教育巴巴 > 教案模板 >

五年级数学上册的教案

时间: 新华 教案模板

五年级数学上册的教案篇1

【教材分析】

对于学生来说,经历从两位数乘一位数到两位数乘两位数的乘法过程是形成乘法计算技能的重要环节,也是后续学习两位数乘三位数的基础。为此教材以“住新房”的情境为载体,通过解决一栋楼的总住户的问题,帮助学生理解两位数乘两位数的乘法的算理。在具体解决“总住户”的计算问题时,教材呈现了三种算法,前两种是计算两位数乘整十数、两位数乘一位数,再将这两部分的积相加,这是乘法竖式计算的重要基础,本节课应注重口算方法与竖式方法的沟通。第三种是竖式计算,这是计算两位数乘两位数的一般方法。

【学生分析】

本节课的学习是在学生学习了“乘数是整十数的乘法”和两、三位数乘一位数的竖式计算的基础上的进一步学习。学生可以通过独立探索、小组交流,全班汇报交流等学习活动,利用已有知识的迁移理解和掌握“两位数乘两位数(不进位)”的计算方法,学生很有成就感。

由于学生只有一位数乘法的基础,让学生独立思考怎样算14×12时,大多数学生只能想出口算方法,只有个别学生能在预习或家长提前指导的情况下,正确书写竖式,这节课正需要这些孩子来激发全班思维,让同学们在看竖式的过程中,分析竖式计算算理、算法,通过观察,分析,学生能把竖式计算与口算算法进行沟通。

【学习目标】

1.结合“住新房”的问题情境,探索两位数乘两位数(不进位)的乘法,经历估算与交流算法多样化的过程。会进行两位数乘两位数的乘法竖式计算,理解竖式乘法每一步计算的含义,并能解决一些简单的实际问题。

2.依据新教材特点,在独立思考的基础上,写出算式并交流,理解竖式计算的算理、算法。

3、通过交流相互启发、相互影响,共同寻找、自主探究、体验,掌握数学的知识、思想与方法,充分感受到数学的魅力和乐趣。

【教学过程】

一、 创设情境(3分钟)

师:淘气今天可高兴了,因为他要搬新家了,他邀请了很多小朋友参加,也邀请了我们,想去吗?

生:想

师:那去看看吧!(课件出示)

师:真漂亮,这栋电梯公寓真大,大家都想进去了(智慧老人:请你根据你发现的数学信息提出一个数学问题?)

生:每层14户,有12层,这栋楼能住多少户?(板书并问)你能出算式吗?想想算式的意思?

师:你能列出算式吗?

生:14×12=(板书) 或 12×14=

师:很能干,一下就说到了乘法的意义。

师:今天的算式和我们过去学过的乘法有什么不同?

生:今天的两个乘数都是两位数,以前我们只学过两位数乘一位数,昨天我们学的两位数乘整十数。(板书:两位数乘两位数)

师:你的记忆真好,很会学习,这就是我们今天要学习的新知识,任意两位数乘两位数。

[设计意图]能结合教材与学生实际创设一个生动的情境,既为后面学习“两位数乘两位数”(竖式)的算理做了铺垫,又激发了学生学习新知识的兴趣。

二、探索新知

1、估算14×12(5分钟)

师: 这栋楼房大约能住多少人呢?我们用过去学过的方法估一估淘气他们住的楼房大约能住多少户人家?

生:140

师:你是怎样估计的?

生:140户左右,把12想成10 ,14×10=140(户)。

师:知道把12想成整十数,估得真快,了不起。还有不同的估算结果吗?

生:120户左右,把14想成10 ,12×10=120(户)。

生:100户左右,把10想成10 ,10×10=100(户)

师: 把它们都想成了整十数,很快地估出了结果,同学们想一想,这三种估算方法里面,哪种更接近正确结果呢?为什么?

生:我觉得得数是140更接近准确结果,因为这样估计的误差最小。……

2、思考怎样计算14×12,探索方法(10分钟):

师:这栋楼到底能住多少户人呢?可是,像这种两位数乘两位数的怎样算呢?你能想办法算出14×12的准确结果吗?试一试,把你计算的方法写在作业本上。(教师巡视,请学生将自己的算法写在黑板上,只展示与竖式有关的算法,看学 生竖式的书写情况,请学生上台板书有代表性的三种竖式方法。)

[设计意图]让孩子在估算的基础上,通过一些挑战性的问题——像“这种两位数乘两位数的怎样算呢?”,“你能想办法算出14×12的准确结果吗?”,激起学生主动探索欲望,也凸显了本节课的重点。

师:你能看懂这种方法吗?(口算)谁来说一说他是怎么算的?(提示:乘法意义,也就是算几个几)

生:14×10=140(先算14×10,也就是10个14,等于140)

14×2=28 (再算14×2,也就是2个14,等于28)

140+28=168(最后把它们的积加起来,得168)

师:你理解得太好了,非常能干。那这种方法呢?你能看懂吗?谁又来说一说?

生:12×10=120(先算每层楼有10户人,12层就有12个10,共120户)

12×4=48(但它每层还有4户人,12层就有12个4,共48户)

120+48=168(最后把它们的积加起来,得168)

师:还有其它方法吗?

生:我把12拆成了3×4,也就变成14×3×4=168(人)

师:它转化成了二位数乘一位数的知识,想得真好。大家都能灵活地运用我们学过地知识,来解决新问题,这不仅是我们聪明和能干,也是一种非常好的学习方法,在以后的学习数学过程中会经常用到。

[设计意图]让学生在独立思考的基础上,通过生生互动,在合作交流中,理解口算每一步的意思及方法,为学习竖式打下了坚实的基础。

3、探索竖式计算14×12的方法(10分钟)

师:大家请看,两位数乘两位数还能用竖式计算?从结果来看,对了吗?

生:对的,都是168。今天我们就重点讨论,如何用竖式计算两位数乘两位数?看一看,想想同学是怎样算的?(板书:怎样算)先独立思考,再将你的想法在四人小组里说一说。

师:谁来代表你们小组说一说这些竖式是怎么算的?

生:我们小组发现第1,2个竖式都是先算2×14等于28,再算10×14等于140,最后将结果加起来,等于168。只是一个写了0,一个没有写0,但都不影响计算结果,都是对的。

师:听懂了吗?谁再来说一说?

生:第一步还是先算2×14=28,第二步因为1在十位上,代表一个十,相当于10×14=140,所以应该在结果上写成140。再用28+140=168,第三种方法相当于把140后的0省略了,但1对齐百位,4对齐十位,还是表示的140,对最后的结果没有影响。

师:说得太精彩了,一下就看出了每一步是怎样算出来的,真有数学头脑。

大家明白了吗?还有补充吗?

生:先算2×14就是算的2层楼共住28户,就是2个14;再算的是10层楼住140户,也就是10个14。

师:你不仅知道它是怎样算的,还知道用乘法的意义来解释这样算的道理,太会思考了,值得大家学习。大家都听懂了吗?那你能看懂第三个算式吗?

生:它是先拿第一个乘数的个位上的数4分别乘2和 1,得到48,再用十位上的数1乘2和1,得到120,最后将48和120相加,得168。

师:这种算法和前两种不一样,但它也是正确的,只是我们通常先用第二个乘数个位上的数乘第一个乘数每一位上的数,再用第二个乘数十位上的数乘第一个乘数每一位上的数,以此类推。所以我们今天重点研究前2个竖式,对于它们,你还有什么疑惑?

生:为什么有0和没0都是对的呢?

师:问得好,谁能解释?

生:因为这题写0和不写0都不影响最后的结果,所以可以省略不写。

师:说得很好,就是这样的。

生:为什么4要写在十位上,1要写在百位上呢?

师:你真是问到点子上了,有谁能回答?

生:十位上的1代表1个十,所以得到的是14个十,也就是140,把末尾的0省略了,而不是14。

师:同意吗?(生:同意)这一点很重要,是我们竖式中很重要的一步,你明白了吗?

[设计意图]把 “用竖式怎样算”确定为本节课的探究点,很多学生并不会列竖式,通过观察同学列出的竖式,先独立思考,再小组合作研究它们每一步是怎么算的。不仅准确地突出了本节课的重点和难点,也为学生理解用竖式计算“两位数乘两位数的乘法”的算理,掌握其算法提供了广阔的自主探究空间,充分体现了学生的主体作用。

4、强化理解竖式(5分钟)

师:还有疑惑吗?那好,智慧老人他可有问题了,看你是不是真的懂了? 请注意!(课件演示每一步,并展示竖式计算的步骤)

师:28怎么得来的?()×(),也就是()个()

具体怎样算呢2×14呢?请你认真看屏幕。你明白了吗?谁来说一说?

生:先用第二个乘数个位上的2,乘第一个乘数的每一位上的数。[设计意图]看得很仔细,你真会学习。)

师:第二步出现(14),它是怎么得来的?

师:有什么疑问?

生:4为什么可以写在个位?

师:问得真好谁来帮助他?

生:十位上的1代表1个十,所以得到的是14个十,也就是140,把末尾的0省略不写,所以4在十位上,1在百位上。

师:最后一步呢?指着( )+( )

生:28+140

师:同意吗?你们的脑筋转得真快,真聪明!现在你明白了两位数乘两位数竖式的运算顺序了吗?请再看老师演示,谁来讲一讲?

生:先用第二个乘数个位上的数乘第一个乘数每一位上的数,得到一个结果,再用第二个乘数十位上的数乘第一个乘数每一位上的数,得到第二个结果,最后将两个结果相加。

师:你很会学习,并且很会表达你的想法,是大家的好榜样!

师:现在赵老师可有问题了,对比口算和竖式,你有什么发现?

生:我发现竖式中每一步口算中也有,它们的算法是一样的,只是表现的形式不一样。比如说:竖式中第一步2×14=28,口算中有;第二步10×14=140,口算中还是有,最后28+140=168,口算中还是有。

师:你太会发现数学最本质的现象了,说得很经典,谁听明白了?

师:今天真有成就感,用口算和竖式这种新的方法都算出了准确结果,和哪个估算结果比较接近(生:140)对,请你将书上26页的方法,再算式和答语补充完整。

[设计意图]巧妙地通过“智慧老人提问”的情境,引导学生进一步深化理解竖式计算每一步的意义,梳理用竖式计算的方法和运算顺序,让不同层次的学生都学会竖式.

【习题设计】

1、竖式计算(5分钟)

师:同学们今天学习很投入,我们来小试一下伸手,看看你能用竖式准确地解答这题吗?

24×12 44×21

师:你想提醒同学做竖式计算应注意什么吗?哪容易错?

生:注意第二步一定要错位,别算错了。

2、密码门(3分钟)

师:淘气要邀请我们去他家了,可是他怎么了?遇到了什么问题?喔这是一个密码门,密码就是23×13的结果,等于92怎么不对呢?赶紧帮他算算密码是多少?

生:密码是第二步算错了,23应该错位写,因为它表示230,3写在十位上,2写在百位上得299。

……

师:你们眼力真好,一下帮淘气解决了问题,谢谢你们!赶紧进他家吧!

[设计意图]设计的练习,既让学生在巩固的基础上获得了提高,又克服了学生在新课后的疲倦感,课尽趣依浓。

3、总结(2分钟)

师:淘气的家真漂亮啊,今天真高兴,你有什么收获?

生1:我知道了两位数乘两位数的口算和竖式方法。

生2:我知道了用最简洁、方便的方法算两位数乘两位数(师:什么方法?)用竖式计算。

师:你们说得都很好,很高兴大家今天有这么多收获,下课!

(总结,让学生在交流收获的过程中,了解竖式计算的重要性。)

五年级数学上册的教案篇2

教学目标

1.通过收集图案,小组交流,感受图案的美,并为自身以后创作图案提供借鉴。

2.通过欣赏图案,发展同学的审美意识和空间观念。

3.自身经历创作实践的整个过程,感受创作的乐趣,进一步培养同学的审美情趣。

重点难点:

1.进一步利用对称、平移、旋转等方法绘制精美的图案。

2.加深感受图形的内在美,培养同学的审美情趣。

教学准备:

课件、方格纸、正方形白板纸、手工纸三张和剪刀等。

教学过程:

一、展览导入

课前让同学收集图案,以小组为单位进行交流。

考虑:这些图案是怎样设计的,它有什么特点?

指名介绍本组中最美的图案,并结合考虑说一说它的特点。

二、学习新课

(一)尝试发明:

让同学做第8页第1、2题。

1、鼓励同学用学过的图形设计图案,对不同的同学提出不同的要求。

2、交流时,教师对有创意、绘图美观的同学给予褒扬和激励。

(二)设计图案:

做第10页“实践活动”7题。

1、提出三个步骤:

(1)先选择一个喜欢的图形;

(2)再确定你选用的对称、平移和旋转的方法;

(3)动手绘制图案。

2、分别利用对称、平移和旋转创作一个图案后,全班交流。

三、巩固练习

(一)反馈练习:

1、制作“雪花”:

取一张正方形纸,按书上所示的方法对折和剪裁。可以经过多次练习,直到会剪一朵美丽的“雪花”。

2.作品展示。

3、独立观察并尝试做第9页第5题。

四、全课总结

全班交流各自的作品,选出好的作品互相评价,全班展览。

五年级数学上册的教案篇3

教学目的:

本游戏活动以摸球作为载体。通过此数学游戏,目的是让学生在活动中经历实验、猜想与验证的过程。

教学过程:

1、师向学生交代清楚活动的操作顺序:两人一组,然后记录颜色,再放回。记录摸出的红球、白球次数可用画“正”字的方法。

2、组织活动:

(师给每组口袋内准备的白球与红球数的比例应相同。)

学生两人一组,一人摸球,一人记录。

活动过程中,教师要及时进行巡视,以纠正学生可能出现的不当操作。

3、汇报交流并猜想:

每组学生操作完毕后,组织全班进行汇报交流。并将汇报结果记录在黑板上,以便学生进行猜想。也要请他们说说猜想的根据。

4、验证猜想:

请学生打开各小组的口袋,验证猜想的结果与实际结果是否相符。

5、小组讨论:

投影出示讨论的题目包括表格。然后出示问题。

注意:学生在具体讨论时,也会出现各种各样的猜想与推选的方法,对此,要让学生说说自己的理由,特别要指导学生应考虑比赛外的各种因素。

6、课堂练习:

89页第3题。

提示学生:由于任选的随机性,故可能出现特例。对此,在解答时,不要求学生作统一的回答。

五年级数学上册的教案篇4

教学目标:

1. 知识目标: 进一步探究“速度、时间和路程”三个量之间的关系。能根据“速度、时间和路程”三个量之间的关系解决实际问题。

2. 能力目标: 让学生在实践中经历观察、发现、归纳等数学学习的过程,体验数学与日常生活的密切联系。

3. 情感目标: 通过与日常社会与周围环境的运用,体会数学与日常生活的密切联系,感知数学是有用的。

教学重点:

探究“速度、时间和路程”三个量之间的关系。

教学难点:

能根据“速度、时间和路程”三个量之间的关系解决实际问题。

教学准备:

多媒体课件。

教学过程:

一、复习引入

1. 读一读下面的速度

80千米/时 45米/分 96千米/秒 140千米/时   2. 学生交流(做一做): 学校操场一圈是200米,你步行绕一圈大约用( )分钟,你的步行速度大约是( )。 说说你是怎样算的?(速度=路程÷时间)

3. 师:今天我们继续来学习“谁跑得快(二)”。

(通过复习帮助学生巩固对速度概念的理解,对速度单位的读和写这个难点也进一步进行复习巩固)

(二)探究“速度、时间和路程”三个量之间的关系

1. 出示媒体:

(1)猎豹奔跑的速度是2250米/分,7分钟能跑多少路程?

(2)绵羊奔跑的速度是3米/秒,跑774米需要多少时间?

A、学生独立练习。

B、反馈:口述数量关系及算式。

C、小结:时间=路程÷速度 路程=速度×时间

2. 填表P11:

路程

376千米

476米

时间

9秒

2小时

12分

速度

340米/秒

8米/秒

60米/分

(1)学生独立练习   (2)反馈:(注意单位)你是怎样算的? (通过填表练习使学生巩固“速度、时间和路程”三个量之间的关系)

(三)实际运用

1. 填表:

速度

时间

路程

骑自行车

9分

1080米

驾驶摩托车

50米/秒

500米

人行走

67米/分

1小时

2. 应用   (1)甲船4小时行驶80千米,乙船6小时行驶96千米,哪条船行的快?

(2)甲、乙两地相距240千米,一辆汽车上午7:00从甲地开往乙地,速度为60千米/时,这辆汽车是在什么时刻到达乙地的?

(3)一辆轿车在高速公路上的速度是2千米/分,是一辆公共汽车速度的4倍,公共汽车的速度是多少米/分?

A. 学生独立练习

B. 反馈 (通过练习使学生能根据“速度、时间和路程”三个量之间的关系解决一些问题,培养学生解决问题的能力。)

五年级数学上册的教案篇5

教学内容:

教材P32例6及练习八第1、2、3、8题。

教学目标:

1.知识与技能:能理解商的近似数的意义。

2.过程与方法:掌握小数除法计算中用“四舍五入”法求商的近似数的一般方法。

3.情感、态度与价值观:培养学生在实际生活中灵活运用数学知识的能力,能根据实际情况进行求近似数。

教学重点:

掌握小数除法计算中用“四舍五入”法求商的近似数的一般方法。

教学难点:

根据题意正确求出商的近似数。

教学方法:

注重新旧知识的迁移,引导学生自主学习、总结。

教学准备:

多媒体。

教学过程:

一、复习导入

复习旧知:(出示如下题目)

1.用“四舍五入”法将下面的数改写成一位小数。

8.769  3.452  12.71  18.64

2.计算下面各题,得数保留两位小数。

2.43×4.67   12.15×3.41

订正答案,并通过问题:你是用什么方法求这些数的近似数?

(保留几位小数就看这位小数后面的数位,大于4就向前一位进一,小于五就舍去。师引导总结方法的名称:“四舍五入”法。)

引出课题:这节课我们要学习“商的近似数”。(板书课题:商的近似数)

二、互动新授

1.出示教材第32页例6情境图。

阅读情境图中的信息,并问:怎样解决爸爸提出的问题呢?

引导学生自主列算式,并试着计算:19.4÷12

学生在计算过程中,会发现除不尽。这时,师引导学生小组交流,遇到这种情况应该怎么办?

通过交流,学生可能会想到:实际计算钱数时应该算到分,因为分是人民币的最小单位;也可以算到角,因为现在买东西时已经不用分了。

教师小结:根据我们的生活实际,当所买的商品数量少的时候,可以保留整数,或者保留一位小数,或者两位小数。当然如果数量很多的时候,通常会计算到分,这就要根据我们的实际需要进行取近似数了。看来取近似数一种是按照要求去取,一种是按照实际情况去取。(板书:按要求取,按需要取。)

然后再引导学生想一想:算到分和角时分别需要保留几位小数?

(算到分要保留两位小数,算到角就要保留一位小数。)

师引导学生思考并讨论:除的时候应该怎么算?

小组讨论后,学生汇报:保留两位小数,就要算出三位小数,再按“四舍五入”法省略百分位后面的尾数;保留一位小数,就要算出两位小数,再按“四舍五入”法省略十分位后面的尾数。

让学生自己用竖式计算:19.4÷12。教师根据学生汇报,板书

2.提问:说一说如何求商的近似数?

让学生独立思考后,在小组内交流、讨论。引导学生小结:求商的近似数时,只需要比需要保留的小数位数多除出一位,然后再用“四舍五入”法就可以取近似数了。或者除到要保留的小数位数后,不再继续除了,只把余数同除数作比较,若余数比除数的一半小,就说明求出下一位商要直接舍去,若余数等于或者大于除数的一半,就说明要在已除得的商的末一位加上1。同时,求商的近似数的时,不需要算出商的准确值之后再进行取舍。

3.引导学生比较求商的近似值和求积的近似值的异同点。

小组讨论后发言:相同点:都是用“四舍五入”法求近似数。

不同点:积的近似数要求出准确数之后再求近似数;商的近似数不需要求出准确数,只需比需要保留的小数位数多除出一位就可以求近似数。

师小结:求商的近似数非常重要,有时按照要求取近似数,有时按照实际取,在取商的近似数的时候,要明白应该除到哪位就可以不用再除了。

三、巩固拓展

1.完成教材第32页“做一做”。学生独立完成。订正时让学生说一说它们的近似值分别是怎么取的。有些题保留指定小数位数后,近似数的末尾有0,要让学生说说是如何处理的。如第2小题1.55÷3.9,保留两位小数是0.40。

四、课堂小结。同学们,这节课你学了什么知识?有哪些收获?

引导学生归纳

1.求商的近似数时,计算到比保留的小数位数多一位,再将最后一位“四舍五入”。

2.求商的近似数的时候不需要算出商的准确值之后再进行取舍。除到要保留的小数位数后,不再继续除了,只把余数同除数作比较,若余数比除数的一半小,就说明求出下一位商要直接舍去,若余数等于或者大于除数的一半,就说明要在已除得的商的末一位加上1。

作业:教材第36~37页练习八第1、2、3、8题。

板书设计:

商的近似数

求商的近似数时,计算到比保留的小数位数多一位,再将最后一位“四舍五入”。

五年级数学上册的教案篇6

教学目标

1、 使学生在解决现实问题的过程中,认识到整数加法的运算定律对于小数加法同样适用,能正确运用加法运算定律进行一些小数加法的简便运算

2、使学生在探索与交流的活动中,体会解决问题策略的多样性,增强优化意识;逐步形成积极的自我评价和自我反思的意识,体验学习数学的成就感。

教学内容

1、 口算

用卡片出示练习九的第1题,指名口答。

2、出示例3中的四种文具。

如果让你任意购买其中的两种文具,你想买哪两种?你会计算出所需要的钱数吗?

1、出示例3

这四种文具,小华各买了一件,他一共用了多少元?解答这个问题可以怎样列式?

根据学生的回答,教师板书:

2、 引导学生探索算法

你会计算这道题吗?先算一算再把你的计算方法在小组内交流。

学生独立计算,注意选择学生采用的不同的方法,并指名板演。

3、 比较:刚才同学们用不同的方法算出了小华一共用的钱数,请同学们比较这些算法,你认为哪种算法更简便些?

进一步追问用简便算法的学生:你这样算的依据是什么?

4、 小结:整数加法的运算定律,对于小数加法也同样适用。应用加法运算定律可以使一些小数加法的运算简便。这就是我们今天研究的内容。

我们以前学习过哪些加法的运算定律?

根据学生的回答板书:

加法交换律:

加法结合律:

这里的字母 a、b、c可以表示怎样的数?

指出:因为整数加法运算定律对于小数加法同样适用,所以这些字母公式里字母所表示的数的范围既包括整数,也包括小数。

1、完成““练一练””的第1、2两题

先让学生独立完成,再让学生说说怎样算简便

4、 完成练习九的第2题

学生练习

比较每组算式的计算过程和结果,你有什么发现?

指出:整数减法的一些规律小数减法里同样适用,也能使一些计算简便。

5、 完成练习九的3~5题

先让学生独立完成,再交流第4、5题的思考过程,说出每一步计算结果的实际意义

教后记

在探索与交流的活动中,体会解决问题策略的多样性,增强优化意识;逐步形成积极的自我评价和自我反思的意识,体验学习数学的成就感。

56011