探讨时应采用哪种方法?为什么?

答:预备定理,因为用定义条件明显不够.

问:采用预备定理,必须构造出怎样的图形?

答: 或 .

问:应如何添加辅助线,才能构造出上一问的图形?

此问学生回答如有困难,教师可领学生共同探讨,注意告诉学生作辅助线一定要合理.

(1)在△ABC边AB(或延长线)上,截取 ,过D作DE∥BC交AC于E.

“作相似.证全等”.

(2)在△ABC边AB(或延长线上)上,截取 ,在边AC(或延长线上)截取AE= ,连结DE,“作全等,证相似”.

(教师向学生解释清楚“或延长线”的情况)

虽然定理的证明不作要求,但通过刚才的分析让学生了解定理的证明思路与方法,这样有利于培养和提高学生利用已学知识证明新命题的能力.

判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.

简单说成:两角对应相等,两三角形相似.

例1 已知 和 中 , , , .

求证: ∽ .

此例题是判定定理的直拉应用,应使学生熟练掌握.

例2 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似.

已知:如图5-54,在 中,CD是斜边上的高.

求证: ∽ ∽ .

该例题很重要,它一方面可以起到巩固、掌握判定定理1的作用;另一方面它的应用很广泛,并且可以直接用它判定直角三角形相似,教材上排了黑体字,所以可以当作定理直接使用.

即 ∽△∽△.

[小结]

1判定定理1的引出及证明思路与方法的分析,要求学生掌握两种辅助线作法的思路.

2.判定定理1的应用以及记住例2的结论并会应用.

七、布置作业

八年级数学下册教案课件篇7

一、学习目标:

1.使学生会用完全平方公式分解因式.

2.使学生学习多步骤,多方法的分解因式

二、重点难点:

重点: 让学生掌握多步骤、多方法分解因式方法

难点: 让学生学会观察多项式特点,恰当安排步骤,恰当地选用不同方法分解因式

三、合作学习

创设问题情境,引入新课

完全平方公式(a±b)2=a2±2ab+b2

讲授新课

1.推导用完全平方公式分解因式的公式以及公式的特点.

将完全平方公式倒写:

a2+2ab+b2=(a+b)2;

a2-2ab+b2=(a-b)2.

凡具备这些特点的三项式,就是一个二项式的完全平方,将它写成平方形式,便实现了因式分解

用语言叙述为:两个数的平方和,加上(或减去)这两数的积的2倍,等于这两个数的和(或差)的平方

形如a2+2ab+b2或a2-2ab+b2的式子称为完全平方式.

由分解因式与整式乘法的关系可以看出,如果把乘法公式反过来,那么就可以用来把某些多项式分解因式,这种分解因式的方法叫做运用公式法.

56533